
  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716 549 

972. Numerical simulation and manifold learning for the 

vibration of molten steel draining from a ladle 
Qing Zhang, Jing Wang, Yizhuo Zhang, Guanghua Xu 

972. NUMERICAL SIMULATION AND MANIFOLD LEARNING FOR THE VIBRATION OF MOLTEN STEEL DRAINING FROM A LADLE.  

QING ZHANG, JING WANG, YIZHUO ZHANG, GUANGHUA XU 

Qing Zhang1, Jing Wang2, Yizhuo Zhang3, Guanghua Xu4 
1, 2, 3School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China 
4State Key Laboratory for Manufacturing Systems Engineering  

Xi'an Jiaotong University, Xi'an 710049, China 
2Corresponding author 

E-mail: 1zhangq@mail.xjtu.edu.cn, 2wangpele@gmail.com, 3aii@mail.xjtu.edu.cn, 4xugh@mail.xjtu.edu.cn  

(Received 23 January 2013; accepted 2 June 2013) 

Abstract. To ensure the purity of molten steel and maintain the continuity of casting, the slag 

detection utilizing vibration signals has been widely applied in the continuous casting. Due to the 

non-stationary and non-linear flow behavior of molten steel, it is hard to construct a reliable 

criterion to identify the slag entrapment from the vibration signals. In this paper, a numerical 

simulation model is built to reveal the flow process of molten steel draining from a ladle. By the 

analysis of the volume fraction, path line and velocity field, the flow state at the moment of slag 

outflowing is captured. According to the simulated results, a method based on the manifold 

learning is proposed to deal with the vibration signals. Firstly, the non-stationary vibration signals 

are decomposed into sub-bands by the continuous wavelet transform and the energy of the signal 

component at each wavelet scale is calculated to constitute the high dimensional feature space. 

Then, a manifold learning algorithm called local target space alignment (LTSA) is employed to 

extract the non-linear principal manifold of the feature space. Finally, the abnormal spectral 

energy distribution caused by slag entrapment is indicated by the one-dimensional principal 

manifold. The proposed method is evaluated by the vibration acceleration signals acquired from 

a steel ladle of 60 tons. Results show that the slag entrapment is exactly and timely identified. 

Keywords: slag detection, vibration signals, numerical simulation, manifold learning. 

1. Introduction  

In the process of continuous casting, the molten steel is firstly stored in a ladle, then flowed 

into a tundish through the controlled nozzle, and finally entered into the mold for continuous 

solidification. It is a critical and dangerous operation that the molten steel drains from a ladle. In 

the ladle, a layer of slag, which is mainly composed of nonmetal oxides, always floats on the top 

of molten steel. In most time of the molten steel draining, the slag layer is steady floating and 

prevents molten steel from oxidizing. However, while the molten steel has decreased below a 

certain level, the interface between the steel and the slag becomes unsteady and a vortex, which 

appears on the top of the liquid surface and extends to the nozzle, may be formed. Then, the slag 

would invade into the tundish and mix with the molten steel. This phenomenon has a bad influence 

on the steels compositions and causes the slag inclusion in steel products. Therefore, it is 

significant for production of clean steel that monitoring the process of molten steel draining from 

the ladle. Many attempts have been made to differentiate slag entrapment from pure molten steel 

[1-4], such as vibration analysis, electromagnetic induction [3], infrared thermography [4], etc. 

Due to the sensitivity to vortex and the ease of implementation, the vibration analysis receives the 

most attention in the research and application of slag detection.  

The vibration of molten steel draining from a ladle is induced by the flow of complex fluid 

mixture. Therefore, it is necessary to build the simulation model for uncovering the fluid flow 

process [5-9]. Sahai et al. [6] constructed the instantaneous velocity fields of melt flow to offer 

information for casting control. Davila et al. [7] studied the turbulence model of the steel draining 

under isothermal and nonisothermal conditions to estimate the bath level, in which a vortex would 

be formed and developed. Although the purposes of existing models were the improvement of 

casting device and the casting process optimization, the simulation model can also help to provide 

app:ds:electromagnetic
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guidance for vibration analysis. 

Generally, vibration signals are acquired from the operation arm connecting with the nozzle. 

