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Abstract. From the point of view of the micro-geometry, most joint surfaces are composed of the 

rough surfaces with the self-affine fractal characteristics. And the fractal characteristics have a 

large impact on the dynamic behaviors of the composite structures notably. In this paper the 

dynamic characteristics of the joint surface are discussed with the friction and vibration coupling 

effect considered based on fractal theory. Friction and vibration are caused by the rough surfaces. 

Firstly the expressions of the stiffness and damping model are obtained based on the fractal contact 

theory. Secondly the contact parameters of the joint surfaces are studied and analyzed with the 

contact surfaces replaced by the equivalent damping layer with the stiffness and damping model. 

Thirdly, based on the fractal contact theory, the contact pairs are established by ANSYS to 

simulate the effect of the characteristics of joint surfaces by the finite element method. Finally the 

natural frequency and model analysis obtained from theory and experiment of the composite 

beams are comparatively analyzed. The results show that the established stiffness and damping 

models are well suitable for the reality of the joint surface. 

Keywords: joint surfaces, contact theory, fractal theory, mechanical dynamics. 

1. Introduction 

In a view of microscopic geometry, most joint surfaces are composed of rough surfaces with 

self-affine fractal characteristics. In order to create a more accurate dynamic model of joint 

surfaces, the dynamic characteristics of joint surfaces should be well understood. Many new 

theories and contact models of joint surfaces are obtained, although the research of the dynamic 

characteristics largely depends on the classic theories which contain Hertz, G-W, and M-B [1-3]. 

The G-W statistical model with characteristic of elastic and plastic contact was put forward by 

Nayak [1]. Majumdar [2] presented the improved M-B model which contains the affine fractal 

features. Professor Tian [4] proposed a defect of the fractal model where the contact stiffness is 

an unconditional equation, and then he put forward the modified mathematical formula based on 

the M-B model. The elastic, elastic-plastic and plastic fractal models of the rough contact surface 

were established by Zhu [5], and the influence of the interface friction and the elastic-plastic 

deformation process of the materials are all considered. The research on the deformation 

characteristics of joint surfaces begins with the contact mechanics point [6-8]. Then the fractal 

models with the friction which are seldom studied by the dynamics theory [9-10] by now are 

established gradually [11-12]. 

Considering the friction of the joint surfaces, the fractal models of the contact stiffness and 

damping of joint surface are deduced based on the M-B contact model in this paper. Then the joint 

surface is replaced by the equivalent damping layer based on the obtained models in the process 

of simulation. The contents of the dynamic characteristics and the finite element analysis are 

expanded with the modal strain method, which can improve simulation credibility. Finally the 

reliability of the equivalent method is verified by comparing the results of the modal experiment 

with the equivalent damping method. 
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2. Fractal prediction models of the normal contact parameters of joint surface 

The friction between the contact surfaces of the mechanical joint surface makes the contact 

stress different from the classic Hertz solutions for different value and distribution. The influence 

of friction is ignored in the classic M-B fractal model. So it’s essential to modify the M-B model 

with the friction and establish the more accurate fractal model. The most basic theory of the 

contact surface is the Hertz theory and some fractal models are establied based on it. The section 

of the static contact deformation of two elastomers in Hertz theory is shown in Figure 1. 

According to the Hertz theory, the real contact radius is: 

𝑟 = (
3𝑄𝑅

4𝐸
)

1 3⁄

, (1) 

where 𝐸 = [
1−𝑣1

2

𝐸1
+

1−𝑣2
2

𝐸2
]

−1

 is the equivalent elastic modulus. 𝑄 is the contact force. 𝐸1, 𝐸2 are the 

elastic modulus of two elastomers. 𝑣1 and 𝑣2 are the Poisson's ratios of the elastomers. And 𝑅1, 

𝑅2 are the curvature radiuses of the two elastomers, separately. The equivalent curvature radius of 

single peak is 𝑅 = [
1

𝑅1
+

1

𝑅2
]

−1

. 

