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Abstract. Various systems based on waves and vibrationsused for displacing, grouping, classification of ltiau
dimensional media and bodies. This paper deals siitth wave operation based systems augmented bstaabing
elements which ensure one-directional motion of tmen sub-systems. Such enhancements can impsowse
dynamical characteristics of the analysed systerhe. objective of this paper is to develop modelssydtems and
methods of analysis which would help to reveal maar dynamical properties and phenomena of thgstems. The
conditions of solutions’ existence and stabilitgsim boundaries are determined. Simpler casesnatgsad analytically.
The obtained relationships provide insight into lim@ar dynamics of complex systems which are aealysimerically.

Keywords. standing and propagating waves, self-stopping efeénmonlinear dynamics

1. Introduction n=nu,t); &=£(u,t). 1)

Non-controlled  ‘or controlled — self-stopping  tpe jth member with the masey, can move with
mechanisms play important role in different systeans '

help to improve dynamical characteristics of thegstems
and to simplify their structure. Chain type systewith  axis. The membei, can move in the directional guides
self-stopping elements generalise some simplifiediets  4jong x-axis. The self-stopping device is attached to the
of fluids and granular type materials. This paperthe memberi,. It lets thei,-th element to move only in one
further investigation of vibrational and wave trpogation (positive) direction. The self stopping devices cae

[1, 2]. Despite of important scientific achieven®|8, 4] it L . e

is important to analyse such new type of transiorta attache_d also_ to theth member and can limit thg direction
systems and determine atiractors, their basin baies] of motion with respect to the working profile 0. &h
dy . I separate members of the output system are connbgted

evelop motion control strategies [5]. At
the elastic-dissipative elements.

The force of friction between thieth member and the
working profile 0 at the contact poind is acting in the

The analyzed system (Fig. 1) consists from the tinput@ngential direction:
member with the working profile 0 and the outputmber

respect to the membeg (with massm,) according tox-

2. Modé of the system

— the chain consisting from blocks1,...n. The i-th  Fg =N; fosigng + f;$, (2)
member is in the contact with the working profileOthe
contact pointA . where N; is the normal reaction force acting to thth

The working profile of the input member is defined o mper at pointa ; f, and f, are the coefficients of dry
according toc- andy-axes by: ] o ) o )
and viscous friction respectivelys is the slippage
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velocity of thei-th member with respect to the working £ 4 f & cos, +(|: + % sing, )
profile 0 at pointA ; top dot stands fod/dt . fi , b y ' .
éiui + (1+77iui )fOSIQrﬁ _ O ( )

1+, — &, fosigng

’ C"'H'x (1+ ni'u‘ )Fx + éi'ui I:y‘ + (_ gi'u‘ Fx + (1+ ni'ui )Fy‘ )fOSIQrﬁ +
+ ((1+ M, )2 +&, ? )flui =0,

)

where

Fy = (M +myo)% + Fi o+ Fija +Hy % +Qy

AUy Ay Ui #1004, Y14)

Fy,=m & +Fiicy *Fijay + Foy, +Qy,

Ui N+
Y | T .
[ | Foy =Hi& +Ci(& 1)),
x . .
Fig. 1. The schematic diagram of the system Fiioix=H i,i—l,x(xi — % 1)+ Ci,i—],x(xi — X _li,i—lx)’
According to Fig. 1: Fiiiy = Hi,i—l,y(gi _é:i—l)"'ci,i—ly(gi _‘é:i—l_li,i—ly)'
9)
Xi =Ui +7i; Y =& s ©)

Equations (8) are valid when there are no selfgtap
devices. In case when self-stopping elements daehsd
between the memberi, and the motionless basis,

equations (8) are valid when

From where, by taking into account eq. (1):

i =iy, YU + 775t

i =iy, Ui+, u;® + 2074, Ui + 7 - (4) X; =U; +7; >0, (10)

