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Abstract. The calculation of response power spectrum of elastic thin plates, the common 

load-carrying structures in engineering, under distributed random load has been suffering from 

many problems, such as low efficiency and complicated computation which cause a lot of 

inconvenience for engineering applications. Therefore, a fast algorithm is introduced in this article 

to address above problems. Firstly, the function of the cross power spectrum function is projected 

onto orthogonal domain of multi-dimension Legendre polynomial, and the infinite distributing 

information is expressed by finite parameters. Secondly, the dynamic response computation of 

distributed random load is transformed into that of distributed harmonic load. Thirdly, the 

response power spectrum density for each frequency point can be obtained by vector 

multiplication. The fast algorithm is accurate; and its efficiency is much higher than a regular 

algorithm. Moreover, the fast algorithm conveniently illustrates the coherences of distributed 

random load. Finally, the fast algorithm is compared with a regular algorithm computation. The 

high efficiency and precision of the fast algorithm is demonstrated in this paper. 

Keywords: elastic thin plate, distributed random load, Legendre polynomial expansion, fast 

algorithm, high efficiency, high precision. 

1. Introduction 

Thin plate is a very common structure in engineering. Aircrafts and satellites, for instance, 

consist of many thin plates or stressed structures. In these circumstances, thin plates are mostly 

subjected to distributed dynamic load [1], especially distributed random load. Though it is 

relatively simple to calculate the direct problem under distributed determinate load, the calculation 

of structural dynamic response under distributed random load is quite complicated and inefficient 

[2, 3]. The calculation of structural dynamic response under distributed random load is usually 

simplified in engineering, which consequently magnifies the error [4-8]. In addition, the 

calculation of dynamic random response focuses on the structure due to multi-points excitation 

[9-13]. Few studies involve the calculation of structure random response due to the distributed 

random load. This paper proposes a new fast algorithm for the calculation of response power 

spectrum density of thin plates under distributed random load with the prerequisite of linear 

elasticity. The fast algorithm is an accurate and highly efficient method; and the above-mentioned 

difficulties in calculation of structural dynamic response under distributed random load can be 

satisfactorily resolved by means of the fast algorithm, so it may be useful for engineering problem 

involving response analysis of distributed random load.  

There are mainly three methods to calculate structural response power spectrum density [14]: 

CQC (Complete Quadratic Combination) [15-18], SRSS (Square Root of the Sum of Squares) 

[19-21], and PEM (Pseudo-Excitation Method) [22, 23] proposed by Lin Jiahao. CQC is an 

accurate algorithm since it not only takes the square items of the main mode shapes, but also 

considers the coupling items. However, its efficiency is terrible. For elastic thin plates, the formula 

of CQC method is displayed as Eq. (1): 
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� , ��(��, ��, ��, ��, �)  and �
(��, ��, ��, ��, �)  represent cross-spectrum density of response and 

cross-spectrum density of excitation between points (��, ��)  and (��, ��),  respectively. ���(��, ��) is mode shape of mode 
� at point (��, ��), 	��(�) is modal response frequency 

function of mode ��, and [0, �], [0, �] represent the effect range of variants � and �, respectively. 

All the following symbols are treated same. 

In order to reduce the calculation of CQC method, a simplified method which ignores all the 

coupling items in Eq. (1) is applied in engineering. It is called SRSS method. For elastic thin plates, 

the formula of SRSS method is shown as Eq. (2): 
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(2)

However, SRSS, when applied to structures with close vibration modes or large damping, 

suffers from large errors due to its assumption of independence among responses of all vibration 

modes.  

PEM has been developed for mulit-input-multi-output stationary/non-stationary random 

vibration response problem since 1980s, thus it is a CQC algorithm with high efficiency and 

simple procedure [9-13]. Essentially, it approximates the random input in basic dynamic equation 

with a virtual determinate harmonic input and conducts vector multiplication for every single 

frequency to obtain response power spectrum density. Maily, this method is discussed for multiple 

inputs. A fast algorithm of PEM for one-dimensional continuous beam was developed [8], but the 

calculation of response power spectrum density of thin plates under distributed random load has 

not yet been involved.  