Based on the M-B fractal model, the mathematical model of the surface outline of the 

undeformed micro-bulge is expressed as Equation (2) [5]: 

𝑧(𝑥) = 𝐺𝐷−1𝑎1−0.5𝐷 cos (
π𝑥

𝑎0.5
) ,   − 0.5𝑎0.5 < 𝑥 < 0.5𝑎0.5, (2) 

where 𝑎 is the actual contact area, 𝐷 is the fractal dimension, 𝐺 is the fractal scale coefficient. 
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Fig. 1. The section of the static contact deformation of two elastomers 

When 𝑥 = 0 in the Equation (2), the contact deformation of micro-bulge can be expressed as 

Equation (3): 

𝛿 = 𝐺𝐷−1𝑎1−0.5𝐷. (3) 

Through Equation (2), curvature radius of elastomer can be obtained as shown in Equation (4): 

𝑅 =
𝑎0.5𝐷𝐺1−𝐷

π
. (4) 

And also the relationship between 𝑎, 𝛿 and 𝑎𝑐, 𝛿𝑐 is shown in Equation (5): 

𝛿𝑐

𝛿
= (

𝑎𝑐

𝑎
)

1−𝐷

. (5) 



1002. DYNAMIC CHARACTERISTICS OF JOINT SURFACE CONSIDERING FRICTION AND VIBRATION FACTORS BASED ON FRACTAL THEORY.  

XIAOPENG LI, YAMIN LIANG, GUANGHUI ZHAO, XING JU, HAOTIAN YANG 

874  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. JUNE 2013. VOLUME 15, ISSUE 2. ISSN 1392-8716  

From the Reference [5] and other references, the relation of the biggest contact area (𝑎𝑚𝑎𝑥) 

and the distribution of the contact points (𝑛(𝑎)) is: 

𝑛(𝑎) =
𝐷

2
𝜓1−0.5𝐷𝑎max

0.5D𝑎−1−0.5𝐷,   0 < 𝑎 < 𝑎max, (6) 

where 𝜓 is fractal area expansion coefficient. 

When the relative sliding is produced in the joint surfaces, the influence of surface friction on 

the critical deformation between the elastic and plastic state of micro-bulge must be considered. 

And it can be expressed as follows: 

𝛿𝜇𝑐 = (
3π𝑝𝜇

4𝐸
)

2

𝑅 = (
3.3π𝑘𝜇𝜎𝑦

4𝐸
)

2

𝑅, (7) 

where 𝜎𝑦  is the yield strength, 𝑘𝜇 is the friction coefficient correction factor, 𝑘𝜇 = 1 − 0.228𝜇, 

0 ≤ 𝜇 ≤ 0.3, 𝑘𝜇 = 0.932𝑒−1.58(𝜇−0.3), 0.3 ≤ 𝜇 ≤ 0.9. So the critical area between the elastic and 

plastic states of micro-bulge can be obtained through Equation (3), Equation (4) and Equation (5) 

expressed as Equation (8): 

𝑎𝜇𝑐 = (
3.3π0.5𝑘𝜇𝜎𝑦

4𝐸
)

2
1−𝐷

𝐺2. (8) 

When the micro-bulge is in the elastic deformation state, according to the Hertz theory the 

normal contact stiffness of a single micro-bulge is: 

𝑘𝑛 = 2𝑟𝐸. (9) 

The elastic deformation will happen when the contact area is larger than the critical area, while 

the influnce of the friction is considered. Considering the distribution of the micro-bulge area 

between joint surfaces and the elastic deformation, the fractal model of the normal contact stiffness 

of the whole joint surfaces can be deviated based on the Equation (1), Equation (6) and 

Equation (9): 

𝐾𝑛 =
2𝐷

1 − 𝐷
π−0.5𝜓1−0.5𝐷𝐸(𝑎max

0.5 − 𝑎max
0.5𝐷𝑎𝜇𝑐

−0.5𝐷+0.5). (10) 

Then the dimensionless expression is: 

𝐾𝑛
∗ =

2𝐷

1 − 𝐷
π−0.5𝜓1−0.5𝐷(𝑎∗

max
0.5 − 𝑎∗

max
0.5𝐷𝑎∗

𝜇𝑐
−0.5𝐷+0.5). (11) 

From Equation (11) it shows that the stiffness of the joint surfaces is combined with the critical 

area of elastic-plastic deformation in friction state. When the fractal characteristic parameters of 

joint surfaces, such as 𝐷, 𝐺 and material elastic modulus (𝐸), are obtained, the contact stiffness of 

joint surfaces can be estimated. The accuracy of estimating the actual contact rigidity will be 

improved by this method.  

Then the influence of the friction coefficient on the normal damping of the joint surfaces can 

be obtained with the simulation software and the results are shown in Figure 2.  