Due to the long transfer path of vibration and the strong influence of working circumstance, the 

vibration signals are contaminated by the unexpected noises generated from various interfering 

source. Many intelligent methods, such as hidden Markov model [10], vector quantization [11] 

and radial basis function neural network [12], have been used to identify the features of slag 

entrapment in vibration signals. However, the generalization of these intelligent methods is still 

not satisfying. In essence, the vibration signals of molten steel are non-stationary signals induced 

by the non-linear dynamic behavior of flow. Under the disturbances of initial condition and noises, 

it is hard to establish a common criterion for identifying slag with limited experimental data. In 

this case, non-linear feature extraction methods such as manifold learning [13-16] can be used to 

deal with the vibration signals and recognize the change of flow state caused by slag entrapment. 

In this paper, we build a numerical simulation model to display the volume fraction, path line 

and velocity field of molten steel draining from a ladle. The non-linear and non-stationary flow 

behavior at the moment of slag outflowing is captured. According to simulated results, a 

processing method combining wavelet decomposition and manifold learning is proposed and 

applied in vibration signal analysis. Thereinto, the wavelet transform is used to decompose the 

non-stationary vibration signals. The high dimensional feature space is constituted by the signal 

energy at each wavelet scale. Then, a manifold learning algorithm called local target space 

alignment (LTSA) is employed to extract the low dimensional principal manifold of the feature 

space. With dimension reduction, the non-linear structures between the feature vectors are well 

retained. Experiments verified that one-dimensional principal manifold can indicate the outflow 

of slag.  

The paper is organized as follows. We briefly describe the mechanical structure of casting 

device and the acquisition of the vibration signals in the next section. In section 3, the numerical 

simulation model of molten steel draining from a ladle is constructed to direct the vibration 

analysis. The method for vibration signal processing is proposed in section 4. An actual application 

case is provided to illustrate the effectiveness of the proposed method in section 5. Finally, the 

conclusions are given in section 6. 

2. Vibration detection of molten steel draining from a ladle 

The continuous casting device, as shown in Fig. 1, consists of ladle, nozzle, operation arm, 

tundish and mold. The tundish and mold are fixed in the production line and obtain molten steel 

from the transfer ladle. The submerged nozzle connects the ladle and tundish, and is manually 

adjusted by operation arm to control the molten steel flow. The slag, which is generated in the 

ladle, floats on the top of molten steel due to the low mass density. To prevent the pollution of 

molten steel and maintain continuous casting, the slag invading to the tundish should be minimized 

and ideally avoided. 

In some continuous casting workshops, operators can recognize the slag flowing through the 

nozzle by feeling the vibrations of operation arm. This manual detection is the origin of modern 

vibration detection with sensors. However, the disadvantages of manual detection are low 

sensitivity and huge time delay. Furthermore, it may cause the fatigue of operators and lead to 

wrong judgement. Consequently, vibration sensors are ideal alternative to monitor the fluid flow 

of molten steel continuously. Usually, sensors are located on the operation arm instead of the 

nozzle to avoid heat damage. To remove the noise and automatically identify the slag outflowing, 

an appropriate processing method for measured vibration signals is essential. 

3. Numerical simulation of molten steel draining from a ladle 

The basic procedure of numerical simulation for fluid dynamics can be summarized as follows. 

The geometry model of analyzed object, i.e. physical bounds of fluid, is defined. Then, the volume 
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occupied by the fluid is divided into discrete cells. According to some physical criterions, the 

equations of relation between the cells are established. Under the given boundary conditions, the 

equations are solved iteratively. Finally, a postprocessor is used for the analysis and visualization 

of the resulting solution. For simulating the process of molten steel draining from a ladle, the 

commercial fluid dynamics package, FLUENT (FLUENT Inc., Lebanon, NH), is applied to 

implement the above procedures. 

According to the geometric dimensions of an actual ladle, the physical bounds of molten steel 

are modeled as shown in Fig. 2. The quadrilateral mesh is used to divide the fluid field. Because 

of the dramatic changes of flow state near the nozzle, the mesh near the nozzle is denser than other 

zones.  

