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Abstract. The primary, subharmonic, and superharmonic resonances of an Euler–Bernoulli 
beam subjected to harmonic excitations are studied with damping and spring delayed-feedback 
controllers. By method of multiple scales, the non-linear governing partial differential equation 
is transformed into linear differential equations directly. Effects of the feedback gains and time-
delays on the steady state responses are investigated. The velocity and displacement delayed-
feedback controllers are employed to suppress the primary and superharmonic resonances of the 
forced nonlinear oscillator. The stable vibration regions of the feedback gains and time-delays 
are worked out based on stablility conditions of the resonances. It is found that proper selection 
of feedback gains and time-delays can enhance the control performance of beam’s nonlinear 
vibration. Position of the bifurcation point can be changed or the bifurcation can be eliminated. 
Keywords: time-delays, nonlinear vibration, nonlinear control, resonance, suppression. 

1. Introduction  

In the past decades, a considerable amount of research has helped us better understand the 
effect of time delays on the behavior of nonlinear dynamical systems, which are controlled by 
the linear or nonlinear feedback controllers to mitigate vibrations. The intrinsic time delays, 
which inevitably exist in processing of the actuation mechanisms, filters, circuits, and 
controllers, can lead to an unacceptable detrimental delay period between the controller input 
and real-time system actuation in the control engineering [1-2]. However, the time-delays 
feedback controllers can be utilized to change the dynamic behavior of nonlinear systems [2]. 
Rencently, the application of time delays in the suspension controlling has become a hot 
research topic.  

The studies on delayed dynamic systems are basically parallel to those on the dynamic 
systems without any delay. The major approaches include those on stability of systems, such as 
eigenvalue and Lyapunov method [3], and those on the Hopf-bifurcation, the center manifold 
reduction [4], the Lyapunov-Schmidt [5], perturbation [6] and frequency domain [7] method. 
The stability criteria of linear systems, the Hopf bifurcation and chaotic behavior of non-linear 
systems have attracted many researchers’ attention. 

The dynamic behavior of delayed systems of discrete systems has received considerable 
concerns. Sato et al. [8] discussed the free and forced vibration of non-linear system with time-
delays, using the center current theorem and average method to study its stable periodic solution 
and stability. Hu et al. presented analytical and numerical studies of primary resonance and 
subharmonic resonance of a harmonically forced Duffing oscillator under state feedback control 
with a time delay [9]. Ji and Leung studied the primary, superharmonic, and subharmonic 
resonances of a harmonically excited non-linear s.d.o.f system with two distinct time-delays in 
the linear state feedback [10]. Nima and Nader [11] found that the experimental results and 
theoretical findings were in good agreement, which demonstrated that the non-linear modeling 
framework could provide a better dynamic representation of the micro cantilever than the 
previous linear models. 
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Recently, stabilization of beam with delayed feedback has raised many researchers’ interests. 
Mohammed et al. presented a comprehensive investigation of the effect of feedback delays on 
non-linear vibrations of a piezoelectric actuated cantilever beam [12]. Khaled et al. investigated 
the effect of time delays on stability, amplitude, and frequency-response behavior of a beam and 
found that even the minute amount of delays can completely alter the behavior and stability of 
the parametrically excited beam, leading to unexpected behavior and responses [13]. Mustapha 
and Mohamed [14] examined the control of self-excited vibration of a simply-supported beam 
subjected to axially high-frequency excitation. The primary resonance of a cantilever beam 
under state feedback control with a time delay was investigated [15]. Vibration control and high-
amplitude response suppression could be performed with appropriate time-delays and feedback 
gains. Wang and Hu [16] used the Lambert W function to calculate the rightmost characteristic 
root of retarded time-delay systems and analyzed the stability of high order mode or the systems 
with multiple delays. Alhazza [17] presented a single-input and single-output multimode 
delayed-feedback control methodology to mitigate the free vibrations of a flexible cantilever 
beam. A comprehensive investigation of the effect of feedback delays on the non-linear 
vibrations of a piezo-electrically actuated cantilever beam is presented. Stability boundaries of 
mechanical controlled system with time delay was studied [18]. Qian and Tang [19] discussed 
the primary resonance and the subharmonic resonances of a non-linear beam under moving load 
by using time-delay feedback controller. Gohary et al. [20] studied the vibration suppression of a 
dynamical system to multi-parametric excitations via time-delay absorber. 

