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Abstract. Composite laminates are widely used due to the advantages of low density, high 

specific modulus and specific strength, strong internal damping and excellent chemical stability. 

Invisible damage by impact and fatigue such as matrix crack, internal delamination and fiber break 

may lead to sharp decline of structural strength and stability and finally makes composite structural 

failure. This paper proposes a damage index weighted average localization algorithm (DIA), 

which can realize a quick damage identification and damage localization of high accuracy. The 

proposed algorithm does not require damage imaging, and thus has the potential of realizing 

Structural Health Monitoring on line and in situ. Pre-experiments of real impact damages and 

artificial bonded bolt are done on composite laminates of small sizes. At last, to reduce experiment 

cost, the bolts are bonded on laminates to replace real impact damage for validation of DIA. 

Damage identification is successfully realized with damage localization error lower than 5 mm. A 

regular PZT arrangement with fewer sensors verifies that 6 sensors are enough for localization 

error of 20 mm and a random PZT arrangement with one or two sensors missing from the initial 

sensor array will not influence the localization accuracy. 

Keywords: composite laminates, ultrasonic stress wave, structural health monitoring, damage 

index. 

1. Introduction 

With the advantages of low density, high specific modulus and specific strength, strong 

internal damping and excellent chemical stability, composites have been widely used in a lot of 

areas. Due to good heat stability, high specific strength and stiffness, more and more composites 

are being applied to aircraft in order to reduce the structural weight and improve the structural 

performance [1]. However, during the manufacturing and application, damage is inevitable, 

especially those invisible damages by impact and fatigue such as matrix crack, internal 

delamination and fiber break, which leads to possible sharp decline of structural strength and 

stability and finally makes structural failure. 

With the continuous accumulation of damage, there will be a strong influence on the structural 

security and useful life. If possible damage is not detected in time, the consequence brought by 

damage may be disastrous, which makes the Structural Health Monitoring (SHM) necessary [2-5]. 

Because of the high sensitivity to structural damages and the ability of regional monitoring, stress 

wave is frequently used in the SHM research to monitor small damages such as fatigue cracks and 

delaminations [6-8]. Some representative algorithms include damage index (DI) [9-11], time 

reversal [12, 13], those using Time-of-Flight [14], statistical modeling [15-17] and damage 

imaging algorithms [18-20]. Among the stress wave based SHM, stress wave based damage 

monitoring is frequently studied. When structures are intact, piezoelectric sensors (PZTs) surface 

bonded on or integrated into structures are acted by voltage signals, then other PZTs acquire stress 

wave response signals as baseline signals. When structures are being monitored, the above process 

is repeated to obtain the monitored signals. Measuring the differences between monitored signals 

and baseline signals by damage index, when damage index exceeds a certain threshold, the 

structure is identified with damage occurring. Since cracks often occur at locations with stress 
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concentration, PZTs can be placed where the actuator-sensor channel passes the location with 

possible crack occurring, which makes this method often used for crack detection. 

In spite of the fact that damage index based method is frequently used for damage identification, 

it is seldom applied to further damage characteristic recognition. Ihn and Chang monitored the 

crack initiation and propagation around riveted joints with piezoelectric sensor-actuator network 

[9, 10]. The crack length corresponds to the value of damage index. Qing applied damage index 

algorithm to monitor corrosion damage in pipes [11]. Their researches focus on discussion of 

damage identification and rough damage localization.  

In this context, this paper proposes a damage index weighted average localization algorithm 

(DIA), which can realize a quick damage identification and damage localization of high accuracy. 

The proposed algorithm does not require damage imaging, and thus has the potential of realizing 

Structural Health Monitoring on line and in situ. 

The main creative points and jobs are as follows. 

First DIA is proposed to realize damage identification and localization. Then experiments of 

real impact damage and artificial bonded bolt on composites of small sizes are performed to study 

their influence on monitored signals. To reduce experiment cost, artificial bolts M8 and M14 

instead of impact damage are used for validation of the proposed algorithm. At last, parameter 

study is continued for further algorithm optimization. 