Form the Figure 2, the normal contact stiffness of joint surfaces continuously decreased with 

the increase of the friction coefficient. When the friction coefficient is less than 0.3, the 

dimensionless normal contact stiffness appears to have linear attenuation with the increase of the 
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friction. And when the friction coefficient is larger than 0.3, the dimensionless normal contact 

stiffness appears to have the exponential attenuation with the increase of the friction coefficient, 

and the attenuation speed is reduced quickly with the increase of the actual combination area. 

Based on the fractal theory we can study the expression of the contact stiffness and the 

influence of the friction coefficient on the stiffness from microcosmic angle. And the method to 

get the contact stiffness with the fractal theory would be improved. 
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Fig. 2. The relationship between the normal contact stiffness and friction coefficient of joint surfaces 

Now we will deduce the normal contact damping of the joint surfaces considering the effect 

of friction. When the elastic strain of single micro-bulge happened, the stored elastic energy can 

be obtained through integrating the contact load and deformation of single micro-bulge as 

Equation (12): 

𝑈𝑒 = ∫ 𝑃𝑒(𝛿)

𝛿

0

d𝛿 = ∫
4

3
𝐸𝑅0.5𝛿1.5

𝛿

0

d𝛿  =
8

15
𝐸𝑅0.5𝛿2.5,   0 < 𝛿 < 𝛿𝜇𝑐. (12) 

And when the plastic strain of single micro-bulge happened, the irrecoverable deformation 

energy can be obtained through integrating the contact load and deformation of single micro-bulge: 

𝑈𝑝 = ∫ 𝑃𝑝(𝑎)

𝛿

𝛿𝜇𝑐

d𝛿 = ∫ 𝐾𝜎𝑦π𝑅𝛿

𝛿

𝛿𝜇𝑐

d𝛿 =
π

2
𝐾𝑅𝜎𝑦(𝛿2 − 𝛿𝜇𝑐

2 ),   𝛿 > 𝛿𝜇𝑐. (13) 

According to Equation (2), and computing the integral of Equation (12) and Equation (13) for 

area respectively, we can obtain the stored elastic energy and the consumption of the plastic 

deformation of the whole joint surfaces in a contact process. 

Then 𝑈𝑒 and 𝑈𝑝 are changed as Equation (14) and Equation (15): 

𝑈𝑒 = ∫ 𝑈𝑒𝑛(𝑎)

𝑎max

𝑎𝜇𝑐

𝑑𝑎

=
4𝐷

15(2.5 − 1.5𝐷)
𝐸π−0.5𝐺2(𝐷−1)𝜓1−0.5𝐷𝑎max

0.5𝐷(𝑎max
2.5−1.5𝐷 − 𝑎𝜇𝑐

2.5−1.5𝐷),   (𝑎max > 𝑎𝜇𝑐), 

(14) 
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𝑈𝑝 = ∫ 𝑈𝑝𝑛(𝑎)

𝑎max

0

𝑑𝑎

=
𝐷

4(2 − 𝐷)
𝐾𝜎𝑦𝐺𝐷−1𝜓1−0.5𝐷𝑎max

2−0.5𝐷 +
1

4
𝐾𝜎𝑦𝐺𝐷−1𝜓1−0.5𝐷𝑎max

−0.5𝐷𝑎𝜇𝑐
2 ,   (𝑎max ≤ 𝑎𝜇𝑐). 

(15) 

Damping factor (𝜂) is a kind of parameter that describes the damping characteristics of the 

structure or material and it is equal to the ratio of the dissipative energy and the storage of strain 

in a movement process: 

𝜂 =
𝑈𝑝(𝑎max = 𝑎𝜇𝑐)

𝑈𝑒(𝑎max > 𝑎𝜇𝑐)
=

15 × (2.5 − 1.5𝐷)𝐾

16𝐷𝐸π−0.5𝐺𝐷−1
×

𝜎𝑦𝑎𝜇𝑐
2−0.5𝐷 (

𝐷
(2 − 𝐷)

+ 1)

𝑎max
0.5𝐷(𝑎max

2.5-1.5𝐷 − 𝑎𝜇𝑐
2.5−1.5𝐷)

. (16) 

When the structure is in resonance state, the relationship of the damping factor (𝜂), the normal 

contact damping (𝐶𝑛) and damping ratio (𝜉) is: 

𝜂 = 2𝜉 =
2𝐶𝑛

𝐶𝑐

, (17) 

where 𝐶𝑐 is the critical contact damping of joint surfaces. The 𝐶𝑛 can be obtained by Equation (17). 