The fast algorithm is proposed for accurate calculation of response power spectrum density of 

structures under line-distributed (one-dimensional) or plane-distributed (two-dimensional) 

random load on the thin plate. First, one-dimensional Legendre orthogonal polynomials are 

introduced to establish multi-dimensional ones. Second, the function of cross-power spectrum 

density, which is complicated to distribute on thin plate structures, is decomposed in orthogonal 

domain of multi-dimensional Legendre polynomials. Third, based on CQC method, the 

calculation of response power spectrum density of distributed random load is replaced with that 

of distributed determinate load; and by conducting vector multiplication for every single 

frequency, the response power spectrum density is thus gained. Regular approximated and the fast 

algorithms are programmed and evaluated in efficiency and precision to validate the advantages 

of the fast algorithm. The result of Nastran (the software for finite element analysis) demonstrates 

the correctness of the fast algorithm. Besides, the fast algorithm overcomes Nastran’s shortage 

that it can only compute the load model whose distributed load is completely coherent. In fact, not 

all distributed load is completely coherent, for example, fluctuating winds; if the stationary 

distributed random excitation is partial coherent, Nastran does not work. So, it is necessary to 

develop the fast algorithm which can calculate the structure random response under arbitrarily 

coherent distributed random load. 
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2. Theory 

2.1. Multi-dimensional Legendre orthogonal polynomials 

Located within a real span [−1, 1]  and with weighting function �(�) = 1,  Legendre 

orthogonal polynomials [24, 25] can be described as follows: 

����� = 1, ����� =
1

2��!

����� ���� − 1���, �� = 1,2, . . . �. (3)

In [0, �], recurrence formula of Legendre polynomials can be derived as below: 

���
����(�) = 1,��(�) =

2�� − 1,

…������� =
2� + 1� + 1

�2�� − 1� ����� −
�� + 1

�������,

   � ∈  0 , �!, � = 1,2, … . 

Based on the above one-dimensional Legendre orthogonal polynomials, two-dimensional 

orthogonal polynomials can be established as ���(�, �) = ��(�)��(�) . According to the 

orthogonality of one-dimensional Legendre orthogonal polynomials, the orthogonality of 

two-dimensional ones is easily proved as follows: 

� � ���(�, �)���(�, �)������

�

��

�
= " #�#�

(2� + 1)�
, 
 = � & � = �,

0, else.

 (4)

It can also be proved that the established two-dimensional Legendre orthogonal polynomials 

possess the characteristics of parity and recurrence. As a result, {���(�, �)} constructs a series of 

two-dimensional orthogonal basis functions. Furthermore, multi-dimensional orthogonal 

polynomials can be constructed similarly as below:  

$�����⋯�����, ��, ⋯ , ���% = �������������� ⋯ �������. (5)

In Eq. (5), �  represents the number of dimensions of orthogonal basis functions. The 

orthogonality, parity and recurrence of multidimensional orthogonal basis functions are easy to 

prove. In this paper, two-dimensional and four-dimensional orthogonal polynomials are involved.  

If a continuous function &(�, �) is square integrable (&��, �� ∈ �� & &(�, �) ∈ ', where ��, ' 

is square integrable function space and continuous function space, respectively), it can be 

expressed via the expansion with two-dimensional Legendre orthogonal polynomials in the 

following form: 

&��, �� = � � �����, ������

�	�

�

�	�
, (6)

where ��� is a expansion coefficient and can be determined easily through the application of an 

inner (dot) product. The partial sums of expansion series can be expressed as the best 

approximation of the function, known as best weighted norm approximation:  

(��, �� = � � �����, ������

�	�

�

�	�
. (7)
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Let ) be an arbitrary positive number, *, + can be found to satisfy the following inequality: 

‖&(�, �) − ((�, �)‖� < ). (8)

*, + can be easily determined via a routine written by LabVIEW. 

2.2. General model for cross power spectrum density of distributed random load of elastic 

thin plates 

 
Fig. 1. Elastic thin plate mode under distributed random load �(�, �, �) 

As shown in Figure 1, the cross power spectrum density of distributed random load, which is 

stationary Gaussian random process in the time domain, can be described as Eq. (9): 

�
���, ��, ��, ��, �� = ����, ��, ��, ��, ��,�
���, ��, ���
���, ��, ��. (9)

Here, �
(�, �, �) is stationary auto-spectral density of the distributed random load at point 

(�, �), which is function of space and frequency variable. For example, Davenport spectrum for 

fluctuating winds velocity: 

����, ��, ��, ��, �� = |����, ��, ��, ��, ��|-�����,��,��,��,��. (10)

�(��, ��, ��, ��, �) is a coherence function and satisfies Eq. (11) below: 

|�(��, ��, ��, ��, �)| ≤ 1. (11)

The argument (.) shows as: 

.���, ��, ��, ��, �� = arctan /Im����, ��, ��, ��, ��
Re����, ��, ��, ��, ��0. (12)

If the auto-power spectrum density and the coherence function of every point are given, the 

cross-power spectrum density function of distributed random load can be uniquely determined as 

follows.  

