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Abstract. The radiation efficiencies of cylindrical and conical shells were investigated by using 

the statistical modal energy distribution analysis (SmEdA) and integrated FEM-SmEdA 

approaches. In cylindrical shell, three analytical algorithms were carried out, including SmEdA 

and two conventional approaches, i.e. the wave approach and the statistical energy analysis (SEA), 

and the results were compared with a former experimental one. SmEdA showed closest results 

with the experimental one, owing to its precise estimation of the coupling loss factors (CLF) which 

were further used to calculate the radiation efficiency. Furthermore, based on the analytical 

SmEdA, an integrated FEM-SmEdA algorithm is proposed. This hybrid method provided similar 

shell radiation efficiency for cylindrical shell, indicating its applicability in the analysis of 

complicated structures.  

Keywords: radiation efficiency, sound field, shell, statistical modal energy distribution analysis, 

finite element method. 

1. Introduction 

The interaction between acoustic field and vibrating structure is often an important factor 

during structure design process. In particular, much attention has been paid on acoustic radiation 

efficiency. For example, lots of numerical studies have been performed to investigate the modal 

radiation efficiency of simply supported rectangular plate [1-5], and some also studied the 

boundary condition effect on the radiation efficiency for plate structure [6]. In addition to plate 

model, the cylindrical shell has also been paid much attention in the analysis of acoustic radiation 

efficiency, especially in the fields of aviation and marine. Earlier work by Manning and Maidanik 

pointed out that the extreme radiation efficiency at the ring frequency is due to the existence of 

the curvature [7]. Then in 1971, Szenchy first [8] presented an empirical formula of radiation 

efficiency for finite cylindrical shells based on statistical model. Recently, this method was 

extended to stiffened shells [9, 10]. However, the radiation characteristics were not well 

understood for thick shells, and the radiation efficiency was found to be dependent on geometries 

and boundary conditions [11, 12]. 

Wang and Lai [12] applied the coupling BEM/FEM method to analyze the sound radiation 

characteristics. However, for this approach, it is difficult to get accurate solution at high 

frequencies. While the modal radiation efficiency is based on massive calculation and the 

statistical empirical formula can not concisely predict the radiation efficiency of acoustically thick 

shells, it is necessary to propose another method to predict the radiation efficiency of general 

cylindrical shells. 

In general, the structural damp effect is not taken into account when the wave theory is applied 

to calculate the coupling loss factors. However, SmEdA presented by Maxit and Guyader [13, 14] 

can be applied to conquer this drawback, and it can be directly used to calculate the energy transfer 

by using the dual formulation based on the modal displacement and force. Totaro and Dodard [15] 

calculated the coupling loss factors from the 2-D plate and Car frame structure to acoustic cavity, 

and they proved that this algorithm is valid for the acoustic-structural coupling problems. 



1029. ESTIMATION OF SHELL RADIATION EFFICIENCY USING A FEM-SMEDA ALGORITHM.  

QIAO Y., CHEN H. B., LUO J. L. 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2013. VOLUME 15, ISSUE 3. ISSN 1392-8716 1131 

In this paper, SmEdA is applied to calculate the coupling loss factor between the cylindrical 

shell and the acoustic cavity, and the radiation efficiency of the cylindrical shell is obtained by 

analyzing the relationship between the radiation efficiency and the coupling loss factor in the 

statistical energy analysis. Section 2 introduces the theoretical analysis of SmEdA. In Section 3, 

the Semi-analytical method obtained in Section 2 is validated by using the empirical formula of 

the radiation efficiency of the cylindrical shell proposed by Szechenyi. In Section 4, the coupling 

FEM and SmEdA is applied to calculate the structural radiation efficiency, and two numerical 

examples are presented to demonstrate the validity of the proposed algorithm for complicated 

practical problems. 