And then with the simulation method the influence of the friction coefficient on the normal 

damping of joint surfaces can be studied, the results are shown in Figure 3. 
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Fig. 3. The relationship between the damping factor and friction coefficient of joint surfaces 

Form the Figure 3 the normal contact damping of the joint surfaces continuously increased 

with the increase of the friction coefficient. While the real contact area of the joint surfaces is 

becoming bigger, the friction coefficient is becoming bigger too. While the real contact area of 

the joint surfaces is smaller, the better damping performance will be obtained with changing the 

friction coefficient. 

3. The fractal prediction model of the tangential contact parameters of joint surface 

The former researches show that when the effect of dry friction is taken into consideration, the 

normal stress on the boundary of the contact circle is low, while the tangential stress is close to 

the infinite. So the boundary of the contact area will slip even under any size of the tangential load. 

The incomplete sliding will occur on joint surfaces when tangential load is smaller than the 
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maximum static friction stress. In this condition the single point contact area can be divided into 

no slip region (adhesion circle with the radius 𝑐) and partly slip annular region of boundary. They 

are shown in Figure 4. 

Elastic Contact Cicle

Shear Stress τ(r)

Slip

Solid Sphere

Stick

Friction Stress P(r)

Solid Flat

Fn Ft  
Fig. 4. Tangential contact of micro-bulge with the effect of friction considered 

The distribution of shear stress of adhesion region is assumed as follows: 

𝜏𝑠𝑡𝑖𝑐𝑘(𝑟′) = −𝜇𝑝0

𝑐

𝑟
(1 − (

𝑟′

𝑐
)

2

)

0.5

,    0 < 𝑟′ < 𝑐. (18) 

The distribution of the shear stress of partly slip region is: 

𝜏𝑠𝑙𝑖𝑝(𝑟′) = 𝑢𝑝0 (1 − (
𝑟′

𝑟
)

2

)

0.5

,   𝑐 < 𝑟′ < 𝑟, (19) 

where 𝑝0  is the maximum contact stress of the Hertz contact center, 𝑝0 = 1.5𝑝𝑚 , 𝑝𝑚  is the 

average contact pressure. 

The displacement of the adhesion region 𝛿𝑠𝑡𝑖𝑐𝑘 is: 

𝛿𝑠𝑡𝑖𝑐𝑘 =
1

4𝐺𝑠

𝑟π𝜇𝑝0 (1 − (
𝑐

𝑟
)

2

), (20) 

where 𝐺𝑠 is the equivalent shear modulus, 𝜇 is the friction coefficient. 

The total tangential stress of joint surfaces is: 

𝑄𝑡
′ =

2

3
π(𝜏2𝑟2 − 𝜏1𝑐2) =

2π𝑟2

3
𝜇𝑝0 (1 − (

𝑐

𝑟
)

3

), (21) 

𝑐

𝑟
= (1 −

𝑄𝑡′

2𝜇π𝑟2𝑝0

3

)

1
3

= (1 −
𝑄𝑡′

𝜇𝑄
)

1
3

. (22) 

The shear stiffness of the single contact point can be obtained with differential of 𝛿𝑠𝑡𝑖𝑐𝑘 and 

taking Equation (21) into Equation (22). It is expressed as Equation (23): 
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𝑘𝑡
′ =

8𝐺𝑠𝑟 (1 − (
𝑐
𝑟

)
3

)

3 (1 − (
𝑐
𝑟

)
2

)
=

4

3

(1 − (
𝑐
𝑟

)
3

)

(1 − (
𝑐
𝑟

)
2

)
𝑘𝑡 . (23) 

Only the plastic deformation of the contact point happened under the normal loading, the 

plastic flowing will happen along the tangential direction under the influence of the tangential 

forces. In this condition the ability to resist the shear deformation of the contact point is nearly 

lost. Hence, while obtaining the shear stiffness of joint surfaces, only the shear stiffness of the 

contact point where elastic deformation happened under the effect of the normal loading is taken 

into consideration. According to the distribution of the contact area of the fractal joint surfaces, 

the shear stiffness under the tangential force can be obtained as follows: 

𝐾𝑡
∗′

= (
3

4π
)

1
3 4𝐷

1 − 𝐷

𝑄𝑡
∗′

1 − (1 − 𝑄𝑡
∗′)