Similar relationships are valid faf,, &, . and do not hold true when

Xi =U +n; <0. 11
The anglea; between thex-axis and the tangent at the ' g (11)
point 4 is determined by the following equation: In case when self-stopping elements are attachideba
members and 0, equations (8) will be valid when
gilui
B :m ) § >0, (12)

d will not hold t h
The velocity of slippage of theth member with respect to and wit not hoid frue when

the working profile at the poin#; is: 5 <0. (13)

$ = (% —ni)cosa; +(y; - &t )sina; Equations (8) can be simplified when parametgrand &
oscillate with high frequency and small amplitudesd

or assuming that:

s =y Lem, P +&2 Lol ~1; (e, P+e? ~1; (14)

S | £=0 = (1+ iy, )Ji ,

and at the same time:
8 |0 = &l Ui (©)
X~ Ui 47 X = U + 17 - (15)
On the basis of the equations of equilibrium witkpect to
the i-th member the differential equations of motionetak Then, equations (8) are simplified to the followiiogm:
the following form:
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in +§ilui Fyi +(_ C’E{Ui in + FYi )fOSigrSi +f,0; =0. o .
(16) Fy =(m+mg)f,, where f, = X+h,%x+q,;
= F, =mf,, where f, =& +h ¢+ p?(e-1)+ay;
Casewhenn=2. ”

In this casel =1, and according to equations (9): whereh,, hy, q,, g, are determined analogously to eq. (18).

Eq. (16) is transformed to:
Fx1 = (ml"'mil.o)fx1 ,

where Fyt o by + T1 U+ (C &Ly + 1y ) fosigni =0
fXl =X+ Fron + hXl Xq + 0y, ; 22)
Fy, = (m, + mzo)fx2 ,

3. Excitation by travelling waves.

where

Fp = %o+ fxTiax 1 Xo + Gy 5 According to eq. (1)

FYl =my le !
where n=n(at—ku); &=¢&(ot—ku), (23)

fo, =&+ foy + p2(E -1,)+0, ;

oot ey (51 l) A wherern and £ are periodic functions of their arguments. In

Fy, =mfy,, this case the derivatives in eq. (3-6) take théo¥ahg
where form:

fy2 :Ez —py fipy + pg(fz _|2)+qu ;

L= t—ku: ); n' . =—kn!: ."__:k2 "ol o= I
f1ox :hlzx(xl_xz)’Lni(Xl_Xz—|12x); 7 77(60 I) T T e

" 2.m. 1 ”.
: : Mg = @77 5 Mige = —K;'; (24)
f1oy :h12y(§1—§2)+ n§(§1_§2_|12y)' " ' tut I
a7 where
Hy Qy my +my, 2
e % Tmeme M Tmmy B e )
i i0 i io 2 20 a(a)t—kui) G(a)t —ky; )2
_ CI _ QYi . _ ml .
Pi _’in _iluy—_y . e .
m m m, Eqg. (4) simplifies to:
H H12 C . . P s . "
P :”h+2r:‘10; hyay :Wyi Ny = ﬁ o =(o—ka ol i =—knlt; + (@ -ku; )?n . (26)
Ciy 18) Analogous relationships can be obtained&or
n, = f— .
y
M In that case eq. (5, 6) are transformed to:
Equation (16) is transformed to: K&
tana; =1—k§|'; S =Ui\/(1—k77i')2 +k2E2
f + Hy S £, +(_ S i +aty 1y )fosignui + 10, =0, 7
(19) Si|§:0 = (1—kn{ ) ; Si‘zyi:O =—k&{u; . (27)
where Next we assume harmonic waves
iy, - M e L (20) n; = Acodet —ku; ); & = Bsin(wt —ku; ). (28)

m, + Mg . m, + Mg
For example, eq. (8) at n=1 becomes:

Case when n=1. , , e+
A=kn)f, — ket + (@b P + KPS+ )

In this case the equation (8) or (16) holds trubeWn =1 + (kaj‘fX +(1— kr;')fy)fosigrS:O;
and according to eq. (9) and taking into accouptu;

X =X; m=n; & =¢&; ... the following relationships where f,, f
are obtained:

y+ My are determined by eq. (20, 21).
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By taking into account that the amplitudes of
excitation are small and the frequency is high;oals
fo =1=0q, =0, eq. (29), taking into account (14) and (15)