2. Theory 

2.1. Brief introduction of SmEdA 

The SmEdA method is based on the dual formulation of modal shape-displacement [13], which 

considers an elastic-mechanical system as uncoupled-blocked subsystem 1 and uncoupled-free 

subsystem 2. The two uncoupled subsystems are characterized by stress mode shapes of subsystem 

1 and displacement mode shapes of subsystem 2. In that case, the power balance between 

subsystem 2 and the �th mode of subsystem 1 can be written as: 

Π�
� = �����

���� + ������(��� − ���)

��

���
, (1)

where Π�
�, ��� , ��

�, ��� are, respectively, the modal input power, the modal damping, the modal 

frequency, the modal energy of the �th mode of subsystem 1. �� is the number of modes of 

subsystem 2. ����� is the modal coupling loss factor between the �th mode in subsystem 1 and the 

qth mode in subsystem 2. Obviously the power dissipated by the �th mode of subsystem 1 is given 

by Π�
� = �����

���� , and the transmitted power from pth mode of subsystem 1 to �th mode of 

subsystem 2 can be expressed as Π��
�� = �����(��� − ���). 

Since the modal energy equipartition assumption is introduced, the coupling loss factor ��� 

between subsystem 1 and subsystem 2 is obtained by: 

��� =
1����

���������

���

��

���
, (2)

where �� and �� are, respectively, the center frequency and the number of modes of an octave 

band in subsystem 1. The Reissner principle is introduced to obtain the intermodal coupling factor 

(ICF) ����� and the interaction modal work 	��
�� [13, 15]: 

����� =
(	��

��)�
��
��(���)�
� �����

����
�� + �����

����
��

������ − ������� + ������� + ������ ������������ + �������������, (3a)

	��
�� = � 	�������	���	���


������	


, (3b)

where 
�
�  and 
�

�  are the modal masses of the � th mode of subsystem 1 and � th mode of 

subsystem 2, respctively. 	���� is the displacement mode shape of �th mode of subsystem 2, ���	�� 
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is the stress mode shape of the �th mode of subsystem 1. �	� is the outer normal vector component 

of subsystem 1. 

Provided that the acoustic pressure is linear and of small amplitude, then the only degree of 

freedom (DOF) of the sound field is pressure. As a result, the characters of the vibro-acoustic 

system can be determined as following: the acoustic cavity can be described by modes of the 

uncoupled-blocked subsystem, and the structure by modes of the uncoupled-free subsystem. 

Because of the better representation of the boundary conditions, damping and modal overlap in 

the dual formulation, it is anticipated that the coupling modes theory based SmEdA method can 

provide more accurate analysis in low frequency than the aforementioned wave approach [15]. 

2.2. Description of the coupling system 

The coupling vibro-acoustic system is shown in Fig. 1. The cylinder thickness ℎ  can be 

neglected in comparison with its radius �� and length ��. A point � on the surface of the cylinder 

is defined by co-ordinates (�, �)  giving its position circumferentially and axially. The 

displacements of the point are � circumferentially, � axially and � radially outwards. A point �� 

in the cavity is defined by co-ordinates (�, , �) giving its position radially, circumferentially and 

axially.  

Here we take the same boundary conditions as in reference [9]: simply supported at both ends 

for the cylindrical shell and complete sound absorption at both ends for the cavity. Hence the 

sound pressure � is zero at the bulkheads in order to prevent radiation into the cavity. 

 
Fig. 1. Co-ordinate systems of the vibro-acoustic system 

2.3. Modes of the uncoupled-free cylindrical shell 

In this article, the Donnell equations are used to describe the stresses and displacements of the 

cylinder due to its simplicity and high accuracy for shells whose thickness is much smaller than 

its radius: 

1 + !
2

"��"�"� +
1 − !

2

"��"�� +
"��"�� +

1�� "�"� −
1#�� "
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"��"�"� +
!�� "�"� −

1#�� "
��"$� = 0, !�� "�"� +

1�� "�"� +
��� +
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(4)
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where #� is the tensile wave speed of the shell and is given by: 

#� = ' �((1 − !�)
, (5)

where � , (  and �  are, respectively, Young's modulus, density and Poisson ratio of the shell 

material.  