2. Damage index weighted average localization algorithm 

The principle of damage identification if damage occurs on a certain actuator-sensor channel 

is shown in Fig. 1. When damage occurs on the corresponding actuator-sensor channel, the 

monitored signals and baseline signals are compared and measured with damage index. A lot of 

damage indices are proposed for stress wave based SHM, both the simple damage index of scalar 

such as mean square root and complex damage index of vector such as wavelet analysis. The 

criteria should be that the chosen damage index is simple, effective, of high reliability, requiring 

little calculation and not easily influenced by environmental variation [4, 6]. 

 
Fig. 1. Damage identification by comparison of monitored signal and baseline signal 

Gabor wavelet function is chosen in this paper to perform wavelet transform of monitored 

signals and baselines signals. The local time-energy density characteristics of both signals are 

extracted and compared, which obtains the damage index (DI) defined as follows: 

DI = �1 −
� ���

� �������

��� ���
� �������

��

�, (1)

where �� is the baseline signals when the structure is intact, �� is the monitored signals when the 

structure is under monitoring, �′(�) is the local time-energy density corresponding to the scale 

parameter [	�, 	�] and time parameter �, [��, ��] is the signal time duration for wavelet analysis. 

The proposed SHM algorithm supposes that damage is the main factor leading to the signal 

differences before and after damage occurs. Thus, if DI in Eq. (1) is large, damage may occur. The 

larger DI is, the larger possibility that damage occurs. However, this method can only realize 

damage identification in the corresponding actuator-sensor channel and cannot obtain the accurate 

quantitative location of damage. 
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To realize quantitative damage localization, further discussion continues. When damage 

occurs at the intersection of two channels as shown in Fig. 2, both the two DIs on the two channels 

will be large. In the similar way, when damage occurs close to one channel but away from the 

other channel as shown in Fig. 3, DI on channel 1 is large, but DI on channel 2 is small. Thus it is 

concluded that the minor value of the two DIs reflects the distance from damage to the intersection 

of the two channels. Based on the conclusion, damage index weighted average localization 

algorithm (DIA) is proposed. 

 
Fig. 2. Damage occurring at the intersection of two channels 

 
Fig. 3. Damage occurring on only one channel 

When an area is monitored by 
 PZTs, the total number of actuator-sensor channels 
�	
  is:  


�	
 = 
 − 1 + 
 − 2 + ⋯ + 1 =

(
 − 1)

2
. (2)

The above channels will form many intersections, the weights of which are the minor DI values 

on the corresponding two channels. Thus the localization result can be expressed as: 

� =
∑ 
����

�
�∑ 
�
�
�
�

, (3)

where � denotes the final localization coordination result, �� denotes the intersection coordination 

of two actuator-sensor channels, 
�  is the corresponding weight expressed as: 


� = min(DI��, DI��), (4)

where DI�� and DI�� denote the two DIs corresponding to the two actuator-sensor channels and 

min denotes the minor value of the two DIs. 

Actuator 1 Sensor 1
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Damage 1
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When three actuator-sensor channels intersect at the same point as shown in Fig. 4, there are 

three intersections at the same location according to Eq. (3). If the three DIs are DI�, DI� and DI�, 

the corresponding weights are min(DI�, DI�),  min(DI�, DI�),  and min(DI�, DI�),  In this case, 

even though the three DI values are small, three calculations for the same intersection will make 

the damage localization result close to the intersection. 

 
Fig. 4. Damage occurring at the intersection of three channels 

To avoid the influence on localization error by the above case, the proposed algorithm deserves 

a further optimization. First, DI values on all the channels are calculated. Second, the coordination 

and weight of every intersection is obtained. Third, a weight average process is used so that those 

repeated intersections will only be calculated once. Fourth, localization is done according to 

Eq.  (3). At the third step, for the �th intersection, its weight 
�  is calculated as: 


� =
� 
��

�

�
�� , (5)

where 
�� denotes the �th weight corresponding to the �th intersection. 

Damage localization is realized through the above algorithm. Based on the algorithm, damage 

identification can also be realized. When a structure is monitored by a dense PZT network, the 

location where damage occurs must be close to one intersection of two actuator-sensor channels. 

