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Abstract. The majority of applications of active magnetic bearings were still based on 

conventional PID control system. The 2 DOF (two-degree-of-freedom) PID controller can solve 

the problem of the optimal tuning for the disturbance response and the one for the set-point 

response. A 2 DOF PID control for active magnetic bearings (AMB) is discussed in this paper. 

According to fundamental principle of finite element mathematical model of the flexible shaft is 

presented. The controlled plant of 2 DOF PID mathematical model is determined. Control 

parameters of the 2 DOF PID systems for active magnetic bearings are discussed. The active 

magnetic bearing laboratory system is shown. The obtained experimental results show that 2 DOF 

PID controller of the active magnetic bearings-flexible rotor system is stable through the first 

critical speed. 
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1. Introduction  

Since the 1930s scientists have begun using active electromagnets systems for high-speed 

ultracentrifuges [1]. But magnetic bearings did not become a practical alternative to rolling 

element bearings, for that, active magnetic bearings are physically unstable, and only advanced 

controllers and algorithms for active magnetic bearings systems can provide proper stiffness and 

damping. Until the last decade, magnetic bearing technology has found wide applications for 

levitating and high-speed rotor dynamic systems in many applications because of advances in 

micro-processing controllers that allow for confident and robust active control [2]. Control of 

magnetic bearings has been studied in recent years. The most important modern sophisticated 

control approaches used for active magnetic bearings are, such as linear PID controllers [3, 4], 

gain scheduled control [5], adaptive control [6, 7], robust H∞ control [8], robust sliding mode 

control [9], robust control via Eigen structure assignment dynamical compensation [10], optimal 

control [11], dynamic programming control [12], genetic algorithm control [13], fuzzy logic 

control [14, 15], feedback linearization control [16], time-delay control [17], control by transfer 

function approach [18], μ-synthesis control [19]. Despite rapid development of advanced control 

algorithms for active magnetic bearings, the main control of active magnetic bearing industrial 

applications were based on conventional decentralized PID controllers. 

PID control plays a leading role in AMB as its easy algorithm implementation, good dynamic 

and static performance. However, conventional PID controller has only one-degree freedom and 

generally cannot obtain better dynamic responses in both the command tracking and load 

disturbance regulation characteristic. In 1963, Horowitz [20] stated that a 2 DOF control system 

naturally has advantages over a 1 DOF control system. But Horowitz's work did not attract a 

general attention from engineers until after two decades. In 1984 Araki’s research exploited the 

advantages of the 2 DOF structure for PID control systems [21, 22]. Consequently, 2 DOF PID 

controllers were proposed for various industrial use [23, 24], and further studies were made about 

the structure and optimal parameters of 2 DOF PID control [25-26].  

This paper studies 2 DOF PID control design for an AMB flexible rotor system. The 2 DOF 

PID control has two parameters to be designed separately. 2 DOF PID can overcome the shortage 

of conventional 1 DOF PID and improve the performance of the controller of AMB. One of two 
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parameters in 2 DOF PID control can make the command tracking characteristic best, the other 

can make the load disturbance regulation characteristic best.  

In second section of the paper the mathematical model of active magnetic bearings for flexible 

shaft will be presented. The model of flexible rotor system is constructed based on the finite 

element method. The obtained mathematical model will be used for the control system design and 

numerical evaluation of 2 DOF PID control algorithms. In third section a short survey of the 

2 DOF PID control algorithms used for active magnetic bearing control will be shown. Because 

the main of industrial applications of active magnetic bearings were still used decentralized PID 

control system, the new rule-based procedure for 2 DOF PID control synthesis will be presented. 

In fourth section the laboratory active magnetic bearing system for control algorithms evaluation 

will be described. The robustness of the 2 DOF PID control system on dynamics and parameter 

variations will be analyzed by means of simulations and experiments. 

2. Finite element modeling of flexible rotor systems 

The flexible shaft is constructed in terms of beam-type finite element model as Fig. 1, the shaft 

has four degrees of freedom. The elastic element vector � of displacement and rotation assigned 

to element � can be arranged in the following: 

� = [�� �� ��,� ��,� ���� ���� ��,��� ��,���]�. (1)

The mechanical system of a rotating shaft can be described as the following equation [30]: 

� ⋅ �� + �	 + 
 ⋅ �� ⋅ � + � ⋅ � = �+ � + ���	. (2)

� and 
 are the mass matrices and gyroscopic matrices including that of the shaft and the rigid 

discs. 	 is damping matrix, � is stiffness matrices of the shaft. � is the vector of gravity force, 

and � is imbalance force for the complete rotor system. 

  
Fig. 1. Rotor system and shaft element 

As illustrated in Fig. 2, active magnetic bearings are combined controller and actuators. The 

actuators comprise 4 pole pair electromagnets, switching power amplifiers, position sensor, and 

control system. The amplifiers convert the control currents into the electrical currents in the coils. 

These currents produce the magnetic field in the electromagnet, which produces the corresponding 

magnetic force. The deviation of rotor � and � from the � and � sensor are used by controller as 

feedback signal. The controller provides the control current �� and �� in the electromagnet. The 

electromagnet coils to produce magnetic force �� and �� which suspend the rotor. The forces of 

magnet are to be [19, 20]: 

����, �� = ����� + �
��, 

����, �� = ����� + �
��, 
(3)

where ��� and ��� denote the current stiffness, �
� and �
� are position stiffness, �� and �� are the 

control current, � and � are the position respectively.  
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In which: 

��� =
��������

�� cos���, 
��� =

��������
�� cos���, 

�
� =
���������

� cos���, 
�
� =

���������
� cos���, 

(4)

where �  is the force acting angle, equals to �/8  (half the angle between the poles of an 

electromagnet); � is the coil turns; � is the air gap, �� is the magnetic permeability of a vacuum, 

equals to 4�×10-7 Vs/Am; � is the length of air gap. 