A wave motion with frequency � and coupled �, � and � motion can be represented by the 

following two forms: 

�� = ��)�,�cos *� ���+
�

���

�

���
,������������� , �� = ��)�,�sin *� ���+

�

���

�

���
,������������� ,

�� = ��-�,�cos *� ���+
�

���

�

���
,���������, and �� = ��-�,�sin *� ���+

�

���

�

���
,���������,

�� = ��	�,�cos *� ���+
�

���

�

���
,���������, �� = ��	�,�sin *� ���+

�

���

�

���
,���������,

(6) 

where . is the axial mode number and � is the circumferential mode number. The wave number /� in the circumference direction can be given by: 

/� =
���. (7)

Substituting Eq. (6) into Eq. (4) yields: 

01�� 1�� 1��1�� 1�� 1��1�� 1�� 1��20
)��-��	��

2 = 0, (8)

where: 

1�� = −/����� − �� %1 +
ℎ�

12���& 31 − !4
2

+
�����(31 − !�4� , 

1�� = −
1 + !

2
�/���, 

1�� = /���! +
ℎ�

12��� /����� −
31 − !4

2
��/��� ℎ�

12���, 1�� = 1��, 

1�� = −
31 − !4

2
%1 +

ℎ�

4���&/����� − �� +
�����(31 − !�4� , 

1�� = � +
33 − !4

2
� ℎ�

12��� /�����, 1�� = 1��, 1�� = 1��, 

1�� = −
ℎ�

12��� �/����� + 2��/����� + �� − 2�� + 1 − 1 +
�����(31 − !�4� . 

(9)
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For a non-zero solution, the determinant of the coefficient matrix must be zero: 

51�� 1�� 1��1�� 1�� 1��1�� 1�� 1��5 = 0, (10)

and the boundary conditions for the simply-supported cylindrical shell are: 

�|���,���� = 0, �|���,���� = 0, �|���,���� = 0. 

(11)

Substituting Eqs. (6) and (11) into Eq. (10) yields the characteristic equation of the 

eigenfrequencies as: 

�� + 6��� + 6��� + 6� = 0, (12)

and the wave number in �-direction is given by: 

/� =
.7�� . (13)

The three displacements could be decoupled by solving the characteristic equation due to the 

orthogonality of the co-ordinates. For each pair of . and �, consider the solution set with three 

positive roots derived from Eq. (12) as an eigenfrequency of the shell. Further research indicates 

that the eigenfrequencies of the torsional, longitudinal and bending modes, ��,�,� ,  ��,�,�  and ��,�,�, are ranked in descending order, that is ��,�,� >  ��,�,� > ��,�,�. 

Cremer et al. [17] indicated that the in-plane modes of structures can not radiate power into 

acoustic cavities effectively. Hence only bending modes are considered in this article and ��,� 

will be used in place of ��,�,� for simplicity. 

It can be seen from Eq. (6) that there are two forms of modes for the same pair of . and �, 

and the displacement mode shapes can be written as: 

��,�,�� = 0, ��,�, !" = 0,��,�,�� = 0, and ��,�, !" = 0,

��,�,�� = cos *���� + sin%.7�� �& , ��,�, !" = sin *���� + sin %.7�� �& ,

 (14)

and the generalized modal mass 
�,�
  is: 


�,�
 = 
�,�,�� 

 = 
�,�, !"
 = �(�ℎ



(��,�,�� )��� = �(�



ℎ(��,�, !")��� =

(�ℎ����7
2

, (15)

where superscript 8 denotes the structure. 

2.4. Modes of the uncoupled-blocked cavity 

Consider the sound pressure of the acoustic cavity under a vibration frequency � as: 

� = �93�,:, �4,	�� , (16)
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where � is the amplitude of sound pressure, 9(�,:, �) is the pressure function. 