2
3

𝑄𝑛
∗ 1 3⁄

𝜓1−0.5𝐷 × 𝐺∗
1−𝐷

6 𝑎∗
max
0.5𝐷 (𝑎∗

max

1−𝐷
3 − 𝑎∗

𝜇𝑐

1−𝐷
3 ), (24) 

where 𝐾𝑡
′∗ = 𝐾𝑡

′ 𝐺𝑠𝐴𝑎
0.5⁄  is the dimensionless shear stiffness, 𝑄𝑛

∗ = 𝑄𝑛 𝐸𝐴𝑟⁄  is the dimensionless 

normal loading, 𝑄𝑡
∗′ = 𝑄𝑡

′ 𝜇𝑄⁄  is the dimensionless tangential loading. 

And then with the simulation method the influence of the friction coefficient on the tangential 

stiffness of joint surfaces can be studied, the results are shown in Figure 5. 

The relationships between the tangential stiffness of joint surfaces and the friction factor with 

the fractal dimension 𝐷 =  1.25 and 𝐷 =  1.62 are shown in Figure 5. From the Figure 5 the 

tendence can be found, the tangential stiffness decreased with the friction factor increasing. But 

when 𝐷 = 1.25 the influence of friction factor on the tangential stiffness of joint surfaces will be 

reduced. At the same time there is no use in improving the tangential stiffness of the joint surfaces 

by only changing the friction factor.  

Besides the friction generating from the slip of the joint surfaces will consume the energy of 

the system, which shows the dry friction damping characteristics. On the basis of this characteristic, 

the characteristics of tangential stiffness of the whole joint surfaces under the tangential cyclic 

load can be obtained. 

Assume that the normal load on joint surfaces is 𝑄𝑛, the amplitude is 𝑄𝑡 and the period of 

motion is 𝑠. Any two asperities are not only affected by the normal load 𝑄 = 𝑎𝑄𝑛 𝐴𝑟⁄ , but also 

by the tangential load 𝑄𝑡
′ = 𝑎𝑄𝑡 𝐴𝑟⁄ . When 𝑄𝑡

′ < 𝜇𝑄 the two asperities are in the state of partial 

slip, the relationship between the tangential load and relative displacement is shown as ellipse. 
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(a) Fractal dimension 𝐷 = 1.25 
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(b) Fractal dimension 𝐷 = 1.62 

Fig. 5. The relationships of tangential stiffness and friction factor with different actual contact areas 

The energy consumed in one period of the whole joint surfaces is: 
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𝐸𝑑 = ∫ 𝑒𝑑𝑛(𝑎)

𝑎 𝑚𝑎𝑥

0

d𝑎 =
1

1.5 − 0.5𝐷

9(𝜇𝑄𝑛)2π0.5𝐷

5𝐺𝑠𝐴𝑟
2

𝛬𝜓1−0.5𝐷𝑎𝑚𝑎𝑥
1.5 . (25) 

Under the normal and tangential loading, the micro sliding area consuming the energy will be 

formed nearby to the contact point before the macro slipping of joint surfaces occurres. So the dry 

friction damping under the periodic tangential load can be replaced by the equivalent viscosity 

damping coefficient. 

The equivalent viscosity damping coefficient of the dry friction damping is [6]: 

𝐶𝑡𝑒 =
𝐸𝑑

π𝜛𝑠𝛿𝑠𝑡𝑖𝑐𝑘
2 , (26) 

where 𝐸𝑑 is the work that the friction does in a whole period. 

Substituting Equation (25) and Equation (20) into Equation (26), the expression of 𝐶𝑡𝑒 is: 

𝐶𝑡𝑒 =
64𝐺𝑠π0.5−

7
3𝐷

𝜛𝑠(7.5 − 2.5𝐷) (
3

4𝐸
𝑄𝑛

𝐴𝑟
)

2 3⁄
×

𝛬𝜓1−0.5𝐷𝑎𝑚𝑎𝑥
1.5

(𝑎1+0.5𝐷𝐺1−𝐷)2 3⁄
. (27) 

If the contact radius is changed with the contact area changed, the dimensionless equivalent 

tangential damping factor of joint surfaces is expressed as follows:  

𝐶𝑡𝑒
∗ =

64π0.5−
7
3𝐷

(
3
4

)
2 3⁄

(7.5 − 2.5𝐷)𝐺∗
1−𝐷

3

×
𝛬𝜓1−0.5𝐷

𝑄𝑛
∗2 3⁄

𝑎𝑚𝑎𝑥
∗

2𝐷−5
6

, (28) 

where 𝐺∗ = 𝐺2 𝐴𝑎⁄  is the nondimensional parameter of the fractal dimension, 𝑄𝑛
∗ = 3𝑄𝑛 4𝐸𝐴𝑟⁄  

is the nondimensional parameter of the normal load, 𝑎𝑚𝑎𝑥
∗ = 𝑎𝑚𝑎𝑥 𝐴𝑎⁄  is the biggest single 

contact area of the nondimensional parameters, 𝛬 is the function about the friction coefficient of 

joint surfaces.  