 
Fig. 2. Configuration of flexible rotor with unblance disks supported by active magnetic bearing 

3. 2 DOF PID controller design 

A general form of the 2 DOF PID controller is shown in Fig. 3, where the controller consists 

of two components ����� and �����. ����� is the conventional PID element, and ����� being an 

appropriate element satisfying the second criterion. The transfer function �(�)  from the 

disturbance � to the controlled variable � is assumed to be different from the transfer function 

�(�) from the manipulated variable � to �. ����� is called the serial (or main) compensator and 

����� the feedforward compensator. In this case, ����� and ����� are given by: 

����� =  � !1 +
1

"�� + "�����#, (5)

����� = − �$� + %"�����&. (6)

Block diagram of the 2 DOF PID control system for one mechanical degree of freedom is 

given in Fig. 4 and Fig. 5 where the meanings of the symbols are as follows:  

���� – reference position displacement of the rotor,  

�(') – transient position displacement of the rotor, 

����'�, ����'� – reference currents of the magnetic coil, 

���'�, ���'� – actual currents of the magnetic coil, 

���'�, ���'� – electromagnetic forces on the rigid body. 

For every radial active magnetic bearing two control systems on Fig. 5 are used – for horizontal 

and for vertical position control respectively. Both control systems are separately. 
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Fig. 3. 2 DOF control system 

 
Fig. 4. Principle of electromagnetic levitation for active magnetic bearing system 

 
Fig. 5. Control structure for active magnetic bearing system 

4. Control implementation 

In Fig. 6, in the experiment, a Dspace DS1103 controller board with a DS4003 digital 

input/output system board is used to test the digital position control for active magnetic bearings. 

A Dspace DS1103 PPC controller board is used to test the digital position control for active 

magnetic bearings. The position controllers are realized in parallel form with additional feedback 

blocks. The position measurements are performed using four CWY-DO-81 contact-less eddy 

current displacement sensors. The A/D converters resolution is below 1 μm. DS1103 PPC 

controllers are used in the current control loops along with current sensors and analogue filters. 
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Fig. 6. Principle of electromagnetic levitation for active magnetic bearing system 

 

 
Fig. 7. 2 DOF PID controller parameter of electromagnetic bearing system step response 

5. Experimental results 

This section presents the experimental results of the 2 DOF PID controller of active magnetic 

bearings. In the performed simulations a dynamic mathematical model given by Eqs. (2), (3), (4) 

and (5), (6) was considered, while the influence of power supply was not taken into account. 

The formulae of the feedback type compensators given in Eqs. (5), (6) indicate that the 2 DOF 

control system is obtained by moving some portions of the proportional and the derivative 

components of the conventional PID controller to the feedback path ����� and the amounts of the 
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portions to be moved are given by � and %. Fig. 7 illustrates this situation of � and %, in which 

the set-point response of the 2 DOF system is shown. 

 

 

 
Fig. 8. Horizontal, vertical vibration and orbit of rotor with 2 DOF PID controller 

Two tests were performed, one for steady-state response, another for acceleration response. 

In Fig. 8 and Fig. 9, a comparison of simulation results using the conventional PID (1 DOF) 

and the 2 DOF PID controllers are shown for both tests. In the control design of the PID controller 

the static and dynamic limitations caused large overshoot in the time response (Fig. 9). The 

obtained results show that 2 DOF PID control guarantees higher damping of the closed-loop 

system and is, therefore, superior to 1 DOF PID control. 

As is clear in Figs. 10 and 11, an excellent agreement of experimental results is obtained in the 

transient state of accelerating response, while the measured position is noticeable in the steady 

state. An off-set in the measured current is noticeable due to the difference between the geometric 

and magnetic rotor’s central position. Variations in positions in the �-axis are tested in both tests. 
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Fig. 9. Horizontal, vertical vibration and orbit of rotor with 1 DOF PID controller 

 
Fig. 10. Accelerating response vertical vibration of rotor with 2 DOF PID controller  
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Fig. 11. Accelerating response vertical vibration of rotor with 1 DOF PID controller 

6. Conclusions 

The controller design approach for flexible rotor system with AMB provides a comprehensive 

for high-speed rotor dynamic systems. Control of 2 DOF was achieved to provide stability and 

disturbance rejection, even high-speed operation required by the running speed and 

harmonic-related forces, and with the rotor position feedback sensors and magnetic bearing stator 

mounted on the flexible housing. 

The analytical and experimental results show the effectiveness of the 2 DOF control. Good 

step responses are achieved as a result of the using 2 DOF PID controller of AMB. With a 

sufficient bandwidth, robust stability of the designed controllers can be obtained. 

Acredible comparison between 2 DOF PID and 1 DOF PID different controllers is possible. 

From the tested controllers, which can achieve the similar band-width and disturbance rejection, 

the 2 DOF PID approach shows better robust stability than the 1 DOF PID controller. 

The parameters of the AMB system are time-variant. The bending modes of the flexible rotor 

can shift, for example, because of aging or reassembling of substructures. The 2 DOF PID 

controller can solve the problem of the conventional PID controller that the optimal tuning for the 

disturbance response and the one for the set-point response are not compatible in most cases of 

practical importance. Applying sufficient parameters of � and % in the 2 DOF PID control design 

and uncertainty models in the stability analysis are necessary. 

It is very important in the AMB of process control where the change of the setpoint variable 

is frequently required. This article is intended to be a reference for AMB engineers who are faced 

to the problem. The future work will focus on controller design using high-performance embedded 

signal processing units, such as DSPs. 
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