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Abstract. The work presented in this paper is concerned with the identification of a piecewise 

linear aeroelastic system from input-output data. The main challenge with this problem is that the 

data are available only as a mixture of observations generated by a finite set of different interacting 

linear subsystems such that one does not know a prior which subsystem has generated which data, 

that is, the switching points of the freeplay nonlinearity. The linear part of the nonlinear aeroelastic 

system is represented by the orthonormal basis functions constructed by the physical poles of the 

linear part, and the nonlinear part is represented by a Hammerstein model. By a simple 

rearrangement of the data corresponding to the degree-of-freedom of freeplay and selecting a 

segment of the data, the identification of the physical poles could be reduced to a linear parametric 

problem. Afterwards, estimates of the unknown parameters of linear regression models are 

calculated by processing respective particles of input-output data. The iterative sequence of the 

switching points is constructed, and solved by a method synthesizing the non-iterative and 

iterative algorithms. Then the parameters of the linear and nonlinear parts of the nonlinear system 

including the switching points are successfully obtained. A two-dimensional airfoil with nonlinear 

structural freeplay in the pitch degree-of-freedom is presented to demonstrate the validity of the 

proposed identification algorithm.  

Keywords: system identification, freeplay nonlinearity, switching point, Hammerstein model, 

aeroelasticity. 

1. Introduction 

Aeroelasticity is one of the prime concerns for an aircraft or a flight vehicle. The interaction 

of the aerodynamics and the structural dynamics of an aircraft could result in several different 

aeroelastic behaviors. These phenomena often exhibit nonlinear behaviors such as limit cycle 

oscillations (LCO), chaotic motions, coexisting stable solutions, bifurcations and so on [1-4]. 

Nonlinear factors in aeroelastic systems is ubiquity such as the material nonlinearity, the 

geometric nonlinearity, the freeplay nonlinearity and so on in structure, and the shock-boundary 

layer interaction, the flow separation, the unstable eddy current and so on in aerodynamics [5]. 

Freeplay nonlinearity can arise from worn hinges and loose attachments which are generally 

related with aircraft aging. The combination of freeplay nonlinearities with the aerodynamic and 

structural nonlinearities can vary the system’s response and change its instability from a 

supercritical to a subcritical one. These changes can result in catastrophic damages. To that end, 

many researchers have investigated numerically and experimentally the effects of freeplay 

nonlinearity on aeroelastic systems [6-10]. 

In order to study a nonlinear aeroelastic system with a freeplay nonlinearity, its accurate 

mathematics model needs to be constructed first. In engineering practice, freeplay such as gap in 

the bolt connection [9] may never be correctly measured, so the mathematic models of these 

systems have to be constructed by identification of experimental data. For example, the aeroelastic 

systems with freeplay can be identified by representing the freeplay as a polynomial [11] and a 

hyperbolic tangent function [12], respectively. It was pointed out that the locations of the 

switching points of the freeplay nonlinearity are of importance in the modeling process, which not 

only influence the location of bifurcation points, but also impact the dynamic behaviors [10]. Since 
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the switching points in these identified models are eliminated artificially, their dynamic behaviors 

are different from the original systems in essence [11, 12]. Recently, a non-parameter method was 

developed to identify the switching points of freeplay [13]. But this method needs the bandwidth 

of the kernel function, and unfortunately the selection of the bandwidth depends strongly on the 

engineer experience and influences the precision of the switching points. 

The objective of this work is to identify and construct the mathematic model of the nonlinear 

aeroelastic system with a freeplay nonlinearity. This is achieved and demonstrated by performing 

system identification of a two-dimensional airfoil with a freeplay nonlinearity in the pitch degree-

of-freedom. The system model makes use of pitch–plunge governing equations with quasi-steady 

approximation of the aerodynamic loads. 

