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Abstract. In this article a methodology is presented to simulate the three components of 

seismograms, at low frequency (0-1.5 Hz). This method takes into account three characteristics of 

observed earthquake such as the frequency content, elastic response spectra and Arias Intensity at 

near source regime. A multi-taper method is employed for simulating seismogram aimed at 

accounting for the frequency content. The differences between response spectra, power spectral 

density and Arias Intensity corresponding to the recorded and simulated data are minimized 

through an optimization-based inversion solution technique. The proposed methodology is 

implemented to the 2003Bam scenario (Iran) as an example. The substantial large variance of 

Fourier spectral amplitudes corresponding to the two sets of seismograms as a main cause of time 

cost is discussed. Relatively good agreements between the synthetic and those of the predicted 

waveforms confirm the reliability of the proposed technique in modeling forward directivity 

effects at near source regime.  

Keywords: near-field earthquake, forward-directivity, seismic waveforms, multi-taper analysis, 

frequency content, Fourier amplitude. 

1. Introduction 

Ground motions close to a ruptured fault are considerably different from those observed further 

away from the seismic source. The propagation of fault rupture toward a site at a velocity close to 

the shear wave velocity causes the most of seismic energy from the rupture to arrive in a single 

large long period pulse of motion called "forward directivity" [1, 2, 3, 4]. These types of ground 

motions are significantly influenced by a pulse at the beginning of the velocity time history [5]. 

Velocity pulses are typically aligned with the fault normal direction due to the radiation pattern. 

However, strong pulses may be present in the direction of fault parallel. Samples are; the 2003Bam 

(Iran) earthquake [6], the 1995-Hyogo-ken Nanbu earthquake in Japan [7], the Izmit earthquake 

in Turkey. Earthquake associated with directivity place extreme demands on structures and are 

known to have caused extensive damage in previous near source earthquakes [8]. 

Forward-directivity effects in a strike slip earthquake can be observed at all locations along the 

fault away from the hypocenter. Forward directivity effects in dip-slip earthquakes are 

concentrated in a limited region up-dip from the hypocenter [9]. Rupture directivity effects in 

current design codes are generally taken into account by modifications to the elastic acceleration 

response spectrum at 5 % damping ratio [2, 9]. There is still significant uncertainty in how to 

properly account for Forward Directivity Ground Motions (FDGMs). An example is the latest 

change of provision for near source earthquake time-history analysis embodied in the current 

standard building code of ASCE-7, 2010 (Chapter 16) [10]. The inadequacy of considering the 

response spectrum as a sole design criterion is obvious when nonlinear time history analysis is 

performed with time-histories which all match the same response spectrum [11]. Therefore, a time 

history representation of earthquake is better able to capture the effects of near-fault ground 

motions on the performance of structures (e.g. [11, 12, 13]). The phenomenon becomes more 

complicated at near source region particularly in regions with lack of sufficient data such as that 
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under study. The main objectives of this study are summarized as follows: a) to present a 

methodology for simulating seismogram at near source site including the forward directivity 

effects and b) to simulate compatible seismogram with the observed waveforms in terms of 

frequency content. Due to spectral leakage substantially existing in Fourier amplitude spectrum 

corresponding to both signals, the well known Multi-Taper Method MTM [14] is employed to 

reduce the spectral leakages thus coming up with two sets of relatively smoothed data being 

possible for comparison purpose. 

2. Spectral leakage problem and Multi-Taper Method (MTM) 

The inherently high dynamic ranges of seismic waveforms might result in seriously biased 

estimates on the account of spectral leakage. The frequency content with high amplitudes leaks 

into frequency regions with low amplitudes [15]. Power Spectral Density (PSD) uses boxcar 

window which has a central peak and many side lobes. A single peak is therefore spread across a 

range of frequencies with many spurious secondary peaks. Consequently windowing in time 

spreads the energy in the spectrum across a range of frequencies (see Fig. 1). It is possible to 

reduce the side lobes by changing the window function. Instead of using a boxcar window we can 

use some other function with a more favorable Fourier transform, one that has smaller or no side 

lobes. One example is the Gaussian window, which has no side lobes [16]. Eq. (1) and Eq. (2) 

denote Boxcar and Gaussian window function: 

𝑏𝑜𝑥𝑐𝑎𝑟(𝑥) = (𝑏 − 𝑎) 𝐴 𝑓(𝑎, 𝑏; 𝑥), (1) 

where 𝐴 is a desired constant, 𝑓(𝑎, 𝑏; 𝑥) is the uniform distribution of 𝑥 for the interval [𝑎, 𝑏]; 