Thus if there exist two channels that intersect with each other and whose minor DI value exceeds 

a setting threshold, damage must occur near the intersection point. 

Another factor is that the noise by measurement system and environment may make the DI 
values on some channels large, which will influence the localization result. Thus a weight 

coefficient � ranging between [0, 1) is introduced, and Eq. (3) can be further denoted as: 

� =
∑ 
����

�
�∑ 
�
�
�
�

,
� > � × 
���, (6)

where 

�� notes the maximum value of all the weights. 

3. Pre-experiments 

To reduce experiment cost, some pre-experiments are done to testify the influence on stress 

wave by real impact damage and bonded bolt. Some carbon fiber composite laminate specimens 

of small sizes are classified into two groups. The first group includes five laminates impacted by 

energy of 3 J, 5 J, 7 J, 8 J and 10 J, respectively. The impact will produce real delamination 

damage. The second group includes two laminates bonded with bolts of M8 and M14, respectively. 

The experiment system is shown in Fig. 5. The NI-PXI measurement system includes PXI-6115 
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high speed data acquisition card, PXI-5412 arbitrary wave generator and KH-7600 power 

amplifier from Krohn-Hite. 

 
Fig. 5. Experiment system and composite specimen 

In the experiment, the NI-PXI measurement system controls the wave generator to produce 

required signals and then the signals are amplified by the power amplifier. The amplified signals 

excite PZTs to generate stress wave propagating in structures. Finally, the diagnostic stress wave 

signals are acquired by other PZTs. In the experiment, the modulated sine signal of 5 cycles whose 

central frequency is 300 kHz is used. The sampling frequency is 8 MHz and the sampling point 

number is 5000. 

The C scans of the first group of specimens are shown in Fig. 6. 

 
Fig. 6. C scan of the first group of specimen 

The C scans show that the impact energy of 0 J and 3 J to laminate specimen produce no 

damage. One bad data point surfaces with the impact energy of 5 J. When the energy exceeds 5 J 

and continues to increase, the delamination damage occurs and becomes more severe. Fig. 7 gives 

the stress wave signals under different impact energy. When damage occurs, considerable signal 

differences can be noticed between the monitored signals and the baseline signals. Thus damage 

identification and localization can be realized by quantifying these changes with DI. 

 
Fig. 7. Stress wave signals under different impact energy 
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Fig. 8 shows the stress wave signals with bonded bolts of M8 and M14. Similar to the real 

impact damage, the monitored signals change a lot in amplitudes and phases compared to the 

baseline signals. Thus the real impact damage can be replaced by bonded bolts in this paper to 

reduce experiment cost. 

 
Fig. 8. Stress wave signals with bonded bolts of M8 and M14 

4. Experiment validation 

4.1. Experiment setup 

To validate the feasibility and effectiveness of the proposed algorithm DIA, experiments are 

followed. An SHM validation system is built for validation experiments on a carbon fiber 

composite laminate as shown in Fig. 9. The laminate with the dimension of 

350 mm×300 mm×3 mm is bonded with 12 PZTs forming a monitoring circle whose radius is 

100 mm. Two bolts M8 and M14 are surface bonded on the laminate separately as shown in 

Fig. 10. 

 
Fig. 9. Composite laminate for validation 

The PZT index and actuator-sensor channels are shown in Fig. 11. The scan is carried out as 

follows: first PZT 1 is the actuator and all the other 11 PZTs act as the sensors. Then PZT 2 is the 

actuator and PZT 3 ~ PZT 12 as the sensors. The process repeats until PZT 11 acts as the actuator. 

In total, there are 66 actuator-sensor channels shown in Fig. 11. 
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Every half hour, a group of baseline signals are acquired when the laminate is intact. Ten 

groups of stress wave signals are obtained and averaged as the baseline signal. Take the bolt M14 

as the example. After bolt M14 is bonded on the laminate, 10 groups of monitored signals are 

acquired every half hour. The baseline and monitored stress wave signals on channels 3-8 and 

4-11 are shown in Fig. 12. Since bolt M14 is placed on channel 3-8, the signal difference between 

the baseline and monitored signals on channel 3-8 is larger than that on channel 4-11. 