The factors in Equation (28) have a great influence on the contact characteristics of joint 

surfaces. And then with the simulation method the influence of the friction coefficient on the 

tangential damping ratio of joint surfaces can be studied, the results are shown in Figure 6. 
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Fig. 6. The relationship between the tangential damping factor  

and the friction factor with different contact area 
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From the Figure 6 we can find that the tangential damping factor of joint surfaces becomes 

more stable with the friction coefficient increasing. The location of the break of 𝐶𝑡𝑒
∗ − 𝜇 curve will 

be affected by the size of the actual contact area. The critical friction factor 𝜇𝑐  will move 

backwards as the actual contact area increases. The application of the theory of tangential damping 

factor of joint surfaces obtained in this paper is only applied to the state when micro partial slip 

occurred between joint surfaces. 

4. Application and validation of the fractal contact models 

When the machine is working, macro or micro displacement of joint surface will convert part 

of the mechanical energy into heat and noise consumption through friction, it essentially shows 

the damping characteristics. Based on the previous researches the joint surface can be equivalent 

to damping layer. Material constants of the damping layer can be determined based on the concept 

that the fractal contact stiffness is equal to strain energy. That’s to say, tangential parameters and 

normal paramenters obtained from the fractal model can be converted into the material properties 

of the damping layer. The damping layer is shown in Figure 7. The dynamic characteristics of 

joint surface are simulated with the finite element software by introducing the influence of the 

friction coefficient for the material properties of the layer.  

By material mechanics, the power (𝑊) generated by the normal loading (𝑄) in the elastic range 

is shown as follows: 

𝑊 =
𝑄2ℎ

2𝐸𝐴𝑎

=
𝑄2

2𝐾𝑛

. (29) 

In the linear elastic range the strain energy of the equivalent damping layer of joint surfaces is:  

𝑉𝜀 =
𝑄2ℎ

2𝐸𝑖𝐴𝑎

. (30) 

Due to the fact that the power (𝑊) generated by the external loading is equal to strain energy 

stored by the equivalent damping layer, equation is shown as follows:  

𝐸𝑖 =
𝐾𝑛ℎ

𝐴𝑎

. (31) 

In the same way the shear modulus (𝐺𝑖) of the material of the equivalent damping layer is 

shown as follows: 

𝐺𝑖 =
𝐾𝑡ℎ

𝐴𝑎

. (32) 

The relationship between the shear modulus (𝐺𝑖), elastic modulus (𝐸𝑖) and Poisson's ratio (𝑣𝑖) 

of the material of the equivalent damping layer is shown as follows: 

𝜈𝑖 =
𝐸𝑖

2𝐺𝑖

− 1. (33) 

Because the normal stiffness (𝐾𝑛) and the tangential stiffness (𝐾𝑡) of joint surfaces are the 

functions of the friction coefficient, Equations (30-32) show the relationship between the material 

coefficient of the layer and the friction coefficient. They also consider the influence of the friction 

coefficient, so they better match the engineering practice. 

By using the stylus profile meter to measure the contact surface of the composite beams in 
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Figure 8, the fractal dimension (𝐷) of its profilogram is 1.4781 and the fractal scale parameters 

(𝐺) are 0.00016.  

Equivalent Damping Layer

Structure 1

Structure 2

 
Fig. 7. The equivalent damping layer of joint surfaces 

 
Fig. 8. The composite beams for experiment 

When the tightening torque of bolt is 4 Nm, by substituting the fractal parameters of steel plate 

(𝐷), (𝐺), elastic modulus (𝐸), Poisson's ratio (𝑣), density (𝜌) and friction coefficient (𝜇) into 

Equation (10) and Equation (23), the normal contact stiffness (𝐾𝑛) and the tangential contact 

stiffness (𝐾𝑡) of joint surfaces are obtained. The parameters are summarized in Table 1.  