2. The aeroelastic model 

The model here is a two-dimensional airfoil with nonlinear structural freeplay in the pitch 

degree-of-freedom. A schematic of the airfoil section with a trailing-edge flap for control actuation 

[14] is shown in Fig. 1. This system, which has been studied extensively in the literature, can be 

modeled by a pair of coupled second-order differential equations [15]: 

� � �������� �� � �ℎ��� � + �	� 0

0 	�� �ℎ
�
 � + ��� 0

0 0

 �ℎ�
 + � 0��(�)

� = �−������
�, (1)

��� = ����	�� �� +
ℎ
� + �1

2
− �� �� �
 � + ����	���, (2)

��� = �����	�� �� +
ℎ
� + �1

2
− �� �� �
 � + �����	���, (3)

where ℎ denotes the plunge displacement of the airfoil and � represents the pitch angle. Other 

variables include the non-dimensional distance between the elastic axis and the center of mass ��, 

the mass of the wing �, the mass moment of inertia ��, semi-chord length �, structural damping 

coefficients in plunge and pitch 	�  and 	� , and spring constants ��  and �� . The lift ���  and 

moment ��� are determined by quasi-steady aerodynamic theory. The parameters 	�� and 	�� are 

introduced to represent the lift and moment coefficients for angle of attack, 	��  and 	��  are 

introduced to represent the lift and moment coefficients for control surface position, � is the 

non-dimensional distance between the middle of the chord and the elastic axis, � is density of air 

and � is free stream velocity.  

 
Fig. 1. Airfoil model 

With a structural freeplay gap, the pitch-restoring moment-rotation relationships ��(�) are 

illustrated in Fig. 2 as: 
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����� − ��� + �	, � ≥ ��,�	, �
 < � < ��,���� − �
� + �	, � ≤ �
,

 (4)

where �
 and �� are the switching points, �	 is the restoring moment at the start of the freeplay 

and shown in Fig. 2. 

  
Fig. 2. Freeplay nonlinearity  

in the pitch direction model 

Fig. 3. Saturation function � 

By substituting Eq. (2) and Eq. (3) into Eq. (1), the transformed equations of motions in the 

state space form become: 

�
 = �� + �
� + ���, (5)

where � =  ℎ � ℎ
 �
 !�, " denotes the matrix or vector transpose, � = #��� = ��� − �����, $ = � � �������� �� �, % = ��� ����	��
0 �� − �����	��

�, 
& = �	� + ���	�� ����	���0.5 − ��

−����	�� 	� − ����	���0.5 − ���, '
 = �−����	�������	��

�, '� = �0

1

,  

� = � ( )
−$

% −$

&
, �
 = � ($

'
�, �� = � ($

'�

�, ) denotes the identity matrix. 

The saturation function � is illustrated in Fig. 3 as: 

� = #��� = *���� − �	, � ≥ ��,��� − �	, �
 < � < ��,���
 − �	, � ≤ �
.

 (6)

Substituting Eq. (6) into Eq. (5) as: 

�
 = *�� + �
� + +
 − ,, � ≥ ��,�� + �
� + +�� − ,, �
 < � < ��,�� + �
� + +� − ,, � ≤ �
,

 (7)

where +
 = ������, +� = ����, +� = �����
, , = ���	. 

The airfoil model output is the pitch angle �. Using a nonlinear feedback linear fractional 

transformation (LFT) [16], Eq. (5) represents as: 

� = -� ., ����!�, (8)

where . is the nominal plant and: 

. =  /

 /
�!, (9)
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where /
�  �� = 1, 2� are the functions related to the input 0�, �1�and output � signals. These 

transfer function matrices are built from the $ , & , % , '
  and '�  matrices of the nominal 

aeroelastic model. -� ∙,∙! denotes the low LFT. Eq. (8) is illustrated in Fig. 4 [16]. According to 

Eq. (5), /

 and /
� can be represented as: 

/

 = 2�3) − ��

�
, /
� = 2�3) − ��

��, (10)

where 2 =  0 1 0 0! and 3 is Laplace variable. 

 
Fig. 4. LFT with saturation function ���� 

According to LFT algebra, Eq. (8) can also be represented as: 

� = /

� + /
�#���, (11)

where /

� is the linear part of the output �, and /
�#��� is the nonlinear part of the output � and 

a Hammerstein model, which comprises of a static nonlinearity followed by a linear time invariant 

system [16]. 