 
Fig. 10. Displacement of bolts M8 and M14 

4.2. Damage index 

Still take bolt M14 as the example. The scale parameter in Eq. (1) is chosen as 

[150 kHz, 450 kHz]. Wavelet transforms of both the baseline signals and monitored signals on 

channels 3-8 and 4-11 are shown in Fig. 13. Considering that M14 is placed on channel 3-8, the 

signal difference between the baseline and monitored signals on channel 3-8 is larger than that on 

channel 4-11. 

The time duration in Eq. (1) is chosen as [0, 400 us]. The calculated average DIs for M8 and 

M14 on all the 66 channels are listed in Table 1 and Table 2. 

The distributions of DIs are shown in Fig. 14. Several channels have much larger DIs than 

other channels. Take bolt M14 as the example, Fig. 15 shows those channels whose DIs are larger 

than 0.3 with red color. These channels all intersect around the true damage location, which 

explains the effectiveness of the proposed damage localization algorithm. 
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Fig. 11. PZT index and actuator-sensor channels 
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(a) Baseline and monitored signals on channel 3-8 

 
(b) Baseline and monitored signals on channel 4-11 

Fig. 12. Baseline and monitored signals on channels 3-8 and 4-11 

 
(a) Channel 3-8 

 
(b) Channel 4-11 

Fig. 13. Time-energy density of baseline and monitored signals on channels 3-8 and 4-11 
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Table 1. Average DIs for M8 