𝑤(𝑥) = 𝑒
−

1
2

(
𝛼2𝑥2

𝑀2 )
,   − 𝑀 ≤ 𝑥 ≤ 𝑀, (2) 

where 𝛼 is the reciprocal of the standard deviation; 𝑀 = (𝑁 − 1)/2 and 𝑥 is a linearly spaced 

vector of length 𝑁. Thomson [17] introduced a method named “multi-taper” using a family of 

orthogonal tapers which are resistant to spectral leakage. The estimated multi-Taper spectrum is 

strongly influenced by the choice of the taper calculated by Eq. (3) as a convolution of the taper 

transform and the true spectrum expresses as: 

𝐸[�̂�(𝑓)] = ∫ |𝐴(𝑓′)|2 𝑆(𝑓 − 𝑓′)𝑑𝑓′
𝐹𝑁

−𝐹𝑁

, (3) 

where 𝐹𝑁 is Nyquist frequency (𝐹𝑁 =
1

2∗𝑑𝑡
), 𝑑𝑡 is time interval of time-series, 𝐴(𝑓) is spectral 

window, 𝑓 and 𝑓′ are continuous frequency variables, 𝑆(𝑓) is the power spectral density (PSD) of 

the time-series and 𝐸 is the expected mean 𝑆(𝑓) denoted by �̂�(𝑓). This procedure has been greatly 

utilized in the geophysical community and engineering seismology (e.g. [14, 15, 18]). A good 

taper would have a spectral window with low amplitudes whenever |𝑓– 𝑓′| is enormous. The 

problem (bias) is known as spectral leakage and the goal is to minimize the leakage at frequency 

𝑓 from frequencies where 𝑓 ≠ 𝑓′. For more details about multi-taper spectrum method please see 

the studies conducted by different researchers [19, 15, 20]. 

3. Synthesizing waveform methods  

Different approaches are available in the literature for retrieving near field ground motion at 

the site of interest which may be categorized into: a) theoretical-based methods 

[21, 22, 23, 24, 25, 26]; b) semi empirical-based methods [18, 27, 28], and c) hybrid methods 
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[6, 9, 29, 30]. We used the theoretical-based green’s function approach proposed by Michel 

Bouchon [21]. The wave-number integral, for any window, is achieved by adding an infinite set 

of specified circular sources, centered on the point source and distributed at equal radial intervals, 

to the particular point source. More details are found at Bouchon [21]. This method has been 

widely used in the context of near source seismogram simulation (see e.g. [31]). 

 
Fig. 1. PSD of a typical signal using Boxcar and Gaussian windows 

4. Proposed methodology 

A methodology consisting of an inversion solution technique is proposed for simulating 

compatible 3-D seismogram at near source regime. The well known Multi-Taper Spectral Analysis 

(MTSA) is employed by which the differences between the relatively smoothed power spectral 

density, response spectra, and Arias Intensity [32] corresponding to the observed and synthesized 

data are minimized via an evolutionary technique. To this end, a Genetic Algorithm (GA) is 

developed, as an optimization tool, through which the optimal source parameters are found within 

predefined ranges of data.  

The MT parameters, time-bandwidth product (NW) and minimum effective eigentaper (K) 

associated with minimum signal energy loss are estimated through a number of trail-error tests. 

The Discrete Wave Number (DWN) method, originally introduced by Bouchon and Aki [33], was 

preferred to be employed as a theoretical-based Green’s function method for synthesizing 

waveforms with forward directivity effects. The slip time dependence used is a ramp function with 

a constant rise time [21]. This method has previously been used for synthesizing waveform at near 

source regime without accounting for the compatibility issue [34]. A MATLAB code is written 

putting together the previously discussed GA, the DWN, and the MTM. The successive steps of 

the proposed methodology are summarized in Fig. 2 and the algorithm is briefly explained hear. 

The developed MATLAB code including the GA technique is processed through thousands of 

data generation for minimizing the differences between the Muli-Tapered power spectra, response 

spectra, and Arias Intensity corresponding to the simulated and observed waveforms. Finally, the 

story ends up with obtaining the optimal model parameters. 