For linear and small-disturbance acoustic field, the following wave equation must be satisfied: 

;�� =
1##� "

��"$� , (17)

where ## is the sound speed of the acoustic cavity. In cylindrical coordinates, equation (17) can 

be written as: 

1� ""� *� "�"�+ +
1�� "��":� +

"��"�� =
1##� "

��"$� , (18)

with the boundary conditions: 

"�"� |$�%� = 0, �|���,���� = 0, �3�,:, �4 = �3�,: + 27, �4. (19)

Substituting Eqs. (16) and (17) into Eq. (19) yields the pressure mode shape of the acoustic 

cavity: 

��,�,�� = <�3/%�4 cos3�:4 sin�/��, ��,�, !" = <�3/%�4 sin3�:4 cos�/��, 
(20)

where � 3� = 0, 1, 2, ⋯ , ∞4 is the circumferential mode number. /% is the circumferential wave 

number. /� = .7 ��⁄  (. = 1, 2, ⋯ , ∞) is the axial wave number. <�(/%�) is the Bessel function 

of the first kind with the order � and the argument /%�. 

It can be seen from Eq. (20) that <�& 3/%�4|%�%� = 0 must be satisfied for the rigid wall condition 

on the coupling surface. Since there are infinite zero points in the derivative of the Bessel function, 

numerous modes exist for arbitrary pair of . and �. The circumferential wave number of the 

modes are written as /%,� ($ = 1, 2, ⋯ , ∞), where $ is the order of the zero point. 

Consider that: 

1. when � = 0, ��,�, !" = 0, only cosine-based mode shape ��,�,��  exists; 

2. when � ≠ 0, 1 and $ = 1, that makes /%,� = 0 and all the mode shapes are equal to zero. 

We can finally derive the pressure mode shapes and the eigenfrequencies of the cavity:  

��,�,� = <��/%,��sin�/��,

��,�,� = 0/%,�� + %.7�� &
�2�/� ##,   $ = 1,⋅⋅⋅, ∞, when � = 0,

    (21a)

��,�,�� ,� = <��/%,��cos:sin�/��,��,�, !",� = <��/%,��sin:sin�/��,

��,�,�� ,� = ��,�, !",� = ��,�,� = 0/%,�� + %.7�� &
�2�/� ##,   $ = 1,⋅⋅⋅, ∞, when � = 1,

    (21b)

��,�,�� ,� = <��/%,��cos3�:4sin�/��,��,�, !",� = <��/%,��sin3�:4sin�/��,

��,�,�� ,� = ��,�, !",� = ��,�,� = 0/%,�� + %.7�� &
�2�/� ##,   $ = 2,⋅⋅⋅, ∞, when � ≥ 2.

    (21c)
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The energy density of linear and small-disturbance acoustic field is: 

,�3�,:, �4 =
�3�,:, �4�

2(###� , (22)

where (# is the density of the acoustic cavity. Hence the modal kinetic energy of the cavity is 

given by: 

># = �,�
'

�- = � � � �(�,:, �)�

2(###� ��:���

�

%�

�

��

�
���. (23)

Substituting Eq. (21) into Eq. (23) yields: 

?@A
@B># =

7��
4(###�� �<�(/%,��)�

%�

�
��, � ≠ 0,

># =
7��

2(###�� �<�(/%,��)�
%�

�
��  , � = 0,

 (24)

and the generalized modal mass of the cavity is: 

?@@
A
@@B
�,�,�� ,�

# = 
�,�, !",�
# =

��7
2(###� C �<�(/%,��)�

%�
� ����,��

, � ≠ 0,


�,�,�
# =

��7(###� C �<�(/%,��)�
%�
� ����,��

, � = 0,

 (25)

where superscript 6 denotes the acoustic cavity. 

2.5. Radiation efficiency of the cylindrical shell 

Radiation efficiency �%#( is used to represent the structure's ability of power radiation into the 

acoustic field. The total radiation efficiency, which is also called average radiation efficiency, is 

defined by: 

�%#( =
D%#((###� =

�%#((###�〈��FFF〉, (26)

where D%#( is the radiation resistance, 〈��FFF〉 is the spatially averaged mean square velocity of the 

structure, �%#(  is the power radiated from the structure, � is the area of the coupling surface. 