 
Fig. 1. Continuous casting device and its vibration detection 

 
Fig. 2. Computational mesh of the ladle 

In the ladle, molten steel, slag and air exist as liquid phase, solid phase and gas phase, 

respectively. Since the slag floats on the top of molten steel, the air is isolated from the molten 

steel and only contacts with the slag. In this case, two interfaces, steel-slag interface and slag-air 

interface, should be considered. It is assumed that there are no conversions or fusions among three 

phases during the ladle drain operations. The volume of fluid (VOF) multiphase model, which has 

proved to be the most reliable and efficient model for interface analysis [7], is used to trace the 

dynamic positions of the fluid interfaces. For the computational cells at steel-slag interface, there 

is a constraint 𝛼𝑚 + 𝛼𝑠 = 1, where 𝛼𝑚 and 𝛼𝑠 are the volume fractions of the liquid steel phase 

and the solid slag phase, respectively. The physical properties are blended according to the volume 

fractions of each phase in the flow field. For example, the density and viscosity of steel-slag 
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interface are calculated as: 

𝜌𝑚𝑖𝑥 = 𝛼𝑚𝜌𝑚 + (1 − 𝛼𝑚)𝜌𝑠, (1) 

𝜇𝑚𝑖𝑥 = 𝛼𝑚𝜇𝑚 + (1 − 𝛼𝑚)𝜇𝑠. (2) 

The same principles are also applied at the slag-air interface. In the simulation, the volume 

fractions of three phases in each computational cell are continuously calculated, and then the 

dynamic behavior of single phase and interface can be traced with a unified way. 

While the molten steel drains through a narrow nozzle at high flow rate, turbulence flow, which 

is characterized by chaotic and stochastic, would be emerged. To make the simulation close to the 

real situation, the shear stress transport (SST) k-𝜔 model [17] is used to simulate the turbulence 

flow in the molten steel draining. In this model, the effect of the transport of the principal shear 

stress flow is added to the turbulence viscosity equation, and a function blending k-𝜔 model and 

k-𝜀 model is used to ensure that the model equations behave appropriately both near the ladle walls 

and in the inner regions of fluid. The algorithms of SST k-𝜔 model has embodied in the FLUENT, 

so it is just selected in the simulation. 

The model equations are solved by the algorithm of pressure implicit with splitting of operators 

(PISO). The stop criterion of iteration is that the sum of all residuals for the dependent variables 

is less then 10-3. By FLUENT, the numerical solutions are obtained and displayed as animated 

images. Fig. 3(a) shows the contours of the volume fraction at the moment of slag outflowing. The 

blue region is the air phase, the red region is the liquid steel and the region between them is the 

solid slag. It can be seen that the slag floating on the molten steel is entrapped into the nozzle 

while a number of molten steel is still remained. The path lines of flow at the same time are shown 

in Fig. 3(b). The spiraling path lines can be clearly observed above the nozzle. It means that the 

vortex has been formed and transported the slag from liquid surface to the outlet. 

 
(a) 

 
(b) 

Fig. 3. Simulation results at the moment of slag outflowing:  

(a) contours of the volume fraction; (b) path lines 

The vibration is caused by the flush of fluid mixture to the nozzle. Therefore, the velocity field 

of fluid is established to analyze the flush behavior. Fig. 4 shows the velocity field comparison of 

pure molten steel and slag entrapment. While the pure molten steel flows through the nozzle, the 

velocity vectors in nozzle are in order and parallel with the wall of nozzle. Once the slag is 

entrapped by the vortex, the velocity vectors become chaotic. A mass of vectors point to the ladle 

walls and the magnitudes of vector are changed with the flow position. Then, the abnormal 

vibration would be induced by the chaotic velocity field.  

According to the simulated results, the conclusions can be drawn as follows: 

(a) Due to the effect of vortex, the slag would outflow before the molten steel drains away. 

The formation of vortex is influenced by a lot of uncertain factors, such as the temperature of 

molten steel, the open degree of nozzle, the composition of molten steel and the standstill times 
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of ladle. Therefore, the slag entrapment cannot be avoided just by the simulation. The vibration 

monitoring should be a good choice for producing spot of continuous casting.  

(b) The fluid flow of slag entrapment is chaotic and stochastic. By the flush of unsteady flow, 

the vibration response changes from stationary to non-stationary. Due to the non-linearity of flow 

state, the non-linear feature of vibration signals should be extracted and used to identify the 

anomaly.  