It is possible to finda from eq. (36). The existence

of their real values is the necessary conditioexa$tence
of motions. The stability of those motions can be

becomes:

G+ (hx + ff)U =1y —hn —0a, + ﬂyxkrf'(é‘{{ +h, &/ + pzé),
(30)

where derivatives off and ¢ are calculated from eq. (28):

1 = —oAsin(et —ku), ... (31)
Eq. (30) can be expressed in the following form:
+hu=a+ f(at—ku). (32)

Case 1. The output system moves with the veloditthe
propagating wave.

In that case
uj :%HE, (33)

whereu; =const . In that casej, =7j, =& =& =0 and

|
(34)

7 :E:ﬁ(— ku—i_);

ni=ni= 77"(— ku, )

In case of harmonic waves and taking into acco2®t 33,
34):

m = Acosku, ; 7 = Asinku, ; 7/ =—Acosk; ;
& =-Bsinky, ; & = Bcosky; ; & = Bsinky, .
(35)

Eq. (8) by taking into account (33, 34) becomes:
4 = (1— kryj)+ kg{foﬁ + (— k& + (1— kfyii')fo)FTI +
((1— k! + kzg{z)fli —0,

(36)
where

[
in = I:i,i—:Lx + I:i,i+:L>< +H X; ?"'va ;

FYi = I:i,i—SLy + l:i,i+:|.,y + FOyi 'f'Qyi ;
Foy =G (gi -l ); Fiji-1x :Ci,i—Lx(Xi _Xi—l_li,i—lx);
Fiisy :Ci,”l.Y(g_i_gifl_li,i—l,y)- (37)

determined from linear variational differential atjons
constructed for eq. (8 and 36):

U = U+, (38)
where du; is the variation.

In case 1.1, when n =1, it is assumed that
X=X, Y=Yy, U=u;

(39)

and from eq. (36), by taking into account (35),ist
obtained:

¢ = [1-kAsinku)+ fokB cosku, (40)
where
— _ .
fx:hX?+qx; fy:—pz(Bsmku+I)+qy;
h — HX — QX
< mm, m+mg
m C Qy f,
= =.—, =—, f =
M = my my m' W m+m,
(41)

Eq. (40) is transformed to:

¢ = a, cos2ku + b, sin2ku + a, cosku + b, sinku +a, =0,
(42)
where

a, = ~05fou,, p?kAB+ 05f, k(- A% + B2);

b, = 05u,, p°kB?;

ay = (fo T —uylay - P71

by =~ forey(p?B+ (g, — P2 KAJ- 21, A= T,KA;
8y = T, + fou,(a, — p?l + 05p?kAB)+

+f) %(1+ 05k2(A? + B2)).
(43)

The condition of stability is:

% _ —2a, sin2ku + 2b, cos2ku — a, sinku + b, cosku > 0.

ou
(44)
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In case whenf, =B =0, the conditions of existence (1_ k,T;Jr kgfo)er(— kg+(1— ki)fo)ﬂw ﬁ+
and stability are: . 2 . 2 Y2
o 2 e+ !
+ ((1_ k772) +k*& )fl Eﬂlz =0

o+t 9(1+ 05k 2 A2 )‘ (51)
‘ (KT, +2f, o)A where

2.~ ~— T T w .
cosku > 0. (46) f :nx(ul_u2+771_772_|12x)+hx1?"'qxl!