Methods of treating weakly non-linear continuous systems can be broadly divided into three 
groups. In the first approach, harmonic balance method is applied to obtain a nonlinear 
boundary-value problem. In the second approach, the Galerkin procedure is always used to 
discretize the non-linear governing partial differential equation and boundary conditions. The 
two approximate methods are easy and straightforward for application. However, the calculation 
of higher-order approximate solution may be complex. In the third approach, Nayfeh et al. [21] 
calculated an approximate solution of the nonlinear differential equation by directly solving the 
continuous problem. In the study, the non-linear governing partial differential equation and 
boundary conditions were transformed into linear differential equations by using multiple scales 
directly. The obtained mode shapes were in full agreement with those obtained by using 
discretization because the latter was performed by using a complete set of basis functions that 
satisfied the boundary conditions. This method is beneficial to the elimination of coupling terms 
and removal of solving the multi-dimensional equations and it can easily be used to analyze the 
dynamic response of higher modes.  

Liao et al. [22] presented a feasible methodology by which could achieve good control 
performance of a dynamic beam structure system with time delay effect. A spring time-delay 
controller was designed to achieve good control performance. In this paper, the delayed damping 
and spring feedback controllers are designed to change the beam’s nonlinear dynamical 
behavior. The feedback gains and time-delays of damping controllers are easy to set and change 
by using active control facilities. 

In this study, the spring and damping controllers are designed to control the dynamic 
behavior of an inextensible Euler–Bernoulli beam in the primary, subharmonic, and 
superharmonic resonances. The multiple scales method is applied to obtain the linear equations, 
which can easily analyze the high order mode dynamic behavior of beam. The stable vibration 
regions of the feedback gains and time-delays are calculated by using the stability conditions of 
resonances. The unstable behavior of the non-linear dynamic system can be changed by the 
action of the spring and damping controllers. The effects of the feedback gains and time-delays 
on the steady state responses of the dynamic beam structure system are investigated. 
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2. Formulation and analysis 

2.1. Primary resonance 

The non-linear resonance of bridge can take place under the moving load and wind, which 
can lead to serious accidents. The bridge is assumed to be a simply-simply supported beam and 
inextensible. It is also assumed to follow the Euler–Bernoulli beam theory and possess uniform 
cross-sectional area, where rotary inertia terms and shear deformations are negligible (see 
Fig. 1). The non-dimensional form of equations of motion and boundary conditions of the beam 
can be obtained from [23-25]:  

(1) 

  at       (2) 

where the primes and overdots indicate the derivatives with respect to the position  and time , 
respectively.  is the nondimensional bending vibration,  the damping coefficient,  the small 
parameter,  the excitation frequency, and  the perturbation parameter, H the Heaviside unit 
doublet function. , where  is a characteristic transverse displacement,  the area of 
cross-section, and  the inertia momentum.  is the length of beam. , , 

. The active control torque  is expressed as: 

(3) 

where ,  is the stiffness of the spring. ,  is the coefficient of 
the damping controller. .  is the displacement of spring caused by time-delayed 
active controller.  and  are the time-delays, which are produced by the displacement time-
delayed and velocity time-delayed controllers. That  in Eq. (3) is corresponding to a 
passive structure control system.  

 
Fig. 1. Dynamic beam structure 

The beam bending vibration  can be expanded by order of  as [22-24]: 

(4) 

where  and  are the time scales. Substituting expression (4) into the partial differential 
Eq. (1) and boundary conditions (2), and separating terms at orders of , one yields: 

  (5) 
  at       (6) 
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(7) 

  at       (8) 

where , . The Galerkin approximation can be used to represent  as a series of 
products of spatial functions of  and time-dependent functions as: 

(9) 

where  is the  th eigenfunctions of a linear uniform beam, .  is the  th 
generalized time-dependent coordinates.  

 is the displacement of spring and damping caused by delayed feedback active 
controllers. When the functions are designed as displacement and velocity time-delayed 
feedback control, the simplest form with time-delays of  and  can be written 
as the linear functions of  and . By introducing the time-delays,  and  

 can be expressed as: 

 (10) 

where g is feedback gain parameter. , , and  point to positive, negative and no 
feedback, respectively. 