 
Fig. 4. Velocity field comparison of pure molten steel and slag entrapment 

4. Vibration signals processing 

To detect the slag entrapment from the vibration signals, we proposed a signal processing 

method based on the manifold learning. Firstly, spectral energy distributions of vibration signals 

are obtained by continuous wavelet transform to construct the high dimensional feature space. 

Then, a manifold learning algorithm, i.e. LTSA, is used to extract the one-dimensional principal 

manifold from the high dimensional feature space. The non-linear dynamic behavior of fluid flow 

can be captured by the one-dimensional principal manifold curves.  

4.1. Manifold learning 

The manifold learning is a method that maps the high dimensional feature into a reduced 

subspace to fuse the multiple feature information. The “manifold” is defined as a nonlinear surface 

embedded in high dimensional space along which dissimilarities between data points are best 

represented. In real world applications, many complex objects, such as images and spectral energy 

distribution, can be described by feature points in a high dimensional vector space. To detect the 

outliers in high dimensional feature space, a proper low dimensional projection of high 

dimensional space is necessary. The manifold learning has been proved to be the most reliable 

method for reducing non-linear high dimensional features. Consequently, it is used to process the 

feature vectors of vibration signals. 

Suppose a 𝐷-dimensional feature space 𝐗 = {𝐱1, ⋯ , 𝐱𝑛}, 𝐱𝑖 ∈ 𝑅𝐷 , where 𝑛 is the number of 

feature vectors. A 𝑑-dimensional manifold embedded in the feature space can be described as:  

𝐟: 𝐓 ⊂ 𝐑𝑑 → 𝐑𝐷     𝑑 < 𝐷, (3) 

𝐱𝑖 = 𝐟(𝐭𝑖) + 𝛆𝑖 ,     𝑖 = 1,⋯ , 𝑛, (4) 

where 𝐓 = {𝐭1, ⋯ , 𝐭𝑛} is the low dimensional feature subspace of 𝐗 and 𝛆𝑖  is the noise. With  

𝑑 < 𝐷, the dimensionality reduction of the feature vectors is realized. The manifold 𝐭𝑖 represents 

the embedding coordinates along the principal eigenvectors of 𝐱𝑖 in 𝑑-dimensional embedding 

space.  

Many algorithms have been develop to implement manifold learning, such as isometric 

mapping (Isomap) [13], locally linear embedding (LLE) [14] and local target space alignment 

(LTSA) [18]. Due to the advantage of noise immunity, LTSA is now widely applied in non-linear 
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dimensionality reduction. The basic idea of LTSA is to construct a local tangent space in the 

neighborhood of each feature vector, and obtain the global low dimensional embedding through 

affine transformation of the local tangent spaces. Firstly, locally linear neighborhood mappings of 

all data points are established. For each feature vector 𝐱𝑖 ∈ 𝐑𝐷, 𝑖 = 1,2,⋯ , 𝑛, find its 𝑘-nearest 

neighbors matrix 𝐗𝑖 = [𝐱𝑖1, ⋯ , 𝐱𝑖𝑘]  in Euclidean space. Then the local geometry coordinate 

around 𝐱𝑖 is computed by the singular value decomposition (SVD) as: 

𝐐𝑖𝚺𝑖𝐕𝑖 = 𝐗𝑖 − �̅�𝑖𝐞
𝑇 , (5) 

where 𝐞 is the all ones vector with length of 𝑘, 𝚺𝑖 = diag(𝜎1, ⋯ , 𝜎𝑑) is the 𝑑  largest singular 

values of 𝐗𝑖 − �̅�𝑖𝐞
𝑇 , 𝐐𝑖 and 𝐕𝑖 are the matrices of the corresponding left and right singular vectors, 

respectively. The local alignment matrix of 𝐗𝑖  is calculated by partially summing as following:  

𝐁(𝐈𝑖 , 𝐈𝑖) ← 𝐁(𝐈𝑖 , 𝐈𝑖) + 𝐈 − 𝐆𝑖𝐆𝑖
𝑇 , (6) 

where 𝐈𝑖 = {𝑖1, ⋯ , 𝑖𝑘} is the set of indices for the 𝑘-nearest neighbors of 𝐱𝑖, 𝐆𝑖 = [𝐞/√𝑘, 𝐕𝑖], 𝐈 is 

the identity matrix, and the initial 𝐁 is 0. Finally, the low dimensional embedding vectors 𝐓 is 

obtained by calculation of the 𝑑th eigenvectors of alignment matrix 𝐁 corresponding to the 2nd to 

𝑑 + 1 smallest eigenvalues. 