- — w
It follows from (45) that the existing stable moto  fy, :_/u12n>%(ul_u2 +11 -1, —|12x)+ h,, e
are in the interval — = — o (—
fy1 = ny(§1 =& _|12)Jr Py (51 _|1)+ Qy,
ku e[O,%j, fy2 :_zuy12n)2/(§1 -$5 _|12)Jr p§(§_2—|2)+ Ay,

m : +
= —, (i=12); M1z - ur o ;
and unstable — m; + M m, + My

£r_ fy T Ciox .
— 1 — ’ X = ]
kUE[E,ﬁj. 47) my +Myg | my +myg
2
h:H&.q:Q&.n:/CHV.
In case when omoemg ommyg Y my + My,

(o Qy,
A=fo=f=0q,=0, (48) pi= gy = (52)

m m

'uyxl

the conditions of existence and stability are: " . - .
y Conditions of existence and stability are deterghine
from eq. (51).

fx

———*_—1<1; —cos2ku > 0. (49)
051, P2KB

Case 2: The output system moves with a small vigloci
with respect to the velocity of the propagating aiav

Stable motions exist in intervalku e[%%ﬁ] and Ui TVERULS (53)
- (3 7 where
kue [— 7[,—7[] ; and unstable ones in o — 197
2 4 V< —; Uy == jﬁidt:O; (54)
k T .
ku E[Eﬂ,ﬂj and ku E[Z”’hj' (50) T is period ofy; . In a separate case it is shown that at n =
4 1 and f,=0, the differential equations of motion

o _ _ becomes eq. (32). For the determination of steddte s
In case of longitudinal travelling waves determitgd  modes of motion this equation, by taking into acta®3
(45 — 47) two types of motions can coexist, anddse of  and 54), is rearranged into the following form:
transverse travelling waves determined by (48 —f60)

types of motions can coexist. PO ~ _
Those are the limiting cases, in general case 2 or u+hu= f(ét)+g(f(5t - ku)— f(ét)_ hV)'

types of motions can coexist, from which half atabke, (55)

and half are unstable.

Case 1.2, whenn = 2. wheree is a small parametey = w—kv. The steady state
In this case, from eq. (8, 17, 18) it is obtained: motion according to (55) is sought with the helptioé

power series:
(- ar + KEL T, + (& (L )y, T,

v quo+ajl+82..., (56)
+((1— ki) + k2§l’2)f; % _0
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and the equations for determination ﬁg; j =01,..
become:

Uy +hi, = (&t —kidy)— f(&)—hv;.... (57)

The condition of periodicity ofi, , by taking into account
only the linear part off(&t—ki,) by power series in
terms ofkuy , is obtained in the following form:

ku, of [&j —hv
oot

=0; (58)

- 0
from wherev is found.

In case of harmonic waves arfg =h, =0 eq. (30) takes
the following form:

i+ (h, + f, 1 = w>Acodat — ku)+ wh, Asin(et — ku)—
—q, + 05u,,(p? - 0 kB? sin2(wt — ku).

(59)
Analogously:
{y + (h, + f, Wi, = @>Acodet —ku)+ oh, Asin(at — ku)—
—d, + 05u,,(p? — w0 kB? sin2(t — ku),

0, + (hx +f] )31 = —(hx + fl*v)— q, +
+kd, (a;zAsinét — wh, Acosat — ,uyx(p2 - a)z)sz cosZét),

o (60)
from where:
oA (— (6w+h,(h, + 1, ))cosat +]
Uy = — e
slo7 +(n, + £ F L+ (- oh, +alh, + £ )sinat

luy><(p2 B (oz)sz

’ aw(as? +(n, + 1,

; )(— 20% cos2t +8(h, + f; )sin2at ).

(61)
The condition of periodicity ofi; from (58, 60, 61) yields:

o (> + 02 h, + 1)

— kA?
1 b 26067 +(n, + 1, f "
Ve
4(452 +(hX +f, )2)
(62)
6

The coefficient of non-uniformity:

-~ *\2
Ea‘ _Umax 20 52+(hx+fl) _
B=0,=0 Y, wkA w0’ + hf ,

E ol + 1) Nao® +52(h, + 17 f
A=q,=0 = ,uyxa)z(pz—a)z)(ZBz

(63)
4. Excitation by standing waves.
In this case eq. (1) have the following form:
i =ne(ku plet); & =& (ku )é(t),  (64)

where functionsy, & 7+, & are periodic functions. In case
of harmonic waves:

n; = Acoskuy; cosat ; & = Bcosku; cosat .
(65)

Casel:n=1.