The solution of linear Eq. (5) is: 

(11) 

where  is the  th eigenfunction of a linear uniform beam.  is the  th approximate 
amplitude of Eq. (5), which is the function of time ,  is the conjugate item of . The 
solvability condition demands that the eigenfunctions are orthogonal, i.e.: 

(12) 

 is the Kronecker delta. For the primary resonance, the frequency of force is close to the 
natural frequency of system. One can get: 

(13) 

where  is the detuning parameter.  is the circular frequency of  th order mode. By 
substituting Eqs. (11), (12) and (13) into (7), applying the conditions of Eq. (8), and letting 

, the secular terms which should be equal to zero turn into: 

(14) 

where ,    ,  
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1 [ ( ) ( )]
2k k k kg cag ' x ' x ,  

, . 
Let . Separating the real and imaginary parts of Eq. (14), we can get: 

(15) 

(16) 

where , , . 
The nominal damping and detuning coefficients are expressed as the function of time-delays and 
feedback gains. 

By setting , the steady-state response in the system can be expressed as:  

(17) 

(18) 

From Eqs. (17) and (18), the frequency response equation of the system can be obtained by: 

(19) 

The peak amplitude at primary resonance, obtained from Eq. (19), can be expressed as: 

(20) 

For the purpose of comparison, the equation of motion for the nonlinear primary oscillator 
without attached controllers can be written as: 

(21) 

The peak amplitude at primary resonance without the controllers is written as:  

(22) 

As the response amplitude cannot be found analytically for a nonlinear system, a different 
method has to be developed here to study the performance of vibration controllers. In 
suppressing the primary resonance vibrations of the nonlinear oscillator, the performance of the 
vibration controller will be examined in the paper by defining a ratio. An attenuation ratio of 
nonlinear response is defined by the ratio of the amplitude of nonlinear vibrations with and 
without the controllers. The attenuation ratio, denoted by , can be expressed as: 

(23) 
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The attenuation ratio of the peak amplitude of primary resonance response is also defined by 
the ratio of the peak amplitude of primary resonance vibrations of the nonlinear system with and 
without the controllers. The attenuation ratio  is [25]: 

(24) 

As can be seen from the definition given by Eq. (24), under a fixed value of the amplitude of 
excitation, a small value of the attenuation ratio  indicates a large reduction in the nonlinear 
vibrations of the nonlinear system.  

For simplicity, one expresses the time-delays in the form  and . The 
parameters  become [10]: 

(25) 

As the phase of velocity is ahead of displacement , the phase difference  can be 
assumed as . Eq. (25) can be expressed as: 

(26) 

where . The attenuation ratio , can be expressed as: 

(27) 

2.2. Determing of control parameters for the nonlinear vibtation system 

The primary resonance response amplitude is determined by the real solution  of Eq. (19). 
One or three real solutions can be obtained. Three real solutions exist between two points of 
vertical tangents (saddle-node bifurcation), which are determined by differentiation of Eq. (19) 
implicitly with respect to . This leads to the condition: 

(28) 

Its solutions are: 

(29) 

For the case of , three real and positive solutions  of Eq. (29) exist in an 
interval . In the limit , this interval shrinks to the point . 
The critical force amplitude obtained from Eq. (19) can be written as: 

(30) 

For , there are three solutions. While , there is only one.  
The stability of the solutions can be determined by the eigenvalues of the corresponding 

Jacobian matrix of Eq. (17) and (18). The corresponding eigenvalues are the roots of [10]: 

(31) 
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As can be seen from Eq. (31), the sum of the two eigenvalues is . , which means 
that at least one of the eigenvalues will always have a positive real part. The system will be 
unstable. , there is a pair of purely imaginary eigenvalues for the system. The system is 
also unstable and a Hopf bifurcation may occur. If , the sum of two eigenvalues is always 
negative, at least one of the two eigenvalues will always have a negative real part. The other 
eigenvalues is zero when: 

(32) 

From Eq. (26), we can find that  is the function of the feedback gains, damping parameters 
and time-delays. As a larger positive value,  is prone to have the negative real parts of 
characteristic roots,  should have a larger value in order to improve the control performance 
by selecting proper coefficients of damping coefficient , arm of force  and the coordinates of 
installation of the controller.  