All loading points of distributed random load are completely correlative 

when  |�(��, ��, ��, ��, �)| = 1;  all loading points of distributed random load are completely 

independent when |�(��, ��, ��, ��, �)| = 0  and  �� ≠ �� , �� ≠ ��;  part of loading points of 

distributed random load is correlative when |�(��, ��, ��, ��, �)| < 1,  which is the common 

situation. Especially, when correlation of distributed random load is non-spatial, the coherence 

function is .(��, ��, ��, ��, �) = 0 or 1, and �(��, ��, ��, ��, �) = ±1, the auto-spectral density 

at every spatial point is  �
(��, ��, �) = 2�(��, ��)�
(�), �
(��, ��, �) = 2�(��, ��)�
(�) and 
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the cross-spectral density is �
(��, ��, ��, ��, �) = 2(��, ��)2(��, ��)�
(�).  For example, if 

coherence function of distributed random load is  �(��, ��, ��, ��, �) = -�(�����)��(�����)�-��(�����)/����,  �
(��, ��, �)  is auto-power spectrum 

density of the load, and its cross-spectral density function is  �
(��, ��, ��, ��, �) = -�(�����)��(�����)�-��[(�����)(�����)�]3�
(��, ��, �)�
(��, ��, �),  the 

points of distributed random load will be partially coherent, and the statistical features of the load 

will only be related to the displacement in the space and will satisfy that �
(�, �, �) > 0; and �
(��, ��, ��, ��, �) = �
∗(��, ��, ��, ��, �) can be obtained when �� = �� = �, �� = �� = �. 

2.3. A fast algorithm based on multi-dimensional Legendre orthogonal polynomials 

There are five variants in plane-distributed random load �
(��, ��, ��, ��, �) applied on thin 

plates. To determinate �, hypothetically � and � are defined within a certain range, auto-power 

spectrum density �
(�, �, �) is a continuous function of � and �, the real and the imaginary parts 

of both �(��, ��, ��, ��, �) and �
(��, ��, ��, ��, �) are also continuous functions. After projecting 

these continuous functions onto orthogonal basis functions, their optimal approximation is found 

as: 

�����, ��, ��, ��, �� = � � � �������, ���������, ���	���−��	����� ⋅ 
����

�

�	�

�

�	�

�

�	�

�

�	�
, (13)

where 
����(�) = � � � � �
(��, ��, ��, ��, �)���(��, ��)���(��, ��)�������������
�



�

�
�



� . 

�
���, ��, ��, ��, �� = �
����, ��, ��, ��, �� + ��
����, ��, ��, ��, ��, (14)

�
����, ��, ��, ��, �� = �� � ���������, ��, ��, ��, �����������

�	�

�

�	�

�

�	�

�

�	�
, (15)

�
����, ��, ��, ��, �� = �� � ���������, ��, ��, ��, �����������

�	�

�

�	�

�

�	�

�

�	�
, (16)

where �����(��, ��, ��, ��) = ��(��)��(��)��(��)��(��)  is a four-dimensional Legendre 

orthogonal polynomial, which is defined as a basis function. Therefore: 

�
���, ��, ��, ��, �� = �� � ���������, ��, ��, ��, ��4��������

�	�

�

�	�

�

�	�

�

�	�
, (17)

where 4����(�) = �����(�) + ������(�). 

The response cross-power spectrum density between points (��, ��) and (�2, �2) is: 

�����, ��, ��, ��, �� = �� � � 4��������

�	�

�

�	�

�

�	�

�

�	�
 

          ∙ 5� � ������, ���	���−��� � ������, ���������, ����������
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          ∙ 7�����(��, ��)	��(�) � � ���(��, ��)���(��, ��)�������
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�

�

�	�

�

�	�
8. 