The interaction modal work 	�� between �th mode of cylindrical shell and �th mode of the 

cavity can be given from Eq. (3b) by: 

	�� = ��� � ��(:, �)�#�(:, ��, �)

��

�

��

�
���:, (27)

where ��(:, �)  is the displacement mode shape of the � th mode of the cylindrical shell, 

 �#�(:, ��, �) is the pressure mode shape of the �th mode of the cavity. 
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It is obvious that the shell's modes are decided by the combinations of mode number . and �, while the cavity's modes are decided by the combinations of mode number .#, �# and the 

zero point order $. In the frequency band from �� to ��, � is denoted by a number through the 

combinations of . and �, while �# is denoted by a number through the combinations of .#, �# and $ 3�# ≠ 04, ��# is a number through the combinations of .#, and $ for �# = 0. Then the 

number of the structure modes in the octave band is 2�, while the number of the cavity modes is 

2�# + ��#. 

Substituting Eqs. (14) and (21) into Eq. (27) yields: 

H	�� = 	�,�,�� ,� = 	�,�, !",� = ��7 ��
2
<��/%,���,    . = .# = .,� = �# = �,	�� = 0, otherwise,

 (28)

where the subscripts sin  and cos  represent the sine-sine and cosine-cosine modes coupling, 

respectively. 

It can be seen from Eq. (28) that 	�� is nonzero only when . = .#, � = �# and the mode 

shape of the cavity and shell are both cosine function or sine function. Such pair of modes with 

nonzero-valued 	�� is called 'coupling pair', and pair of modes with zero-valued 	�� is called 

'orthotropic pair' in this article. 

We can obtain the intermodal coupling factor by substituting Eqs. (15), (25), (26) and (28) into 

Eq. (3a): 

when . = .# = ., � = �# = �: 

��� =

������� ������,���	

� ��	,�,�

� 	�

2�
ℎ��	,�

 	�� � ������,��	


� �
��

�

��
�	,�

 ��	,�,�

� 	� + ���	,�,�
� ��	,�


 	�


���	,�,�
� 	� − ���	,�


 	�
�� + ��
�	,�

 + ���	,�,�

� 	 ��
�	,�

 ��	,�,�

� 	� + ���	,�,�
� ��	,�


 	�

, 

(29a)

otherwise: 

��� = 0. (29b)

Substituting Eq. (29) into Eq. (2) yields the coupling loss factor from the cavity to the 

cylindrical shell: 

�# =
1

(2�# + ��#)��
� � �

��

�����

���

���

���
. (30)

It can be seen from Eqs. (29) and (30) that only the coupling pairs of modes contribute to �#. 
According to classical SEA theory [16], the coupling loss factor from the shell to the cavity

 
can 

be obtained through radiation efficiency by: 

�# =
(###��(ℎ

�%#( . (31)

According to the reciprocity principle of SEA, the coupling loss factor from the cavity to the 

shell can be given by: 



1029. ESTIMATION OF SHELL RADIATION EFFICIENCY USING A FEM-SMEDA ALGORITHM.  

QIAO Y., CHEN H. B., LUO J. L. 

1138  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2013. VOLUME 15, ISSUE 3. ISSN 1392-8716  

�# =
2�

(2�# + ��#)��
�#. (32)

Cylindrical shell's radiation efficiency can be derived from Eqs. (30), (31) and (32) as: 

�%#( =
(ℎ

2�(###� � ���#�����

�

���

�
. (33)

It can be seen that the only parameters to which �%#( relates are the number of structural modes 

and the intermodal coupling factors, thus it is convenient and efficient to calculate the shell's 

radiation efficiency when the modal parameters of the structure and cavity in an interested octave 

band are acquired. These modal parameters can be obtained analytically for simple structures or 

numerically for complicated ones. 

3. Comparison with conventional methods 

Based on the aforementioned algorithm, the average radiation efficiency of a simply-supported 

cylindrical shell (as shown in Table 1) is taken as an example, and the calculated result is compared 

with that from conventional methods. 