Based on the analyses mentioned above, the sufficient conditions to guarantee the system 
stability are:  

(33) 

If there is no real solution to the Eq. (32), the sufficient conditions to guarantee the system 
stability are: 

(34) 

Letting , we can find that the inequalities satisfy the Eq. (34) and get: 

(35) 

If there are two real solutions to the Eq. (32), the solutions are the same as Eq. (29). Let: 

(36) 

We can find that . The sufficient conditions of guaranteeing the system stability 
can be written as: 

(37) 

For the fixed time-delay, the range of the feedback gains can be obtained based on the stable 
conditions of the primary response resonances. For the given feedback gains of the controllers, 
the time delay can be designed for the requirement of the suppression of the nonlinear systems. 

2.3. Subharmonic resonance  

In the case of subharmonic resonance, the excitation is: 

(38) 

Substituting Eqs. (4) and (38) into Eq. (1) and equating coefficients of like powers of , we 
have: 



952. NONLINEAR VIBRATIONS OF BEAMS WITH SPRING AND DAMPING DELAYED FEEDBACK CONTROL.  
CANCHANG LIU, JINHAO QIU, HUIYU SUN, ZAIHUA WANG, HONGLI JI 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH 2013. VOLUME 15, ISSUE 1. ISSN 1392-8716 347 

(39) 
(40) 

(41) 

(42) 

The solution to Eq. (39) can be written as: 

(43) 

where , .  are the conjugate items of the solution. 

Substituting (43) into Eq. (41), we can obtain the equation of secular terms: 

(44) 

Let ,  After substituting them into Eq. (44) and separating 
the real and imaginary parts, we have: 

(45) 

(46) 

where  In the case of , the steady state response corresponds 
to the solutions of: 

(47) 

(48) 

By eliminating  from Eqs. (47) and (48), the frequency response equation is obtained as: 

(49) 

There are two possibilities: either a trivial solution , or non-trivial solutions, which can be 
acquired by: 

(50) 

Solving Eq. (50), we can get: 

(51) 
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where , . Because , the condition of the 

positive solution is  and . The necessary condition of 1/3 subharmonic resonance 
can be written as: 

(52) 

The steady-state solutions of subharmonic resonance response are determined by the 
eigenvalues of the characteristic equation, which are the roots of: 

(53) 

2.4. Superharmonic resonance 

For the case of superharmonic resonance, the solution of Eq. (39) is:  

(54) 

By substituting Eq. (54) into Eq. (41), the equation of secular terms is written as: 

(55) 

Let , . Substituting them into Eq. (55) and separating the real 
and imaginary parts, we have: 

(56) 

(57) 

In the case of , the fixed points of this system are expressed as:  

(58) 

(59) 

Eliminating  from Eqs. (58) and (59), we obtain the frequency response equation: 

(60) 

The peak amplitude of the superharmonic resonance, obtained from Eq. (60), is given by: 

(61) 
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For the purpose of comparison, the peak amplitude of the superharmonic resonance without 
control can be written as: 

(62) 

The attenuation ratio of the peak amplitude of superharmonic resonance response is defined 
by the ratio of the peak amplitude of superharmonic resonance vibrations of the nonlinear 
system with and without the controllers. The attenuation ratio  is [26]: 

(63) 

The characteristic equation of superharmonic resonance response is:

(64) 

The sufficient conditions of guaranteeing the system stability are:  

(65) 

If there is no real solution for the Eq. (65), the sufficient conditions of guaranteeing the 
system stability are: 

(66) 

Let . We can find that the inequalities satisfy the Eq. (66). We can get: 

(67) 

where . 
If there are two real solutions for the , the solutions can be written as: 

(68) 

Let: 

(69) 

We can find that . The sufficient conditions of guaranteeing the system stability 
can be written as:  

(70) 

For the fixed time-delay, the range of the feedback gains can be obtained based on stable 
conditions of the superharmonic response resonances. For the given feedback gains of the 
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controllers, the time delay can be designed for the requirement of the suppression of the 
nonlinear systems. 