(18)
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Given that: 

ℜ�����, ��, �� = � � ������, ���	����� � � ������, ���������, ����������

�




�

�

�	�

�

�	�
. (19)

Hence: 

�����, ��, ��, ��, �� = �� � � 4��������

�	�

�

�	�

�

�	�

�

�	�
ℜ��

∗ ���, ��, �� · ℜ�����, ��, ��. (20)

Fitting ��(��, ��, ��, ��, �)  with certain precision requires an order number of  �� × 9� × :� × ;�, which can be written in matrices as: 

�����, ��, ��, ��, �� 

    = �ℜ��
∗ ���, ���ℜ�����, ��� … ℜ��

∗ ���, ���ℜ������, ��� … ℜ����
∗ ���, ���ℜ�������, ���� 

     · �4���� … 4����� … 4����������. 

(21)

When �� = �� and �� = ��, it yields the auto-power spectrum density of response. 

Based on Eq. (19), ℜ��(��, ��, �) represents the structural response in frequency domain under 

distributed harmonic load, ���(��, ��)-���. For every discrete �� , the orthogonal polynomial’s 

coefficients for fitting ��(��, ��, ��, ��, ��)  can be computed and structural response under 

harmonic load can be constructed with the coefficients and two-dimensional basis functions. 

According to the superposition of linear structures, linearly superimposing the responses of the 

structure under distributed harmonic load can finally lead to response power spectrum density of 

the structure. In this way, structural responses under distributed random load can be represented 

as responses in the frequency domain of the structure under determinate distributed harmonic load. 

According to the deduction above, this method takes all coupling items of the vibration frequency 

into consideration, which therefore makes it an accurate algorithm. The method is named pseudo-

excitation method for two-dimensional distributed random loads. 

If the distributed random load is linearly distributed at the position � = �� of elastic thin plate, 

the cross-spectral density function of any two points, (��, ��) and (��, �2), can be described as �
(��, ��, ��, ��, �) = �
(��, ��, ��, ��, �)<(�� − ��)<(�� − ��) . The algorithm above can be 

rewritten as: 

�����, ��, ��, ��, �� = � � � �������, ���������, ���	���−��	������

�	�

�

�	�

�

�	�

�

�	�
 

        ∙ � � � � =�
���, ��, ��, ��, ��<��� − ���<��� − ���
∙ ������, ���������, ��������������� >�

�




�

�

�




�
 

        = � � �� ? ������, ���������, ���	���−��	�����
∙ � � �
(��, ��, ��, ��, �)���(��, ��)���(��, ��)�������

�




�

@�

�	�

�

�	�

�

�	�

�

�	�
. 

(22)

Then the variant number of �
(��, ��, ��, ��, �) is reduced to three. For a determinate � , 

within a certain range, it can be obtained as: 

�
���, ��, ��, ��, �� = �� ������, ��, ��4������

�	�

�

�	�
, (23)
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�����, ��, ��, ��, �� 

    = � � � �A ������, ���������, ���	���−��	�����
∙ � � �� ���(��, ��, �)4��(�)
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    = �� 4������

�	�
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�	�
5� � ������, ���	���−�� � ������������, ������
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�

�	�
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�	�
6 

     · 7�� ������, ���	������

�	�

�

�	�
� ������������, �������

�
8. 

(24)

Finally, it can be simplified as: 

�����, ��, ��, ��, �� = ��4�����ℜ��
∗ ���, ��, �� · ℜ�����, ��, ���

�	�

�

�	�
, (25)

where: 

ℜ�����, ��, �� = � � ������, ���	����� � ������������, ������


�

�

�	�

�

�	�
. (26)

Based on the Eq. (26), ℜ��(��, ��, �) represents structural response in frequency domain under 

distributed harmonic load, ��(�)-���.  Similarly, for every discrete ��,  the orthogonal 

polynomials’ coefficients for fitting ��(��, ��, ��, ��, ��) can be computed and structural response 

under harmonic load can be constructed by one-dimensional basis functions. According to the 

superposition of linear structures, linearly superimposing responses of the structure under linearly 

distributed harmonic load can finally lead to response power spectrum density of the structure. 

Simplified computation under linearly distributed random load is an extreme case of that under 

plane-distributed random load. 

2.4. Comparison with regular algorithm in the computation speed 

Computation of response in frequency domain under two-dimensional distributed random load 

is conducted with CQC, SRSS and the fast algorithm proposed in this paper. It is assumed that ���(�, �)���(�, �) and 	��(�) are both known. Moreover, the former C × D orders of modes 

are involved in the computation, and the three methods have the same number of discrete points 

in frequency domain. The algorithm employed to integrate is Gauss-Legendre integral formula as � &(�)���

 = E F�&(9�)�

�	�  [24], where 9�  represents Gauss points in the interval [�, �] and F� 
are Gauss coefficients corresponding to 9�. Based on this formula, Gauss double integral formula 

is established as � � &(�, �)���
�

�

 = ∑ ∑ F�H�&(�� , ��)

��
�	�

��
�	� , where �� and �� are Gauss points in 

intervals [�, �] and [4, �] respectively; and F� and H�  are Gauss coefficients corresponding to �� 
and ��,  respectively. Furthermore, Gauss quadruple integral formula is  � � � � &(�, �, :, ;)�� 

!