Table 1. Cavity and shell characteristics 

Cavity Cylindrical shell 

�� (m) 0.2515 �� (m) 0.2515 

� (m) 0.63 � (m) 0.63 

�� (kg/m3) 1.2 ℎ (m) 0.003 

�� (m/s) 340 �
 (kg/m3) 7820 

�� 0.01 � (Pa) 2.1e11 

  � 0.3 

  �
 0.01 

3.1. Modes of subsystems 

Eigenfrequencies of the cylindrical shell and the cavity below 8000 Hz are solved using the 

analytical methods, and FEA models of the subsystems are also built to get eigenfrequencies 

below 1800 Hz for comparison. Table 2 and Table 3 present eigenfrequencies of some typical 

modes of the shell and cavity obtained by the two methods, respectively. Figure 2 presents the 

comparison of some typical displacement mode shapes by the two methods. Figure 3(a) presents 

typical pressure mode shapes of the cavity on the coupling surface and Figure 3(b) presents typical 

pressure modes with same mode number � = 1, . = 2 but different $ on the cross section at  � = 0.16 m. 

Table 2. Eigenfrequencies of some typical shell modes 

�
 �
 Analytical method / Hz FEA method / Hz Difference 

4 1 340.5499 340.481 0.02 % 

5 1 351.0907 351.275 0.05 % 

6 1 446.4968 447.25 0.2 % 

3 1 471.2864 471.232 0.01 % 

7 1 588.0045 589.689 0.3 % 

… … … … … 

11 4 1796.2 1790.5 0.3 % 

It should be noted that, when � ≠ 0, two modes of the cavity or shell exist for arbitrary pair of 
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., � and $ with sine function or cosine function on the circumferential mode shape, and only one 

mode shape is presented here. 

The good agreement between the modal results given by analytical method and FEM indicates 

that current analytical method is accurate and efficient enough for further analysis of the SmEdA. 

Table 3. Eigenfrequencies of some typical cavity modes 

�� �� � Analytical method / Hz FEA method / Hz Difference 

0 1 1 270 269.869 0.05 % 

1 1 1 476 479.411 0.7 % 

0 2 1 540 539.906 0.02 % 

1 2 1 667 669.726 0.4 % 

2 1 1 704 710.982 1 % 

… … … … … … 

4 2 3 1797 1789.345 0.45 % 

3.2. Radiation efficiency of the cylindrical shell 

Frequency band 630~8000 Hz is divided into twelve one-third octaves; the assignment of .�#$ = ��#$ = 30, .#�#$ = 33 and �#�#$ = 40 makes sure that no mode in the frequency 

band is missed during the analytical modal analysis. Table 4 presents the mode counts obtained 

by current method and SEA. It can be seen that there are obvious differences in low frequency 

range. For SEA, the empirical modal densities formula can produce a certain error as the frequency 

is low. 

Table 4. Mode counts of subsystems in 1/3rd octave band  

Octave center frequency 

��  / Hz 

Current method SEA 

Shell Cavity Shell Cavity 

630 8 4 6 4 

800 14 4 8 8 

1000 16 10 12 14 

1250 22 27 18 25 

1600 30 39 26 47 

2000 38 82 39 88 

2500 70 159 61 165 

3150 108 347 113 319 

4000 110 608 119 628 

5000 134 1244 135 1206 

6300 178 2598 162 2367 

8000 190 4800 200 4732 

Figure 5 shows the coupling loss factors from the cavity to the shell calculated by wave 

approach [8], analytical SmEdA, experiment [9] and business software AutoSEA. Below 1250 Hz, 

wave length cannot be neglected compared with the structure dimension, and hence the wave field 

cannot be regarded as a reverberant one, which makes obvious difference between the results 

given by wave approach and experiment. For SmEdA method, no coupling pair of modes exists 

due to the small amount of modes in the octave and �# = 0 indicates that there is no energy 

transmitting between the shell and the cavity. The conflict between the results given by SmEdA 

and experiment indicates that the energy equipartition assumption is inaccurate in low frequency 

band. However, SmEdA method coincides the best with the experiment above 1250 Hz, not only 

reflecting the position of the maximum �# and the trend of �#, but also getting more and more 

closer to the experimental results as the frequency increases. On the other hand, the wave approach 

produces obvious difference almost in the whole frequency band and the business software 

AutoSEA, based on approximate formulas, gives the worst prediction, especially in the high 
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frequency band. 