4.1. Time bandwidth product (NW) and eigen-taper number (k) 

Based on the authors experiences and as is recommended by Prieto [35], appropriate time 

bandwidth (NW) and eigentaper number (K) are different for deferent problems. In order to 

estimate the most appropriate values of these two parameters, we performed a series of trial and 

error tests. The estimation procedure is as follows: A MATLAB code is written by which a 

selected signal (e.g. 1.5 Hz in our example as shown in Fig. 3a) is multi-tapered using MTM 

(see Fig. 3b). Then the multi-tapered signal is inversed back and compared with the original signal 

in time domain (see Fig. 3c). In the second step, the comparisons are made between elastic 

response spectra corresponding to the original and inversed signal. Eventually, the trial and error 

process ends up with finding the most appropriate parameters NW and k. Fig. 4 displays the plots 

of such trial and error story. The minimum error (i.e. the differences between elastic response 

spectra corresponding to the inversed and original signals) associated with the obtained parameters 

is virtually shown. 
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Fig. 2. Successive steps of the proposed methodology 

 
a) 

 
b) 

 
c) 

Fig. 3. Presentation of original & multitapered signals: a) original signal, b) multitapered signal and 

c) comparison between the original signal and inversed multitapered signals 

 
Fig. 4. Plots of error (differences between elastic response spectra corresponding to the original and 

inversed signals) versus time bandwidth product 
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4.2. GA technique 

Among different methods of optimization techniques, the well known Genetic Algorithm (GA) 

approach is employed for optimally calculating the seismological parameters. Jimenez [36] 

applied the GA method in an inversion solution approach to find earthquake source parameters. 

For more details about inverse problem, see the research done by Royzman and Goroshko [37]. 

We developed a GA to minimize the differences between synthesized and recorded seismograms 

and also Arias Intensity (AI) thus obtaining the model parameters. The algorithm randomly selects 

the model parameter set from the predefined sets using the DWN method to simulate velocity at 

the site of interest. 14 model parameters, each with 8-bit chromosome were incorporated into the 

algorithm. The crossover and mutation rate were set to 0.9 and 0.1 respectively. Crossover and 

mutation points were selected randomly and the convergence criteria are defined as a) maximum 

no. of generation (1000) and b) the number of generations (50) through which the population is 

no longer improved and met a specific value. A fitness function is introduced, as objective function, 

by which the differences between response spectrum and multi-tapered form corresponding to the 

recorded and simulated waveforms are minimized. The comparison is carried out via three 

components (north and east components as horizontal and up-down as vertical). The proposed 

Fitness Function is defined as the inverse of Error Function (Eq. 4) expressed as:  

𝐸𝐹 = ∑
|(𝑆𝑎1)𝑖 − (𝑆𝑎2)𝑖|

max (|𝑆𝑎1|𝑖 , |𝑆𝑎2|𝑖)

𝑛𝑠

𝑖=1

𝑛𝑠𝑝⁄ + ∑
|(𝑀𝑇𝑎1)𝑖 − (𝑀𝑇𝑎2)𝑖|

max (|𝑀𝑇𝑎1|𝑖 , |𝑀𝑇𝑎2|𝑖)

𝑛𝑀𝑇

𝑖=1

𝑛𝑀𝑇⁄ , (4) 

where 𝑆𝑎1 , 𝑆𝑎2  and 𝑀𝑇𝑎1 , 𝑀𝑇𝑎2  are the response spectral amplitude and multi-taper spectral 

amplitude corresponding to the recorded and synthesized seismograms.  

5. Example 

The proposed methodology is implemented to the 2003Bam earthquake scenario (Iran) at Bam 

station, where is located at the sought eastern part of Iran, aimed at demonstrating its capability in 

simulating waveform at near source regime. As already mentioned, Bam station is the only near 

source station around the causative fault at which the main event has been recorded. Meanwhile, 

the main event has been observed at a few number of far source sites. 

 
Fig. 5. Perspective views from east to the central part of Bam fault system [42] 

5.1. Site characterization 

Bam is located in the eastern part of the Gowk fault and the western of the strike slip fault 

systems bordering the Lut desert [38]. The co-seismic surface ruptures and focal mechanisms of 
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these earthquakes, together with their associated geomorphology, show the activity in this zone 

[39]. Despite mentioned earthquakes, there are no recorded earthquakes at Bam within the last 

hundred years. The citadel Arg-e Bam, which is one the biggest adobe buildings over the world 

was severely damaged [40, 41]. The earthquake scenario has been previously studied by many 

researchers (e.g. [34, 42]). Fig. 5 displays a perspective views from east to the central part of Bam 

fault system [42]. 