Channel PZT DI Channel PZT DI Channel PZT DI Channel PZT DI 

1 1-2 0.0116 18 2-9 0.042 35 4-9 0.2894 52 7-8 0.0561 

2 1-3 0.059 19 2-10 0.0145 36 4-10 0.0470 53 7-9 0.0604 

3 1-4 0.0175 20 2-11 0.0098 37 4-11 0.0036 54 7-10 0.009 

4 1-5 0.0317 21 2-12 0.0051 38 4-12 0.0383 55 7-11 0.0255 

5 1-6 0.0408 22 3-4 0.0051 39 5-6 0.0037 56 7-12 0.0277 

6 1-7 0.2458 23 3-5 0.0367 40 5-7 0.0375 57 8-9 0.0049 

7 1-8 0.0764 24 3-6 0.0452 41 5-8 0.0165 58 8-10 0.0089 

8 1-9 0.0328 25 3-7 0.0456 42 5-9 0.0088 59 8-11 0.0676 

9 1-10 0.0078 26 3-8 0.2786 43 5-10 0.2639 60 8-12 0.0397 

10 1-11 0.0144 27 3-9 0.0896 44 5-11 0.0988 61 9-10 0.0147 

11 1-12 0.0296 28 3-10 0.0876 45 5-12 0.0638 62 9-11 0.026 

12 2-3 0.018 29 3-11 0.0238 46 6-7 0.0561 63 9-12 0.0107 

13 2-4 0.08 30 3-12 0.0035 47 6-8 0.0076 64 10-11 0.0166 

14 2-5 0.0292 31 4-5 0.0068 48 6-9 0.0386 65 10-12 0.0197 

15 2-6 0.031 32 4-6 0.0618 49 6-10 0.0058 66 11-12 0.003 

16 2-7 0.0422 33 4-7 0.0108 50 6-11 0.2159    

17 2-8 0.12002 34 4-8 0.0448 51 6-12 0.0553    

Table 2. Average DIs for M14 

Channel PZT DI Channel PZT DI Channel PZT DI Channel PZT DI 

1 1-2 0.0184 18 2-9 0.0483 35 4-9 0.3237 52 7-8 0.0047 

2 1-3 0.0665 19 2-10 0.0265 36 4-10 0.081 53 7-9 0.0057 

3 1-4 0.0119 20 2-11 0.0048 37 4-11 0.0204 54 7-10 0.0082 

4 1-5 0.0502 21 2-12 0.0129 38 4-12 0.0003 55 7-11 0.0282 

5 1-6 0.0338 22 3-4 0.0608 39 5-6 0.0029 56 7-12 0.1238 

6 1-7 0.3118 23 3-5 0.0116 40 5-7 0.02 57 8-9 0.0202 

7 1-8 0.109 24 3-6 0.0316 41 5-8 0.0276 58 8-10 0.04 

8 1-9 0.0234 25 3-7 0.0436 42 5-9 0.1034 59 8-11 0.0093 

9 1-10 0.0309 26 3-8 0.5404 43 5-10 0.4168 60 8-12 0.1232 

10 1-11 0.0306 27 3-9 0.0726 44 5-11 0.0315 61 9-10 0.0098 

11 1-12 0.0064 28 3-10 0.1121 45 5-12 0.0669 62 9-11 0.0066 

12 2-3 0.0024 29 3-11 0.0139 46 6-7 0.0148 63 9-12 0.004 

13 2-4 0.0178 30 3-12 0.0383 47 6-8 0.04 64 10-11 0.0354 

14 2-5 0.0327 31 4-5 0.0085 48 6-9 0.0044 65 10-12 0.0062 

15 2-6 0.0022 32 4-6 0.0511 49 6-10 0.0106 66 11-12 0.0026 

16 2-7 0.1067 33 4-7 0.0833 50 6-11 0.3952    

17 2-8 0.3195 34 4-8 0.1041 51 6-12 0.0881    

 

Fig. 14. Average DIs distribution on all the 66 channels for M8 and M14 
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4.3. Damage localization 

The proposed DIA algorithm is used for damage identification and localization according to 

Eq. (6), where the threshold for damage identification � = 0.1 and weight coefficient � = 0.5. 

Fig. 16 (a) and (b) are the localization results of M14 and M8, which are (-13, 26) and (-15, 26), 

respectively. The localization errors are 3 mm and 2 mm, respectively. 

By comparing the localization result and the actual localization, the proposed DIA can realize 

damage identification and localization. 

To further optimize the DIA algorithm to reduce localization error, the weight coefficient � is 

set as � = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and the corresponding localization errors are 

listed in Table 3. 

 
Fig. 15. Channels with DI larger than 0.3 for M14 

 
(a) 

 
(b) 

Fig. 16. Localization result for both M8 and M14 

From Table 3 it is concluded that when � > 0.4, localization errors are all < 10 mm, especially 

when � ranges in 0.5~0.8, the localization errors are all < 5 mm. The main reason is when � > 0.4, 

the influence of environmental and measurement system noise is nearly excluded. When � = 0.9, 

it is likely that only one intersection will be used for damage localization. In this way the final 

localization result is the intersection, which will increase the localization error. 

A circle with the radius of 100 mm is monitored by 12 PZTs evenly spaced in the above 

experiment. To further validate the effectiveness of the proposed DIA, the PZT arrangement is 

-100 -50 0 50 100

-100

-50

0

50

100

X: -12.5

Y: 26.13

坐标 (mm)
-100 -50 0 50 100

-100

-50

0

50

100

X: -15.41

Y: 25.91

坐标 (mm)



977. A DAMAGE INDEX BASED DAMAGE RECOGNITION AND LOCALIZATION ALGORITHM OF HIGH ACCURACY.  

LI ZHOU, PEI JIN, HU SUN 

614  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716  

changed at two aspects. One is a regular PZT arrangement with fewer sensors and the other is a 

random PZT arrangement. 

Table 3. Localization errors with different weight coefficient � 

M8 M14 

� Localization (mm) Error (mm) � Localization (mm) Error (mm) 

0 (-10,3) 24 0 (-10,7) 22 

0.1 (-17,4) 24 0.1 (-13,15) 2 

0.2 (-6,10) 20 0.2 (-8,28) 7 

0.3 (-19,8) 20 0.3 (-12,26) 4 

0.4 (-16,25) 3 0.4 (-11,27) 4 

0.5 (-15,26) 2 0.5 (-13,26) 3 

0.6 (-15,26) 2 0.6 (-13,26) 3 

0.7 (-15,26) 2 0.7 (-13,26) 3 

0.8 (-15,26) 2 0.8 (-14,26) 2 

0.9 (-17,22) 6 0.9 (-21,21) 9 

6 PZTs with even numbers are utilized to testify the localization accuracy of DIA (Fig. 17). As 

done in the case with 12 PZTs, the weight coefficient �  is set as � = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, the localization errors for both M8 and M14 are 

shown in Table 4. 