Figure 6 presents the distribution of intermodal coupling factors in the 6300 Hz-centered 

octave band with the mode numbers � , �  arranged in order according to the rank of modal 

frequencies. The distribution map shows a large number of cavity modes and shell modes, with 

only few coupling pairs of modes exist in this octave band. That is determined by the non-zero 

requirement of the ���
�� and the integral orthogonality of the sine and cosine functions. 

 
Analytical method 

 
FEA 

(a) � � 4, � � 1 

 
Analytical method 

 
FEA 

(b) � � 5, � � 2 

 
Analytical method 

 
FEA 

(c) � � 1, � �	1 

Fig. 2. Typical mode shapes of the shell 
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 � = 0, � = 1 
 � = 1, � = 1 

 � = 3, � = 4 
 � = 1, � = 5 

(a) Mode shapes of the cavity on the coupling surface by FEA 
 

 � = 1, � = 2, � = 1 
 � = 1, � = 2, � = 2 

 � = 1, � = 2, � = 3 
 � = 1, � = 2, � = 4 

(b) Mode shapes of the cavity on the cross section at � = 0.16 m by analytical method 

Fig. 3. Typical mode shapes of the cavity 
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Figure 7 presents the distribution of interaction modal work 	#
�  between cylindrical shell 

modes with mode number � = 1~5, . = 1 and cavity modes with same � and . but different 

zero point order $ of <�& 3/%��4 from 0 to 8000 Hz. It can be seen that 	#
�  decreases with the 

increase of $ and a typical cylindrical shell mode will transmit power into the cavity in more than 

one octave band. Take the coupling pair of . = 1, � = 1 as example, the eigenfrequency of the 

cylindrical shell mode is 1572 Hz in the 1600 Hz-centered octave band, there is no coupling cavity 

mode in the same octave, but 	#
�  is quite considerable for the cavity mode of � = . = $ = 1 

whose eigenfrequency is 476 Hz. In traditional modal analysis methods, only structural modes are 

considered in the frequency domain, while the cavity acoustic modal characteristics are rarely 

taken into account. In classical SEA, it is in a single octave band that the power balance theory 

between the subsystem-modes groups is set up, thus the current SmEdA algorithm should be more 

accurate than the others. 

Figure 8 presents the radiation efficiencies given by the wave approach [8], the analytical 

SmEdA, experiment [9] and the business software AutoSEA. It can be seen that in the octave 

bands of 1000 Hz and 1250 Hz, the SmEdA-given �%#( is rather different from the three other 

approaches due to the lack of coupling pairs of modes. Notice the truth that the value of measured �%#(  is very small below 800 Hz, the true value of �%#(  can be considered to be zero in low 

frequency band in consideration of the inevitable errors caused by signal noise of the test devices 

and power radiated by the bulkheads during the experiment. Hence the SmEdA method agrees 

best with the experimental results while other methods are totally inapplicable in these octaves. 

Same situation occurs above 1250 Hz: the difference between results given by SmEdA and 

experiment is the smallest among all the numerical prediction methods. Not only the convergence 

of SmEdA-predicted �%#( to measured �%#( as frequency increases but also the exact positions of 

the extreme values demonstrate that the SmEdA approach is of most accuracy among all the 

predicting algorithms. 

 
Fig. 5. Coupling loss factor (CLF) from the cavity to the cylindrical shell 

4. Application to engineering problems 

Besides the high accuracy, another advantage of the SmEdA approach is the possibility of 

computing radiation efficiency for structures with arbitrary geometry, as the interaction modal 

work between the cavity and the structure can be obtained by the finite element analysis. For this 

case, the new approach is called an integrated FEM-SmEdA algorithm. For node I in a shell 

structure analyzed, the displacement variables include three displacements ����  3I = 1, 2, 34  and 
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three rotations ����  3I = 4, 5, 64�. For node J in the cavity, the force variables include three forces �K��  3I = 1, 2, 34� and three moments �K�� 3I = 4, 5, 64�. The interaction modal work between the �th mode of the cavity and �th mode of the structure can be expressed by: 

	��
# = � �K��� �����

����∈)*+,����-�+(..� /

. (34)

Substituting Eq. (34) into Eqs. (3a), (31) and (32) yields the radiation efficiency based on the 

finite element analysis.  