5.2. Site soil specification 

The site soil condition at the 30 m upper layer of Bam station (�̅�30) is reported by BHRC as 

shown in Fig. 6a. Nakamura [43] proposed 1 D Crustal model of P-wave velocity down to 50 km 

depth as this station as depicted in Fig. 6b. These reports were adopted for modeling the crustal 

and site soil amplification effects.  

5.3. Long period seismogram simulation 

Forward directivity and fling step are known as the major effects of near source strong motions. 

Motions with long-period pulses can exhibit the dynamic consequences of the forward directivity 

and fling step [2, 1]. Based on the reasons already mentioned, in this article, the long-period 

(0-1.5 Hz) strong ground motions were simulated through the proposed framework. Fig. 7 

illustrates the elastic response spectra corresponding to the observed seismogram at Bam station 

in broadband frequencies and that of the filtered form. The filtering effect, i.e. the selected 

frequencies (0-1.5 Hz) exhibiting forward directivity effects on the response spectrum is quite 

visible. 

 
(a) BHRC report 

 
(b) Nakamura et al. (2005) 

Fig. 6. (a) Site soil condition at the upper 30 m (�̅�30) and (b) Crustal shear wave velocity  

 
Fig. 7. Illustration of the selected frequency range (filtering) on response spectrum corresponding to the 

2003Bam earthquake (low frequency: 0-1.5 Hz or 𝑇 = 0.67 sec) 
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5.4. Results 

The input seismological model parameters were those previously suggested for Bam 

earthquake scenario by the other investigators in the form of upper-lower bounds (see Table 1). A 

two-segmented fault, as proposed by Nakamura [43], was modeled (see Fig. 12). The obtained 

optimal slip was 2.29 m and that of rise time 1.14 sec. The optimal model parameters were 

calculated through matching the three components of seismogram (north, east and vertical) at Bam 

station. Thousands back and forth waveform synthesizing processes have been done comparing 

the response spectra, PSDs, and AI corresponding to synthetic and observed data (see Table 2). 

Figs. 8a, b, and c show the comparison of the two sets of accelerations, response spectra and multi-

taper spectral amplitude's forms. Fig. 9 illustrates the comparison between Fourier spectral 

amplitudes (FFTs) corresponding to the simulated and observed seismograms. 

 
a) Seismograms b) Elastic response spectra c) Multi-tapered waveforms 

Fig. 8. Comparison of the recorded and simulated: a) seismograms, b) response spectra,  

c) multi-tapered spectral amplitude's waveforms 

 
Fig. 9. FFT comparisons of the Fourier spectral amplitudes corresponding to  

the recorded and simulated seismograms  
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The result of implementing the proposed methodology is compared with those of the others 

[34, 44]. Fig. 10 and 11 show such comparison. The vertical pink line in the Fig. 11 represents the 

upper frequency limit used (𝑇 = 1/1.5 = 0.67 sec). The fault alignment resulting from this study 

and those of the other investigators are shown at Fig. 12. 

  
Fig. 10. Comparison of response spectra (North and East component)  

obtained from this study with those of the others 

 
Fig. 11. Comparison of response spectra (Vertical component) obtained from this study with those of the 

others. Better agreement between the observed and simulated data obtained from this study is visible 

Table 1. Comparison of seismological parameters obtained from this study and those of the others 

Parameter 
Funning  

et al., 2005 

Talebian  

et al., 2004 
NEIC 

Nicknam  

et al., 2010 
This study 

Longitude (deg) 58.353 58.294 58.266 58.353 58.356 

Latitude (deg) 29.037 28.972 29.010 29.032 29.03 

Depth (km) 5.2 6 14 7.0 7.1 

Focal Mechanism 

(strike, dip, rake) 

354, 84,  

-178 

357, 88,  

-166 

174, 88,  

-178 

358, 80,  

-170 

356.91, 83.95, 

-177.87 

Rupture length (km) 12.0 - - 13.9+6 15.9+2.3 

Rupture width (km) 8.1 - - 8.7 9.8 

Rupture velocity (m/s) - - - 2880 2953 

Slip (m) 2.20±0.04 - - - 2.29 

Table 2. Arias Intensities corresponding to the observed and simulated waveforms at Bam station 