By the manifold learning, the non-linear structures between the feature vectors in 𝐗  are 

unfolded and displayed in low dimensional subspace. In the next section, the algorithm of LTSA 

is applied to identify the abnormal spectral energy caused by slag entrapment. 

4.2. Signal processing method  

The methodology for detecting slag entrapment from vibration signals is illustrated in Fig. 5. 

With a sliding time window, the segments of vibration signals are selected in chronological order. 

The continuous wavelet transform is used to decompose the signal segments into different spectral 

bands. The energy of the signal component at each wavelet scale is calculated and combined as 

the spectral energy vector 𝐱𝑖 ∈ 𝐑𝐷, in which 𝐷 is determined by the number of wavelet scales. 

While the time window is sliding, the spectral energy vectors are continuously calculated and 

constitute the feature space 𝐗 with the form of a matrix with 𝐷 rows. By LTSA, one-dimensional 

principal manifold curves of 𝐗 is obtained and used to indicate slag entrapment. 

 
Fig. 5. Flowchart of processing method for vibration signals 

According to the simulated results and practical experiences, there exists an intrinsic change 

of spectral energy distributions in the vibration signals while the slag outflows. The abnormal 

change has no regular mode and varies with casting conditions. In the high dimensional feature 

space, the anomaly is hard to identify. Therefore, the LTSA algorithm is used to reduce the 

dimensionality of the original feature space on the precondition that non-linear structures between 

the feature vectors is still kept. The one-dimensional representation of the feature space is suitable 

for identifying the anomaly caused by slag entrapment. 
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Once a great batch of vibration signals is acquired during the process of molten steel draining 

from the ladle, LTSA cannot be efficiently applied due to the high computation cost. In this case, 

an incremental LTSA algorithm is highly necessary. The incremental algorithm works in three 

steps. First, the k-nearest neighbors are adjusted according to the new coming spectral energy 

vectors 𝐱𝑛+1 . If 𝐱𝑛+1  is closer to an existing point 𝐱𝑖  than its 𝑘 -nearest neighbor, 𝐱𝑛+1  will 

replace the neighbor point in the neighborhood of 𝐱𝑖. Second, the local geometry coordinates and 

local alignment matrix of the adjusted neighbors are calculated from Eq. 5 and 6, respectively. In 

the third step, by the subspace iteration with Rayleigh-Ritz acceleration for calculation of 

eigenvalues and eigenvectors of updated alignment matrix [19], the new one-dimensional 

principal manifold values are obtained. Based on the incremental algorithm, the computation load 

is significantly reduced to catch up the pace of signal acquisition. 

5. Case study 

In this section, the proposed method is applied to detect the slag entrapment for a steel ladle 

of 60 tons. The vibration acceleration signals are acquired from the operation arm and the 

sampling frequency is set as 3000 Hz. The total draining process was last for about 40 minutes. 

The vibration signals at the last 9 minutes are shown in Fig. 6(a). The length and step size of 

sliding time window is set as 1 second and 0.1 second, respectively. Utilizing the Daubechies 

wavelet, the signals within each time window are decomposed into the scales of 1 to 20. The 

normalized energy at each wavelet scale constitutes a 1 by 20 spectral energy vector. Some 

spectral energy vectors at different time are listed in Table 1. Due to the high dimensions, it is 

hard to evaluate the change degree of spectral energy distribution clearly. The feature space 

composed of the sequential spectral energy vectors is processed by the incremental LTSA 

algorithm. As 𝑘 = 10, the one-dimensional principal manifold is obtained and shown in Fig. 6(b). 

To facilitate observation, the horizontal ordinate is replaced by the corresponding time. At 

6 minutes and 47.2 seconds, a sharp peak is appeared in the manifold curves. The value of 

principal manifold increased dramatically from near zero to 0.6910. In practice, the nozzle is 

closed at nine minutes according to the manual detection results of an experienced operator. 