In the present section, a validation test is performed first to demonstrate the availability of 

FEM analysis for the FEM-SmEdA algorithm in the case study of Section 3. Then the integrated 

FEM-SmEdA algorithm is applied to a conical shell to analyze its radiation efficiency. 

 
Fig. 6. Distribution of intermodal coupling factors (ICF) in the 6300 Hz-centerd octave band 

 
Fig. 7. Distribution of ��


�  between cylindrical shell modes and its cavity modes with same � and � 



1029. ESTIMATION OF SHELL RADIATION EFFICIENCY USING A FEM-SMEDA ALGORITHM.  

QIAO Y., CHEN H. B., LUO J. L. 

1144  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2013. VOLUME 15, ISSUE 3. ISSN 1392-8716  

 
Fig. 8. Radiation efficiency of simply-supported cylindrical shell 

4.1. Validation case 

Figure 9 shows a cylindrical shell coupled to its cavity (with parameters in Table 1) for 

validation case. The shell is divided into 9072 quadrangle elements and the cavity is divided into 

61236 hexahedral elements. Figure 10 compares the radiation efficiencies obtained analytically 

(as in Sec. 3.2) and numerically (with FEM results). As it can be seen, the results agree well when 

the frequency is over 1600 Hz, although the numerical method slightly overestimates the radiation 

efficiencies at 1000 Hz and 1250 Hz. The discrepancy is due to a slight overestimation of modal 

works 	�� on the coupling surface during numerical interpolation. Overall, the accuracy shown 

by the integrated FEM-SmEdA is acceptable. 

4.2. Radiation efficiency of a conical shell 

Truncated cone is a typical geometry of stressed-skin structures in aerospace engineering. In 

classic SEA, a conical shell is usually simplified to a cylindrical shell with the same conic length 

and surface area to obtain its radiation efficiency, and thus obvious errors will occur in this 

treatment. Figure 11 shows a typical conical shell model, and Table 5 tabulates the corresponding 

parameters. Figure 12 compares the radiation efficiencies obtained by the proposed FEM-SmEdA 

algorithm and the SEA equivalent approach. As it can be seen, there is an obvious difference 

between the two results. The difference between the two methods demonstrates that the traditional 

SEA equivalent method produces large errors and could be replaced by the present FEM-SmEdA 

approach. 

Table 5. Cavity and conical shell characteristics 

Cavity Cylindrical shell �� (m) 0.113 �� (m) 0.113 �� (m) 0.4 �� (m) 0.4 

� (m) 1 � (m) 1 

�� (kg/m3) 1.2 ℎ (m) 0.004 

�� (m/s) 340 �
 (kg/m3) 7820 

�� 0.01 � (Pa) 2.1e11 

  � 0.3 

  �
 0.01 
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Mesh of the cylindrical shell 

 
Mesh of the cavity 

Fig. 9. FEM meshes of validation case 

 
Fig. 10. Comparison between analytical and FEM results 

 
Fig. 11. Geometry of a conical shell 

 
Fig. 12. Comparison between FEM-SmEdA and SEA equivalent results 
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5. Conclusions 

In this paper, an integrated FEM-SmEdA algorithm is proposed for the calculation of radiation 

efficiency for shell structures to their cavities. The radiation efficiencies of cylindrical and conical 

shells were investigated and compared in detail by different approaches. In cylindrical shell case, 

analytical SmEdA provides closer results to the experimental one than the conventional wave 

method and SEA approach, especially in low frequency band, which is due to the better 

representation of boundary conditions. Furthermore, the validity of the proposed FEM-SmEdA 

algorithm is demonstrated by a comparison study with the theoretical SmEdA approach. In conical 

shell case, the integrated FEM-SmEdA algorithm was applied in comparison with the 

conventional SEA approach. The discrepancy between the two approaches indicates that the 

conventional SEA algorithm should be taken place by the proposed one to obtain more accurate 

results in practical engineering analysis. 
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