"

�
�

�

 ���:�; = ∑ ∑ ∑ ∑ F�H�'�I�&(�� , ��, :� , ;�)

��
�	�

��
�	�

��
�	�

��

�	� ,  given 

that the number of Gauss points in every interval is the same �. 

Low computation efficiency mainly results from large amount of multiplication. The total 

number of multiplication for every discrete point in frequency domain with CQC method is C�D�(4�# + 4); it’s CD(4�# + 4) with SRSS method; with fast algorithm it is 
[CD(2�� + 4)], 
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where 
 is the order of orthogonal polynomials required for fitting �
(��, ��, ��, ��, �). 

Table 1. Comparison of the calculated amount of three methods (unit: number of multiplication) 

Parameters CQC SRSS Fast algorithm 

� = 5, � = 5, � = 5, � = 16 1565000 62600 21600 

� = 5, � = 5, � = 10, � = 16 2500250 1000100 81600 

� = 10, � = 10, � = 10, � = 81 4.0004E+8 4.0004E+6 1.6524E+6 

� = 10, � = 10, � = 20, � = 81 6.40004E+9 6.40004E+7 6.5124E+6 

As revealed in Table 1, the fast algorithm requires far less multiplication than CQC; and the 

smaller 
 is, the more efficient the fast algorithm becomes. Generally speaking, the number of 

Gauss points that computation requires grows larger as 
 gets bigger. Consequently, the fast 

algorithm is always more efficient than CQC and SRSS. 

2.5. Computation instruction 

Computation steps are as follows: 

1) Calculate ���(�) and 	��(�). Their analytical solutions can be employed for typical 

structures. As for complex structures, 	��(�) can be obtained by finite element method. 

2) Decompose �
(��, ��, �2, ��, �)  in orthogonal domain and gain coefficients for fitting 

orthogonal polynomials. 

3) Compute ℜ�(��, ��, �) for every discrete points in frequency domain. 

4) Conduct linear superposition based on Eq. (21) or (25), and obtain final results. 

In summary, the fast algorithm for solving the problem of random response of elastic thin plate 

under distributed random load has two key steps. First, it projects the function of the cross power 

spectrum function onto orthogonal basis of multi-dimension Legendre polynomial and calculates 

the projection coefficient. Second, it calculates harmonic response under harmonic distributed 

load formed by the orthogonal basis function. In fact, it converts random response problem into a 

harmonic response problem, and harmonic response calculation is much easier than random 

response calculation. The fast algorithm applies to regular thin elastic plate and simple elastic 

structure, and it will be suitable for complicated structure after modification. 

3. Simulation example  

An elastic rectangular thin plate of homogeneous material with four simply supported edges is 

taken as the structure model. It has 1 m length, 0.6 m width, and 0.02 m thickness. The elastic 

modulus J = 2.1×1011 N/m2, density � = 7800 kg/m3, Poisson's ratio is 0.3, modal damping ratio 

is 0.02, and number of finite elements is 240. The natural frequencies of the model are listed in 

Table 2. &(�, �, 9)  is a two-dimensional distributed random load, and �
(��, ��, ��, ��, �) 

represents the cross-spectral density of any two points.  

Table 2. First eight orders of the plate model 

Orders 1 2 3 4 5 6 7 8 

Natural frequencies (Hz) 183.88 326.85 565.75 588.29 720.27 898.67 941.63 1252.02 

Example 1: �
(��, ��, ��, ��, �) = 1. 

In this example, computation results of the fast algorithm and Nastran are compared, and 

efficiency is assessed. Due to incapability of defining coherence of distributed random load, 

Nastran can only compute distributed random load of complete coherence. Therefore, distributed 

random load in this example is set as complete coherence, and its power spectrum density is unit 

flat-spectrum. 