In this case the investigation of the system dycars
concentrated on a such type of equation:
i+ha=a+ f(ku,at), (66)

wheref is a periodic function. The motion of the system i
divided into the slow and fast motions:

u=u+u, (67)
and eq. (66) is rearranged in the following way:

+ha = f(kd,ot)+e(a+ f(ku,ot)- f(kU, ot)).
(68)

The solution of eq. (63) is sought in analogy WE&B-
57):

O=0y+eu+te?..., (69)

what produces

(g +htg = f(kT, t);

ly +hiy =a+ f(k(@+0p ), wt)— f(kd, at); ...
(70)

Taking into account the condition of periodicity wfand
linear part of the expansion df(k(T + U, ), @t) in respect

of ku, yield the following relationship:
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as kﬁo( (71)

of (k(@+10p), a)t)J

The existence of real values di is the necessary
condition of existence of the analyzed mode of orotits
stability can be determined from

Uo0g(k(U + U ), ct)
ou

<0. (72)

In case of harmonic waves according to eq. (19) (A8d
20)ati=1;n=1; %, =X; ¥, =Y; U, =u; and by taking
into account (14, 15, 28, 30) anigy =h, =1 =q, =0 the
equation of motion yields:

U+ (hX + fl*)u = w” Acosku cosawt + h, wAcoskusinet —
—q, + 025,uyx(p2 — ° KB sin2ku(L+ cos2et).
(73)

In case wheB = O:
i+ (h, + f, )1 = wAcoskli(wcosat + h, sinet)+

+&(~ q, + A(cosku — coskl ) cosat + h, sinat)).
(74)

Analogously to (69 — 72):

L __ Acosa [(— o +(h, + 1, )n, Jcosat +j

o +(n + £, |+ o, sinot

a)z(a)z + hf)
4((02 +(hx + fl* )2)
The conditions of existence and stability yield:
‘4qx(a)2 +(hX +f] )2)

‘ a)z(a)z + hf )(A2

kAsin2ku-q, =0.

<1; cos2ku <0; (75)

When g, =0 stable points are nodes and unstable — saddle
points.

Case whelA =0

i+(h +f, i=—q, + 025uyx(p2 — o KB sin2kii (L + cos2et) +
+ £(0254,,(p? - 2 kB (sin 2ku - sin 2kT {1+ cos2at))
(77)

Zero approximation yields
— Oy + 02541, (p? - 0 kB sin2kT = 0.
The conditions of existence and stability take form

4
A <0; (pz—a)z)COSZkU<O.
2 2 2
ol o7
(78)
In case of longitudinal and transverse travellirmyves the
conditions of existence and stability (75, 78) aimilar,

but there is an essential difference. In case afstrerse
waves the stable and unstable conditions when

p?—w? >0 are quite similar to the case of longitudinal
waves, but when
p?-w? <0, (79)

they change essentially, that is stable regimesiratbe
intervals ku e [3%;”] and ku € [%[ ;Zﬂ]; and unstable

— in the intervals

ku e £;3_7r
2 4

When g, =0 and p? -»? >0 stable points are the

(80)

nodes and unstable — saddles. Wheh—w? <0 stable
points become saddles and unstable — nodal points.

Case 2: n = 2; transverse standing waves.

According to the simplified equations (16 — 20) in
case of transverse standing wawes 0 and differential
equation of motion yields:

and stable regimes of motion are in the intervalsl, +h,,, (l]l - Uz)+ n’ (ul -u, — IX)+ hxll]l +q, +

ku e ﬁ;ﬁ and ku e 5—”3—” . Unstable motions are
4 2 4 2

at

ku e 0;1 and ku e 7r;5—” .
4 4

(76)

+/Llyx1§£Ltl( 1t p12(§1 - I1)+ hylfllt + qy1)+ f o, =0;

U, _ﬂx(hux(ul _uz)+ nf(ul —U, _Ix))+ hxzuz +0q,, +

+ﬂyx2§éu2( o pg(é:z _|2)+ hy2§2’t +qy2)+ Hy fl*uz =0
(81)
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where it is assumed thdly =0; |45, =1,

In case of harmonic standmg transverse Wavei_

determined by eq. (65) wheh =h, =q, =0;i = 12;
the steady state regime yields from eg. (81):

n2(W, —0, -, )+ g, — 025, (p? - @? kBZ sin2ky, = 0;

— uyn2(T, U, ~1,)+q,, - 025, (p2 - w® kB sin2ku, = 0.