Table 1. The material constants and fractal parameters 

𝜇 𝐸 (Pa) 𝜈 𝜌 (kg/m3) 𝐷 𝐺 

0.12 2.1e11 0.3 7850 1.4781 0.00016 

By putting these parameters into Equations (30), (31) and (32), the material constant of the 

equivalent damping layer is obtained. Considering the surface morphology of joint surfaces and 

the oxide layer and the plastic deformation layer by loading, the thickness of the equivalent 

damping layer is taken 8 mm. The material constants are summarized in Table 2. 

Table 2. The material constants of the equivalent damping layer 

𝐸𝑖 (Pa) 𝜈𝑖 𝜌 (kg/m3) ℎ (m) 

5.5e8 0.35 7850 0.0008 

According to the structure of the composite beams in order to accurately mesh the finite 

element model, which contains the top and the bottom steel plates and the equivalent damping 

layer, by ignoring the bolts the model is built. In the model the thickness of each steel plate is 

6 mm, the equivalent damping layer is 0.8 mm, and each layer material is divided as 40×10×2 by 

the Solid-45 element with the simulation software, the total number of mesh points is 1200, it is 

shown in Figure 9. And each model shape and natural frequency are obtained through the method 

of Block Lanczos [13, 14] of modal analysis. The natural frequencies and loss factors of the 

composite beams processed by the equivalent damping layer are as summarized in Table 3.  

 
Fig. 9. The finite element model of the equivalent damping layer of the composite beams 
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Table 3. The natural frequency and loss factor of composite beams processed by equivalent damping layer 

Modal order 1 2 3 4 5 

Natural frequency (Hz) 374.5 912.2 1590 2384 3309 

Loss factor 0.086 0.211 0.271 0.283 0.267 

The relationship between the modal loss factor and the damping ratio of the system is linear 

under each resonance frequency. The damping characteristics of the composite beams can be 

demonstrated by the modal loss factor. The purpose of this experiment is to obtain the natural 

frequency and the damping ratio of the composite beams. The magnitude-frequency response 

curve of the composite beams is shown as in Figure 10. And the comparisons of the results of the 

equivalent damping layers and experiment are listed in Table 4. 
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Fig. 10. The magnitude-frequency curve of the composite beams 

From the Table 4 modal parameters of each order of the composite beams with modal test are 

in agreement with the results, which are obtained by the finite element calculation method of 

equivalent damping layers with the influence of joint surfaces contact characteristics considered. 

The error of two kinds of results is about 5 %, and few may be close to 10 %. This method can 

provide the simulation value of modal loss factor related to structural damping. Above all the finite 

element calculation method of equivalent damping layers is used for the dynamics analysis of 

mechanical structure which considers the influence of joint surfaces. 

Table 4. Comparisons of the results of the equivalent damping layers and experiment 

Modal  

order 

Experimental  

natural frequency 

Equivalent  

damping layers 

Error 

(%) 

Modal experiment  

damping ratio (%) 

Equivalent  

damping layers 

1 365 375 2.6 0.4 0.09 

2 897 912 1.7 1.2 0.21 

3 1691 1590 6.0 1.1 0.27 

4 2430 2384 1.9 1.4 0.28 

5 3030 3309 9.2 1.5 0.27 

5. Conclusions 

Based on the M-B model, the fractal model of the normal contact stiffness of joint surfaces is 

studied considering the friction coefficient between joint surfaces. The fractal model of the normal 

contact damping and the tangential contact stiffness is established based on the concept of modal 

loss factor. The fractal model of the tangential contact damping based on the equivalent treatment 

method of the friction damping is obtained when the surface is in the sliding state. After obtaining 
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a fractal prediction model of the contact parameters of joint surfaces, this paper studies the 

influence of the friction coefficient on the contact stiffness and damping with simulation method. 

The simulation results show that the fractal prediction model considering the friction coefficient 

is certainly right. 

The joint surface of the composite beams is equivalent to a damping layer and through this 

way the material constant of the equivalent damping layer is gained. The modal analyses of the 

composite beams are made with the modal strain energy method and through this analysis each of 

natural frequencies and modal loss factors are also gained.  

Finally the modal experiment of the composite beams is done, and the modal parameters of 

joint surfaces and the composite beam are gained. The error of the results between experiment and 

equivalent damping is very small, so it is feasible to simulate the joint surface with the equivalent 

method. 
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