 
Fig. 17. PZT index and actuator-sensor channels for the case of 6 PZTs 

Table 4. Localization errors with different weight coefficient � 

M8 M14 

� Localization (mm) Error (mm) � Localization (mm) Error (mm) 

0 (-7,2) 27 0 (6,15) 25 

0.1 (-7,2) 27 0.1 (7,15) 25 

0.2 (-8,4) 25 0.2 (8,12) 28 

0.3 (-17,7) 21 0.3 (8,12) 28 

0.4 (-17,7) 21 0.4 (-1,17) 18 

0.5 (-17,7) 21 0.5 (-1,17) 18 

0.6 (-17,7) 21 0.6 (-1,17) 18 

0.7 (-2,16) 18 0.7 (-1,17) 18 

0.8 (-21,12) 17 0.8 (-1,17) 18 

0.9 (-21,12) 17 0.9 (-1,17) 18 

Compared to the localization results with 12 PZTs, the localization errors can only be 
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controlled to be less than 20 mm with 6 PZTs. The main reason is that none of these 

actuator-sensor channels passes where the damage occurs. However, compared to the case with 

12 PZTs, only 1/4 actuator-sensor channels handled indicate a faster response and lower 

requirement for the SHM system. 

The other case is a random PZT arrangement. When a complex structure is monitored or some 

sensors do not work properly, the working sensors cannot be arranged as regularly as above. In 

this case, some sensors are randomly excluded from the above 12 PZTs arrangement. Here � is 

set as 0.5 and the localization results are shown in Table 5. 

Table 5. Localization errors with PZTs excluded 

M8 M14 

PZT excluded Localization (mm) Error (mm) PZT excluded Localization (mm) Error (mm) 

1 (-11,25) 5 1 (-10,25) 6 

1~2 (-15,25) 3 1~2 (-15,25) 3 

1~3 (-8,29) 7 1~3 (-8,29) 7 

1~4 (-4,60) 34 1~4 (4,28) 19 

1~5 (14,83) 62 1~5 (-19,57) 29 

When three PZTs 1, 2 and 3 are excluded from the actuator-sensor network, the localization 

errors are all less than 10 mm, but the errors increase dramatically when PZT 4 is excluded. 

Localization results in coordination y exceed the actual value a lot for both M8 and M14. The 

reason for that is the severe spatial unbalance of sensor distribution brought by the missing of 

4 PZTs. When PZT 5 is excluded, the localization error can be as large as 62 mm. Therefore in 

the initial sensor distribution, some attention should be paid to the balanced sensor distribution. 

Also discovered from the experiment is the fact that one or two sensors missed from the initial 

sensor array will not change the localization results, which makes sure that the proposed DIA can 

stand some malfunction of a small number of sensors. 

5. Conclusions 

The damage index weighted average localization algorithm (DIA) is proposed in this paper. 

DIA first calculates DIs by comparing the monitored signals and baseline signals, then utilizes the 

channel intersection as the variable and minor DI  value as the weight to realize damage 

identification and localization. 

Some pre-experiments are done on composites laminates to verify that artificial bonded bolts 

and real impact delamination damage both change the monitored signals. To reduce experiment 

cost, the validation experiment is carried out by artificial bonded bolts. The experiment validates 

that the proposed DIA algorithm successfully identifies damage with localization errors less than 

5 mm. The weight coefficient is discussed in details to optimize DIA from less influence by 

environmental and measurement system noise. A regular PZT arrangement with fewer sensors 

verifies that 6 sensors are enough for localization error of 20 mm and a random PZT arrangement 

with one or two sensors missed from the initial sensor array will not influence the localization 

accuracy. All the experiments show DIA as a reliable method for application of SHM in real 

structures. 
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