Arias intensity North East Vertical 

Recorded 0.7253 1.6637 0.5143 

Simulated 0.7240 1.4588 0.4127 

Residual fitness value (error) (%) 0.2 12.3 19.7 
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a) Location of Bam and Mohamad Abad 

stations 
 

b) Location of fault alignments and epicenters 

Fig. 12. Plans showing the selected stations, Bam and Mohamad Abad, and estimated Bam fault alignment 

resulted from this study and those of the others 

 
a) Acceleration b) Response Spectra c) Multitapered PSD 

Fig. 13. Comparison of the recorded and simulated seismograms, corresponding to  

response spectra and multi-tapered forms at Mohammad Abad station 
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5.5. Model validation and discussion 

The obtained optimal model parameters were incorporated into the model and the three 

components of seismograms at Mohammad Abad station, located at 48 km away from the 

causative fault, were predicted. Fig. 13a, b, and c demonstrate the plots of comparing the three 

components simulated and observed seismograms, response spectra, and multi-taperd PSDs at this 

station respectively. The comparison between Fourier spectral amplitude forms (FFTs) of the 

observed and predicted waveforms are also shown in Fig. 14. The predicted seismograms at 

mohamad Abad station exhibit good agreement with those of the observed data. The model is 

significantly sensitive to the site soil information beneath the station. Relatively good agreement 

between results of this study and those of the observed data confirms the reliability of the proposed 

methodology in simulating compatible seismogram at near source regime. It is worth mentioning 

that, the residual error; representing the aleartory and epistemic uncertainties (e.g., see Figs. 13 

and 14) in methods dealing with evolutionary-based techniques does not necessarily reflect the 

physical model parameters. Rather, they present the mathematical parameters corresponding to 

the best solution resulting from minimum defined fitness function. In conclusion, since the 

aforementioned problem is a matter of time cost, it can be solved within trade-off dealing between 

the expected accuracy and time cost. This is why we cut-off the frequencies above 1.5 Hz in our 

study. Nevertheless, this shortcoming can be compensated by hybrid method in which waveforms 

at low and high frequencies are individually produced and combined [6, 30]. 

 
Fig. 14. Comparison of Fourier spectral amplitude forms corresponding to the  

recorded and simulated seismograms at Mohammad Abad station 

 
Fig. 15. Demonstrating the variation of errors (in percent increment) against rise time and rupture velocity 
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5.6. Sensitivity analysis of model parameters 

A sensitivity analysis was performed aimed at recognizing how the defined fitness function 

(errors) is susceptible to the individual model parameters. To this end, the model parameter, e.g. 

rupture velocity and rise time, were changed and the corresponding errors, in the form of percent 

increment, were calculated keeping constant the other model parameter values. Fig. 15 displays 

the result of sensitivity analysis on the model parameters. As are seen the results of this study 

corresponds to the minimum errors confirming the reliability of the technique used. 

6. Conclusion 

We proposed a methodology to simulate seismogram, at low frequency (0-1.5), taking into 

account three characteristics of observed earthquake. There are; frequency content, elastic 

response spectra with 5 % damping ratio, and AI at near source regime. GA technique is used for 

minimizing the differences between response spectra, MSDs, and AIs corresponding to the 

simulated and observed data. An optimization-based inversion solution technique is used for this 

purpose. The optimal model parameters are obtained through finding the best solution. The well 

known MTM is employed for providing the simulated waveform compatible with those of the 

recorded data. The convergence problems associated with substantially large variance of Fourier 

spectral amplitudes corresponding to the velocity waveforms at near source regime were 

comprehensively discussed. The methodology was implemented to the 2003Bam scenario as an 

example. The results, in the form of three components of simulated and observed data at a near 

source site, were compared with those of the recorded data. Good agreements between response 

spectra, PSDs, and AIs confirmed the integrity of calibration stage. Thereafter, the seismograms 

at a far source site (48 Km faraway from causative fault) where has been less influenced by 

forward directivity were predicted incorporating the calibrated optimal model parameters. The 

results were compared with those of the recorded data. Relatively good agreements between; the 

response spectra corresponding to the synthetic and observed seismograms, PSDs, AIs, PGAs and 

PGVs confirm the reliability of the proposed methodology in modeling forward directivity. 

Furthermore, the results of this study were compared with those of the other investigators 

previously studied the Bam scenario. Finally, a sensitivity analysis on the variation of model 

parameters was performed. Again the results confirmed the reliability of the optimization 

approach in finding the best solution.  
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