3. Identification of the poles of the linear subsystem 

3.1. Model discretization 

According to Ref. [17], /

 and /
� of Eq. (10) can be discretized as: 

/�
 = 2��4) − ���

�
� , /�� = 2��4) − ���

���, (12)

where 5�  is the sampling time and 4 is the forward time-shift operator: 4�� = ���
 . 2� = 2, �� = e���, �
� = �

�e��� − )��
, ��� = �

�e��� − )���. /�
 and /�� of Eq. (12) can be represented in the rational polynomial form as: 

/�
 =
6�4�7�4� ,   /�� =

8�4�7�4�, (13)

where 7�4� = 1 + �
4

 + ⋯ + ��4
�, 6�4� = �
4

 + ⋯ + ��4
�,  8�4� = 	
4

 + ⋯ + 	�4
�. 9 is the order number of the characteristic polynomial of the matrix ��. 

According to Eq. (13), Eq. (11) can be discretized as (in Ref. [17]): 

7�4��� = 6�4��� + 8�4�#����, (14a)7�4��� = 6�4��� + 8�4�#����, (14b)7�4��� = 6�4��� + 8
�4�#���

�, (14c)

where 8
�4� = 	
 + 	�4

 + ⋯ + 	�4
��
, �� and �� are the values of ��5� and ��5� at time �, 

respectively.  
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According to Eq. (6) and Eq. (7), Eq. (14c) can be represented as: 

7�4��� = 6�4��� + :
, ��

 ≥ ��, (15a)7�4��� = 6�4��� + 8��4���

, �
 ≤ ��

 ≤ ��, (15b)7�4��� = 6�4��� + :�, ��

 ≤ �
, (15c)

where 8��4� = ��8
�4�, :
 = ����� − �	��	
 + 	� + ⋯ + 	��, :� = ����
 − �	��	
 + 	� + ⋯ + 	��. The parameters :
 and :� are real constant numbers. 

Compare the first or third linear subsystems, that is, Eq. (15a) or Eq. (15c), with the linear part /�
 of this nonlinear system, only one constant number is increased. But it doesn’t matter their 

poles which are the same as ones of the linear part /�
. However, the second linear subsystem, 

that is Eq. (15b), can be represented as 7	�4��� = 6�4���  (7	�4� = 7�4� − ��8�4�), whose 

poles are different to ones of the linear part /�
. 

3.2. Identification of the poles 

The airfoil model should be fully motivated. This means that the simulation processes are fully 

through three linear subsystems, that is, Eq. (15a-c). Let us rearrange the outputs 0��1��
�  of the 

system in an ascending order according to their values [18]. Defining N; = 01, 2, ⋯ , <1 and a one-

to-one map =: <; → <;  on it, that is, �>� = �����  (? = 1,2, ⋯ , <). According to Eq. (15a-c), the 

rearranged outputs0�>�1��
�  can be partitioned into three data sets: right-hand side data set (<
 

samples) with values higher than or equal to ��, that is, �>� ≥ ��; middle data set (<� samples) 

with values higher than �
 but lower than ��, that is, �
 < �>� < ��; left-hand side data set (<� 

samples) with values lower than or equal to �
 , that is, �>� ≤ �
 . Here < = <
 + <� + <� . 

Although the switching points of the freeplay nonlinearity are unknown, a constant number ℎ
 

which is not only a little smaller than �>�  but also such that ℎ
 > ��  can be selected. When  �>� > ℎ
, that is, ����� > ℎ
, the input-output relationship of the system in time =�?� + 1 is a linear 

subsystem represented by Eq. (15a). Similarly, a constant number ℎ� which is not only a little 

larger than �>
 but also such that ℎ� < �
 can also be selected. When �>� < ℎ�, that is, ����� < ℎ�, 

the input-output relationship of the system in time =�?� + 1 is a linear subsystem represented by 

Eq. (15c). Selecting �>� , ∀? ∈  <� + <� + @
, <!  ( @
  is a positive integer, and @
 < <
 ) in the 

rearranged outputs 0�>�1��
� , then the input-output relationship of the system in time =�?� + 1 is a 

linear subsystem represented by Eq. (15a). If the outputs 0��1��
�  without measurement noise, the 

equation of this linear subsystem solved by least square estimation is: 