3. Case study 

This section illustrates the effect of the feedback gains and time-delays on the non-linear 
dynamical behavior of the controlled system. The variation of attenuation ratio with time-delays 
and feedback gains is also discussed. The results are shown in a set of figures.  

3.1. The response analysis of first mode  

3.1.1. The primary resonance of first mode 

The beam’s non-dimensional geometrical parameters , ,  and  are 1, 0.05, 0.2, and 0.4, 
respectively.  0.2,  0.25. The coefficient of elasticity of the spring is 80. The feedback 
gain of the spring is 5. The coefficient of damping controllers is 0.3.  

Figs. 2 and 3 show the variation of  and  with the time-delay  for  and  
 0, 0.3 and 0.6, respectively. We can find that  varies with value of time-delays and 

. As larger  is prone to have the negative real parts of characteristic roots,  should 
have a larger value in order to improve the control performance. Fig. 2 shows that the value of 

 of first order mode is larger than  in the range 0.32 < τ < 0.63, which means that the 
attenuation ratio  is smaller than 1. Fig. 3 shows that the value of  of second order mode is 
larger than  in the range . From Figs. 2 and 3, we also find that the value of 
time-delay for large  of lower mode is larger than the higher one. For the fixed feedback gains 
and , different control purposes can be easily achieved by the right choice of the time-
delays.  should have a larger value in order to improve the suppression control performance. 

  
Fig. 2.Variation of  with the time-delays  

of the first mode 
Fig. 3. Variation of  with the time-delays  

of the second mode 

Figs. 4 and 5 show the variation of attenuation ratio  with time-delays and feedback gains. 
As can be seen from the figures, under a fixed value of the amplitude of excitation, a small value 
of the attenuation ratio  indicates a large reduction in the nonlinear vibrations of the nonlinear 
primary system. A selected value of time-delay can get a large positive value of  and small 
attenuation ratio . From Eq. (35), we can find appropriate value of feedback controllers, 
which can satisfy the stability conditions. The proper selection of the feedback gains and the 
time-delays can guarantee the stability of the non-linear system. For the fixed feedback gains 
and , the good suppression control for the nonlinear vibration of beams can obtain from the 
right choice of the time-delays easily. 

Fig. 6 shows the primary response curves of first mode for three different sets of the time-
delays. There is no jump and hysteresis phenomenon when ,  and no control. 

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

τ

μ 1

 

 

No control
M21=0,Φ=л/2
M21=0.3, Φ=л/2
M21=0.6, Φ=л/2

0 0.05 0.1 0.15 0.2 0.25-0.5

0

0.5

1

1.5

2

τ

μ 2

 

 

No control
M21=0,    Φ=л/2

M21=0.3, Φ=л/2

M21=0.6, Φ=л/2



952. NONLINEAR VIBRATIONS OF BEAMS WITH SPRING AND DAMPING DELAYED FEEDBACK CONTROL.  
CANCHANG LIU, JINHAO QIU, HUIYU SUN, ZAIHUA WANG, HONGLI JI 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. MARCH 2013. VOLUME 15, ISSUE 1. ISSN 1392-8716 351 

This suggests that saddle node bifurcation and jump phenomenon can be eliminated by certain 
values of the time-delays. Three solutions exist in a region of coexistence of , 

. The bending of the frequency response curves is responsible for a jump phenomenon. 
Moreover, the peak amplitude of the primary resonance response at ,  is 
smaller than that in the other two cases. 