The first eight orders are taken into computation. The order of orthogonal fitting is 1, and the 
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number of Gauss points is 10. Frequency span is 1000 Hz, and frequency resolution is 1 Hz. Time 

consumed for computation is listed in Table 3. The power spectrum density line of acceleration at 

Node 125 of finite element model is displayed in Figures 2 and 3. 

Table 3. Comparison of time consumed 

Algorithm CQC SRSS Fast algorithm Nastran 

Time consumed (s) 19505.4 3733.3 485.047 478.6 

Response at Node 125 of finite element model is computed with CQC, SRSS, the fast 

algorithm method and Nastran, under the same other conditions. As shown in Table 3, the fast 

algorithm is far more efficient than CQC and SRSS, and equivalent to that of Nastran (time 

consumed for computation includes time for computing coefficients of orthogonal polynomials). 

 
Fig. 2. The acceleration power spectrum density response result at Node125 with the finite element method 

 
Fig. 3. Comparison of the acceleration power spectrum density result at Node 125 with four methods 

Figures 2 and 3 show that result of the fast algorithm is almost the same as that of Nastran, 

except the slight difference ranging from 900 Hz to 1000 Hz. It is due to different modal  

truncation. They also manifest that result of SRSS, displayed as pink dotted line, has some errors 

which are quite large at some points. These errors get even larger when damping ratio gets higher 

or modes become closer. The errors between the acceleration power spectrum density at natural 
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frequencies produced by CQC, SRSS, the fast algorithm and Nastran are listed in Table 4. 

According to Table 4, the fast algorithm has the same result as CQC, and it is fairly close to the 

result of Nastran, while SRSS result shows great error. 

Table 4. Comparison between CQC, SRSS, the fast algorithm, and Nastran 

Error types 
Relative error between 

CQC and Nastran 

Relative error between 

SRSS and Nastran 

Relative error between fast 

algorithm and Nastran 

�� = 184 Hz 0.827 % 1.853 % 0.827 % 

�� = 588 Hz 1.112 % 13.922 % 1.112 % 

Example 2:  �
���, ��, ��, ��, �� = -�$�����������������%-�&��������� ',�1 + ��� + �����1 + ��� + ����. 

In this example, the distributed random excitation is partially coherent, and the cross power 

spectrum density of distributed random load is defined as above. Derived from formula of 

Example 2, it is obtained that: �(��, ��, ��, ��, �) = -�[(�����)��(�����)�]-�[(�����)/����] , and �
(��, ��, �) = 1 + ��� + ���. 

Any two points are partially coherent when (��, ��) ≠ (��, ��). First eight orders of modes are 

taken into computation. The orders of orthogonal fitting are 4 × 4 × 4 × 4, and the number of 

Gauss points is 10. The start frequency is 100 Hz, and stop frequency 400 Hz. Under the same 

other conditions, computation is conducted with CQC, SRSS, the new method and Nastran. The 

efficiency of computation is demonstrated in Table 5. 

Table 5. Comparison of three methods in computation 

Algorithm CQC SRSS Fast algorithm Nastran 

Time consumed (s) 523847 40104.8 11231.5 Not applicable 

Table 5 further proves excellent efficiency of the fast algorithm. Fig. 4 illustrates the power 

spectrum density of response at Node 125 computed with these three methods, and errors are listed 

in Table 6. The largest error between SRSS and CQC is above 20 %, because of leaving cross 

items of mode shapes out. The fast algorithm possesses the same high precision as CQC, as shown 

in Figure 4. 

 
Fig. 4. Comparison of the acceleration power spectrum density result at Node 125 with the three methods 

Table 6. Computational errors of different methods 

Error type 
Relative error between  

CQC and SRS 

Relative error between 

fast algorithm and SRSS 

Relative error between  

fast algorithm and CQC 

Largest relative error 24.97 % 24.97 % 6.357E-8 
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4. Conclusions 

This paper proposes a fast algorithm for the calculation of structural response power spectrum 

density of thin plates under either one or two dimensional distributed random load. According to 

the simulation results of completely coherent two-dimensional distributed random load and 

partially coherent two-dimensional distributed random load, it is concluded that the proposed 

algorithm is fast as well as precise. Its efficiency is far higher than that of both CQC and SRSS. It 

is programmed for computation of structural responses in the frequency domain under 

two-dimensional distributed random load that is completely coherent, partially coherent or 

altogether incoherent. The efficiency is highly improved, and the precision is also guaranteed. It 

facilitates the computation of responses under distributed random load in engineering. In addition, 

it establishes a basis for the subsequent identification of distributed random load. 
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