However, a little slag had entrapped into the nozzle and been observed in the molten steel surface 

of tundish. It is verified that our method can exactly identify the slag entrapment and be prior to 

the manual detection. 

 
(a) 

 
(b) 

Fig. 6. Slag detection: (a) vibration acceleration signals; (b) one-dimensional principal manifold  
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Table 1. Spectral energy vector and corresponding one-dimensional principal manifold 

Time Spectral energy vector(×103) 𝑡𝑖 

0.1 sec 
[0.05, 0.08, 0.11, 0.17, 0.72, 4.43, 17.54, 43.40, 73.72, 96.47, 109.24, 

115.45, 116.09, 110.26, 97.50, 79.31, 58.65, 39.19, 23.87, 13.74] 
-0.0007 

1 min 
[0.03, 0.01, 0.03, 0.09, 0.65, 4.37, 17.57, 43.56, 73.93, 96.65, 109.40, 

115.58, 116.19, 110.29, 97.44, 79.17, 58.49, 39.04, 23.80, 13.70] 
-0.0120 

3 min 
[0.03, 0.01, 0.03, 0.12, 0.79, 4.94, 19.13, 46.14, 76.59, 98.65, 110.88, 

116.66, 116.64, 109.79, 95.92, 76.87, 55.88, 36.66, 21.93, 12.33] 
-0.0031 

5 min 
[0.03, 0.01, 0.05, 0.12, 0.70, 4.65, 18.50, 45.12, 75.46, 97.69, 110.17, 

116.19, 116.47, 109.96, 96.41, 77.62, 56.78, 37.62, 22.96, 13.49] 
-0.0025 

6 min 47.2 sec 
[0.15, 0.30, 0.48, 0.67, 1.21, 4.83, 17.31, 41.50, 69.54, 90.70, 103.11, 

109.78, 111.35, 106.91, 96.04, 80.36, 62.49, 45.84, 32.93, 24.50] 
0.6910 

6 min 47.3 sec 
[0.12, 0.23, 0.39, 0.53, 1.05, 4.68, 17.37, 41.97, 70.53, 92.03, 104.67, 

111.42, 112.92, 108.13, 96.66, 80.09, 61.35, 43.87, 30.39, 21.59] 
0.4696 

6 min 47.4 sec 
[0.11, 0.20, 0.34, 0.47, 1.00, 4.78, 17.95, 43.35, 72.47, 93.96, 106.28, 

112.59, 113.53, 108.11, 96.02, 78.89, 59.74, 42.04, 28.47, 19.70] 
0.2495 

6. Conclusion  

The prevention of slag invading into the tundish is essential for the production of clean steel. 

In this paper, the non-stationary and non-linear flow behavior of molten steel is analyzed by a 

numerical simulation model. The vibration signals acquired from the operation arm inherit the 

non-stationary and non-linear property. Therefore, a method combing wavelet decomposition and 

manifold learning is used to process the vibration signals. With the sliding time window and the 

incremental LTSA algorithm, the low dimensional principal manifold of the spectral energy 

feature space is extracted continuously. The one-dimensional principal manifold is chosen as the 

indicator of abnormal spectral energy distribution. The method is validated with a practical case, 

and the result shows that the slag entrapment is exactly and timely identified. 

However, several problems still need consideration. The detection effect of our method still 

depends on the parameters of sliding time window. If more information of vibration response can 

be provided by the numerical simulation model, the parameter choice would be more reasonable. 

Moreover, the threshold of one-dimensional principal manifold curve should be optimized to 

achieve the automatic decision for casting control. These are our research work in the near future. 

Acknowledgements  

This work was supported by the National Natural Science Foundation of P. R. China  

(approval No. 51005174) and Science & Technology Plan Project of Shaanxi, China  

(approval No. 2009K09-04). 

References 

[1] K. W. Ng, R. Harris Fluid slag skimming from steel ladles. ISIJ International, Vol. 41, Issue 5, 2001, 

p. 422-425. 

[2] Lifeng Zhang, Brian G. Thomas State of the art in evaluation and control of steel cleanliness. ISIJ 

International, Vol. 43, Issue 3, 2003, p. 271-291. 

[3] Julius E., Theissen W., Block F. R. Function and application of electromagnetic slag detection system. 