  
Fig. 4. Variation of attenuation ratio  with the  

time-delays 
Fig. 5. Variation of attenuation ratio  with the  

time-delays 

 
Fig. 6. First mode frequency-response curves of primary resonance for three sets of the time-delays 

3.1.2. Subharmonic resonance 

The excitation amplitude of the subharmonic resonance is  0.30. The curve of the 
subharmonic resonance with time-delays is shown as Fig. 7. 

 
Fig. 7. First mode frequency-response curves of subharmonic resonance for three sets of the time-delays 

Fig. 7 shows the regions where subharmonic response exists for three different sets of time-
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delays. The time-delays can change the range of the occurrence of subharmonic resonance. It is 
noted that the regions for the existence of subharmonic responses are different. This shows that 
there always exist certain regions of the time-delays where subharmonic response does not exist. 

3.1.3. Superharmonic resonance 

The excitation amplitude of the superharmonic resonance of beam is  0.38. The curve of 
the superharmonic resonance with time-delays is shown in Fig. 8. For the superharmonic 
resonance response, the suitable choice of the time-delays and feedback gains can also improve 
the control performance. Moreover, the occurrence of saddle-node bifurcation, jump and 
hysteresis phenomena can be delayed or eliminated. 

Fig. 8 shows the first mode frequency-response curves of superharmonic resonance response 
for three sets of the time-delays. , and  0 mean that the system is stable. When  

,  and no control, jumps exist. This suggests that saddle node bifurcation and 
jump phenomenon can be eliminated by certain values of the time-delays. Thus, the control 
performance can be enhanced by the optimal selection of the feedback gains and time-delays. 

 
Fig. 8. Frequency-response curves of superharmonic resonance for three sets of the time-delays 

3.2. Second mode response analysis 

3.2.1. Primary resonance of second mode 

The beam’s geometry non-dimensional parameters , ,  and  are 1, 0.05, 0.2, and 0.4, 
respectively.  0.2. The coefficient of elasticity is 80; the damping ratio is 0.3; the feedback 
gain is 10. The parameters  and  are  0.25,  4 2 . The curves of the primary 
resonance with time-delays are shown in Figs. 9-10. 

 
Fig. 9. Second mode frequency-response curves of primary resonance for three sets of the time-delays 
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Fig. 9 shows the second mode frequency-response curves of primary response for three sets 
of the time-delays. ,  and ,  mean that the system is stable 
while jumps occur in the frequency response without control. This indicates that saddle-node 
bifurcation and jump phenomenon can be eliminated by selecting suitable time-delays. 

3.2.2. Subharmonic resonance 

The excitation amplitude of the subharmonic resonance of beam is  0.10. The curve of 
the subharmonic resonance with respect to time-delays is shown in Fig. 10. 

Fig. 10 shows the regions where subharmonic response exists for the three different sets of 
time-delays. The time-delays can change the range of the occurrence of subharmonic resonance. 
It is noted that the regions for the existence of subharmonic responses are different. This shows 
that there always exist certain ranges of the time-delays where subharmonic response does not 
exist. 

 
Fig. 10. Second mode frequency-response curves of subharmonic resonance 

for three sets of the time-delays 

4. Conclusions 

The primary, subharmonic, and superharmonic resonances of the first and second modes of 
the Bernoulli-Euler beam are studied with spring and damping delayed feedback controllers. The 
results show that the proper selection of the feedback gains and time-delays can enhance the 
control performance, but the inappropriate feedback gains and time-delays may lead to 
instability of the system. By using the joint function of spring and damping delayed feedback 
control strategy, the bifurcation can be eliminated or the bifurcation point’s position can be 
changed.  

Time-delays feedback controllers can be utilized to suppress the dynamic behaviors of 
nonlinear systems. Most of the vibrational energy of the nonlinear oscillator is transferred to the 
controllers through coupling spring and damping. The vibration controllers can effectively 
suppress the amplitude of oscillations of the nonlinear oscillator. Hence, by properly choosing 
the feedback gains and time-delays of the linked spring and damping controllers, the primary 
and superharmonic resonance response of the nonlinear oscillator can be reduced to relatively 
small amplitude. The control performance of beam’s nonlinear vibration can be improved with 
these delayed controllers by selecting appropriate time delays and feedback gains.  
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