(82)

Eq. (82) leads to:

w i, \p? — o )sin2ku, +
1,0, +0, — 025B? yxl( ' ) Y=
T My, (p22 - w2)5|n 2ku,
(83)
In case when

where 4 :% is the wavelength, eq. (83) yields:

HxOQx * Uy,
025KB (ty fayy, (P2 — @2 )~ p1yy, (5 - 02))°

or by taking into account (18, 20):

sin2ku; =

Q) +Qx,

025kBZ((m, —m, Jw? (¢, )’
(85)

sin2ku; =

The condition of existence of such regimes is:

| Qi+ |<1,
| 025(82((”]1 -m )‘02 -(ci-¢, ))|

(86)

and their condition of stability on the basis of €L, 83-
85) is:

((ml -m,)o? —(c, -c, ))cosZkUl <0. (87)
In case when
((”h_mz)wz—(cl—cz))>o, (88)

stable regimes are located akUle(%;%j and

kUle[SZ 3;] and unstable — at

8

(O; %) andku; e (;r;sjﬂj . (89)
In case when
((”h_mz)wz—(cl—cz))<0, (90)

stable regimes are located akUle[%;zrj and

ku, € (77” z] ; and unstable — at

(91)

Case 3: n= 2; longitudinal standing waves.

According to the simplified equations (16 — 20) atd
& =0 the differential equations of motion yield:

Uy + (g + I+ £, 0, = g1, + 770 + (P + 0+ £, i —
LT +0, +n§(u1+771 —U, =17, _Ix): 0,

UZ + (:uxh12x + hx2 + /ux fl* )]2 - :uxh12xul + ’7§'n +
+ (/uxh12x + hx2 + Uy fl* }7£t -
= pi iy + q,, _/uxni(ul T, Uy =17, _Ix): 0.
(92)
In case when the excitation is in the form of

longitudinal standing harmonic wave, then accordiag
(65) and ignoring dissipative elements produces:

n2 )sin 2k, =0
- Zyxnf)sinZkU1 =0.
(93)

n2(T, -0, -1, )+, — 025kA%(0?

—,uxnf(U1 -0, —IX1)+ a, + 025kA2(a)2

From (93) it is obtained
025KA? (1- 1y Jo® Sin 2Ky + 1y, + 0y, =0,

and the following conditions of existence and digbare
obtained:

| @+ |<1
| 025kB?(m, —mz)w2| '

(m, —m,)cos2kd; > 0. (94)

Stable points are the nodes in which the largersrsas
located.

© Vibromechanika. Journal of Vibroengineering.02@anuary/March, Vol. 9, No. 1, ISSN 1392-8716



254.CHAIN TYPE SYSTEM WITH WAVE EXCITATION. KAZIMIERAS RAGULSKIS, MINVYDAS RAGULSKIS?

Conclusions

A sequential chain comprised from masses linket wit
elastic elements is analysed. The masses of the ema
excited by propagating wave profile. Several pafic
cases are analysed in detail. When the propagating is
periodic the steady state motion mode is analysettiea
condition that the average velocity of the chaer@nts is

equal to the velocity of wave propagation. Condisicof
existence and stability of such motions are derived

When the average velocity of the chain elements i§.
small compared to the velocity of the propagatirayethe
steady state motion modes are analysed exploitin
approximate analytical techniques. Average velgcity
oscillations around the average velocity and thaperties

of solutions are analysed.

8.

When the excitation wave is a standing wave the

motions are analysed in the nodal and maximum igloc 9.
nodes. Motion characteristics, conditions of exiseeand

stability are investigated.
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