World Steel & Metalworking, Vol. 8, Issue 1, 1987, p. 56-61. 

[4] M. Viale, O. Martin, F. Muratori, U. Bertezzolo, J. Perez, C. Partemio, J. Usart Application of 

no-line infrared thermography in steel making industry. Proc. of SPIE, Vol. 6541, 2007, p. 1-11. 

[5] Brain G. Thomas, Lifeng Zhang Mathematical modeling of fluid flow in continuous casting. ISIJ 

International, Vol. 41, Issue 10, 2001, p. 1181-1193.  

[6] Yogeshwar Sahai, Toshihiko Emi Criteria for water modeling of melt flow and inclusion removal in 

continuous casting tundishes. ISIJ International, Vol. 36, Issue 9, 1996, p. 1166-1173. 



972. NUMERICAL SIMULATION AND MANIFOLD LEARNING FOR THE VIBRATION OF MOLTEN STEEL DRAINING FROM A LADLE.  

QING ZHANG, JING WANG, YIZHUO ZHANG, GUANGHUA XU 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716 557 

[7] O. Davila, R. D. Morales, L. G. Demedices Mathematical simulation of fluid dynamics during steel 

draining operations from a ladle. Metallurgical and Materials Transactions B, Vol. 37, Issue 2, 2006, 

p. 71-87. 

[8] J. Strandh, K. Nakajuma, R. Eriksson, P. Jönsson A mathematical model to study liquid inclusion 

behavior at the steel-slag interface. ISIJ International, Vol. 45, Issue 12, 2005, p. 1838-1847. 

[9] A. R. Banderas, R. S. Perez, R. D. Morales, J. P. Ramos, L. D. Garcia, M. D. Cruz Mathematical 

simulation and physical modeling of unsteady fluid flows in a water model of a slab mold. 

Metallurgical and Materials Transactions B, Vol. 35, Issue 6, 2004, p. 449-460. 

[10] Dapeng Tan, Peiyu Li, Xiaohong Pan Application of improved HMM algorithm in slag detection 

system. Journal of Iron and Steel Research International, Vol. 16, Issue 1, 2009, p. 1-6. 

[11] Dapeng Tan, Peiyu Li, Guochun Yao, Duanyang Liu Steel water continuous casting slag detection 

system based on VQ. IEEE International Conference on Systems, Man and Cybernetics, Vol. 2, 2006, 

p. 1315-1319. 

[12] Lu Tian, Yujun Huang, Huangqi Cai Slag detection system based on vibration using chaos and 

nerve cell theory. Proceeding of the 4th International Conference on Continuous Casting of Steel in 

Developing Countries, 2008, p. 637-642. 

[13] Joshua B. T., Vin D. S., John C. L. A global geometric framework for nonlinear dimensionality 

reduction. Science, Vol. 290, Issue 5500, 2000, p. 2319-2323. 

[14] Sam T. R., Lawrence K. S. Nonlinear dimensionality reduction by locally linear embedding. Science, 

Vol. 290, Issue 5500, 2000, p. 2323-2326. 

[15] Qing Zhang, Jing Wang, Guanghua Xu A new density estimation neural network to detect abnormal 

condition in streaming data. Journal of Vibroengineering, Vol. 14, Issue 2, 2012, p. 621-632. 

[16] Yizhuo Zhang, Guanghua Xu, Jing Wang, Lin Liang An automatic patient-specific seizure onset 

detection method in intracranial EEG based on incremental nonlinear dimensionality reduction. 

Computer in Biology and Medicine, Vol. 40, Issue 11, 2010, p. 889-899. 

[17] F. R. Menter Two-equation eddy-viscosity turbulence models for engineering applications. AIAA 

Journal, Vol. 32, Issue 8, 1994, p. 1598-1605. 

[18] Zhenyue Zhang, Hongyuan Zha Principal manifold and nonlinear dimension reduction via local 

tangent space alignment. SIAM Science Computing, Vol. 26, Issue 1, 2004, p. 313-338. 

[19] Xiaoming Liu, Jianwei Yin, Zhilin Feng, Jinxiang Dong Incremental manifold learning via tangent 

space alignment. Artificial Neural Networks in Pattern Recognition, Vol. 4087, 2006, p. 107-121. 


