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Abstract. Nowadays, there are many diagnostic methods in medicine. A negative effect in 

implantology has been recognized since the 1980s. In general terms, if an implant is introduced 

into the body, it is sometimes not accepted by the organism. This effect is usually referred to as 

low level of implant stability. There are many reasons why such an effect takes place. This paper 

is focused on the mechanical point of view. There is a relation between mechanical movement of 

an implant and success of the surgery [1, 2]. Cervical implant was chosen for our research because 

there is no information about the stability thereof. Such knowledge can benefit surgeons. A device 

based on measuring response function was designed. This device is connected to an implant. The 

implant and its surrounding bone are the boundary conditions. It was expected that these boundary 

conditions can affect frequency response function in a connected structure. A beam with exactly 

defined mechanical properties was designed for cervical implant. A vibration head was attached 

to one end of the beam. The vibration head produces transversal vibration. An accelerometer to 

measure the response was attached to the other end. The vibration head utilizes a piezo actuator 

and inertia force. This device was tested in vitro on a cervical cadaver in a laboratory. Mechanical 

stability of the implant was simulated with axial force. The results were obtained in a frequency 

domain by Fourier transform. The focus is on resonance frequencies and resonance amplitudes. 

They show that there is a correlation between implant stability and response function evaluation. 

Further, a numerical model of the device designed was made. The model was built using the finite 

element method. Finally, the experimental and numerical models were compared. 

Keywords: resonance frequency, vibration, finite element method, fast Fourier transforms, 

primary stability, secondary stability. 

1. Introduction 

Measuring implant stability still constitutes a crucial issue. Many important factors can be 

measured in the human body implementing very sophisticated medical technologies. Nevertheless, 

very little is known of what happens when an implant is introduced into the body. It is well known 

that there are a lot of cases of implant failure. The reasons why this happens are not exactly known 

though. There are factors that affect success of the surgery. Generally, we divide these factors into 

two groups. Group one comprises biological factors while group two consists of mechanical 

factors. The biological factors include healthiness, smoking, diseases (for example osteoporosis) 

etc. Mechanical factors could be the following: density of the bone, stress and strain distribution 

in the bone. These factors strongly affect the primary and secondary implant stabilities. Simply 

put, the primary stability is affected by the mechanical factors while the secondary stability is 

affected by the biological factors. The primary stability can be described as a value that specifies 

how well an implant is placed in the bone. If there is a movement between the bone and the implant, 

you may assume that the primary stability is low. The secondary stability describes the interaction 

between the implant and the surrounding bone in time. The two stabilities relate to each other 

closely. The secondary stability depends on the primary stability. It is understood that implant 

stability affects success of the surgery. The method of detecting the stability utilizing a resonance 

frequency analysis is widely accepted in dental implantology [4, 6, 7]. 

The objective of this contribution is to measure the primary stability of an intervertebral cage 

expressed as a frequency spectrum of the vertebral system and intervertebral cage. The hypothesis 

is that the primary stability is affected by boundary conditions of the structure connected to the 
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implant, especially the axial pre-stress. To our knowledge, no research has been carried out with 

respect to this issue yet.  

2. Material and Method 

Two models were used to detect the primary stability: an experimental approach and a 

numerical model. The numerical model was built to estimate the dynamic properties of the 

detecting system proposed. The experimental model provided a process to evaluate the numerical 

model results.  

The numerical model was built as a three dimensional model (Figure 1). We implemented the 

finite element method using a commercial package, MSC.MARC (MSC software s.r.o.). The 

model consists of two cervical vertebrae, an intervertebral cage, a connecting beam and an 

L shaped bracket with an actuator. The modal analysis and harmonic analysis with pre-stress 

varying from 0 to 100 N were performed. The range of frequencies between 0 and 5,000 Hz was 

researched.  

 
Fig. 1. Discretized model 

The simplified material model, which was used, is isotropic for all parts defined with the two 

engineering constants (Table 1). Zero displacement in all directions to all nodes of the C4 lower 

surface is prescribed. The pre-stress is prescribed to the upper surface of the C3 body. The glue 

contact is defined between all parts. A simple damping factor of the value 0.01 for all parts was 

specified. 

Table 1. Material properties of numerical model 

 Young modulus 𝐸 [MPa] Poisson ratio µ [−] Density [kg/m3] 

Piezo actuator 52,000 0.31 7,800 

Bracket 96,000 0.3 4,620 

Beam 96,000 0.3 4,620 

Cage 104,000 0.3 4,000 

C3, C3 5,000 0.3 2,000 

Experimental model is shown in Figure 2. The experiments were performed in a laboratory 

environment in vitro. An intact cadaver of a C3-C4 vertebrae segment from a 74-year-old male 
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was used for the measuring. A hole was drilled into the cadaver and, consequently, an 

intervertebral cage (Implaspin Lasak s.r.o.) was implanted. Finally, the measuring device was 

connected to the cadaver with a beam. The measuring device is consisted of the parts shown in 

Figure 1. The vibration head was attached to an end of the bracket. The vibration head comprises 

a piezo actuator. The actuator rests on the L shaped bracket. It generated transversal vibrations 

based on the inertia force. Its driver was built for this experiment. An accelerometer to acquire the 

response was located on the top surface of the L shaped bracket. A personal computer was used 

to generate and acquire the data using software capable of generating any type of signal and, 

simultaneously, transferring the response to the frequency domain through a fast Fourier transform 

algorithm.  

 
Fig. 2. Experimental model 

The primary stability is expected to rise with axial pre-stress. The implant primary stability 

was simulated with the axial force that was generated by a general-purpose testing machine. 

Initially, there was no axial force, thus low primary stability was detected. In the second 

measurement, the axial force was 100 N. 

3. Results 

All curves presented in the results were obtained from excitation in the 𝑋-𝑍 plane. From the 

anatomic point of view, the excitation was in the median plane. 

Numerical results from the finite element analysis are presented in Graph 1. The results were 

focused on natural frequencies with respect to the pre-stress environment. There are two curves. 

The solid curve represents the state before load (zero value) while the dashed curve represents the 

state after load (100 N). There are several resonance peaks. The first one occurs at 48 Hz. The 

second one occurs at 315 Hz. These two frequencies belong to the beam. At 574 Hz, the actuator’s 

resonance occurs. The marked measurement resonances occur in the range from 1,100 Hz to 

3,01 Hz. In the state before load, the second resonance exists at 1,078 Hz. The third resonance is 

at 2,030 Hz. Finally, the fourth resonance occurs at 3,007 Hz. When measuring the state after load, 

the second resonance occurs at 1,147 Hz, the third resonance at 2,071 Hz, and the fourth resonance 

at 3,009 Hz. 

As regards amplitudes, the second resonance peak had the amplitude of 0.09109 ms-2 before 

load, the third resonance had the amplitude of 0.1035 ms-2, and the fourth resonance had the 

amplitude of 0.77151 ms-2. After the force was applied, the second resonance had the amplitude 
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of 0.09363 ms-2, the third resonance had the amplitude of 0.17116 ms-2, and the fourth resonance 

had the amplitude of 0.77930 ms-2. 

 
Graph 1. Numerical results 

The frequency responses measured as a function of axial pre-stress on the cadaver sample are 

presented in Graph 1. The blue curve represents the condition when the axial force is not actuated 

(zero value). The other, dashed curve represents the condition when the axial force is applied 

(100 N).  

The second resonance frequency is found at 847 Hz before load. The third and fourth resonance 

frequencies without load are not shown because of large damping effect. In the state after load, 

the second resonance is found at 1,034 Hz, the third resonance is at 1,961 Hz, and the fourth 

resonance is at 3,005 Hz. 

 
Graph 2. Experimental results 

At the initial state (zero value), the second resonance amplitude is 0.027 ms-2, the third and 

fourth resonances are not shown, probably because of big damping. At the final state (load applied), 

the second resonance amplitude is 0.068 ms-2, the third resonance amplitude is 0.085 ms-2, and the 

fourth resonance amplitude is 0.112 ms-2. 

4. Conclusions 

In this paper, the system of cervical vertebrae and an intervertebral cage was analyzed from 

frequencies response. It is generally assumed that a frequency response of such a system relates 

directly to primary stability. 

There is a good correlation between experimental and numerical results of the models 
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proposed with respect to the resonance frequencies. The numerical results show resonance 

frequencies in the range from 150 to 5,000 Hz. These resonances belong to the beam and actuator. 

Frequencies in the range from 0 to 150 Hz are not considered in the experimental results. The 

actuator resonance is dominant in both models, and it is the lowest frequency resonance that can 

be measured in the real situation. For further evaluation, it is necessary to design a new vibration 

head with a resonance frequency higher than that measured this time. The experimental results 

suggest that the resonance amplitudes show more variance than the resonance frequencies. From 

this point of view, the numerical and experimental results do not support each other very well. 

This might be caused by the damping model simplification. The numerical model confirms that 

the resonance frequencies move to a higher range if a higher pre-stress force is applied. Either 

resonance measurement, of amplitude or of frequency, could be a way of defining the primary 

stability of an implant. 

The approach selected is very sensitive to boundary conditions. It is necessary to find and 

describe all ambient conditions, such as the testing device position, the torque, etc. [3, 5]. After 

having reached these boundary conditions, correlations through evaluation of the response 

function can be found. Thus, paving the way to a real world application is difficult. On the other 

hand, there are not any objective methods to measure the primary stability of a cervical implant. 

This opens the space to nontraditional methods such as that described here in above. 
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