A = BC, (16)CD = �B�B�

B�A, (17)

where A =  �������������

������������
��


⋯ ������
!� , CD  is the estimation of the 

parameter C, C� =  �
 �� ⋯ ��!�, C� =  �
 �� ⋯ ��!�, C =  C�
� C�

� :
!�,  

B� = EF
FG ������������

������������
�



������������
�������������
�
�

⋯

⋯

������������
�������������
�
�

⋮�����

 ⋮�����
� ⋱

⋯

⋮�����
� HI
IJ,  

B� = K −������������

−������������
�

−������������



−������������
�



⋯

⋯

−������������
��


−������������
�
��


1

1
⋮

−����� ⋮

−�����

 ⋱

⋯

⋮

−�����
��
 ⋮

1

L, B =  B� B�!. 
If the outputs 0��1��
�  with measurement noise, the equation of this linear subsystem can be 

solved by the bias-eliminated least square method [19]. The parameters of the first linear 
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subsystem can be estimated, and its poles can also be solved. Similarly, selecting �>�,  
∀? ∈  1, <� − @�! (@� is a positive integer, and @� < <�) in the rearranged outputs 0�>�1��
� , then the 

input-output relationship of the system in time =�?� + 1 is a linear subsystem represented by 

Eq. (15c). The parameters of this subsystem can be solved like Eq. (16) and Eq. (17) or by the 

bias-eliminated least square method [19] and are the same of ones of the first linear subsystem 

except the parameter :
 ≠ :�. 

4. Identification of the switching points 

Let us define M� = /��#����, which is the nonlinear part of the output �� in Eq. (11) and also 

a discrete Hammerstein model [16], which comprises of a saturation function #�∙� followed by a 

linear time invariant system /���4� connected, shown in Fig. 5. 

Define a switching function ℎ�N� as follows: 

ℎ�N� = O1, N > 0,

0, N ≤ 0.
 (18)

The saturation function #�∙� is: 

�� = P
=
���

, �
, ��� + P�=����

, �
, ��� + P�=����

, �
, ��� + P�=����

, �
, ���, (19)

where =
���

, �
, ��� = ��

 ℎ��� − ��

� − ℎ��
 − ��

�!;  =����

, �
, ��� = ℎ���

 − ���; =����

, �
, ��� = ℎ��
 − ��

�; =����

, �
, ��� = −1;  P
 = ��; P� = ����; P� = ���
; P� = �	; the parameters P
, P�, P� and P� are unknown. 

The linear system  /���4� in Eq. (14a-c) can be represented by using the orthonormal basis 

functions 06��4�1��	�


 [20] which are constructed by using the poles of linear part of the nonlinear 

system as follows: 

 /���4� = Q R�6��4��



��	

, (20)

where /���4� ∈ S�ℚ�, ℚ is the unit circle [16] and the parameter R� ∈ T is unknown. 

The input-output relationship of the system illustrated by Fig. 5 is: 

M� = Q QR�P�6��4�=����

, �
, ����

��


�



��	

+ U�, (21)

where M� and U� represent the system output and measurement noise at time �, respectively. 

 
Fig. 5. Hammerstein model 

The linear system /�
�4� in Eq. (14a-c) represents by using the orthonormal basis functions 06��4�1��	�


 [20] as follows: 
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/�
�4� = Q V�6��4��



��	

. (22)

When Eq. (21) and Eq. (22) are substituted into Eq. (14a-c), the input-output relationship can 

be written as: 

�� = WQ V�6��4��



��	

X �� + Q QR�P�6��4�=����

, �
, ����

��


�



��	

+ U�. (23)

Let’s now define: 

Y ≜ ZV	, ⋯ , V�

, R	P
, R	P�, R	P�, R	P�, ⋯ , R�

P
, R�

P�, R�

P�, R�

P�[�, (24a)\� ≜ Z6	�4��� , ⋯ , 6�

�4���, 6	�4�=
���

, �
, ���, 6	�4�=����

, �
, ���, 

        6	�4�=����

, �
, ���, 6	�4�=����

, �
, ���, ⋯ , 6�

�4�=
���

, �
, ���, 

        6�

�4�=����

, �
, ���, 6�

�4�=����

, �
, ���, 6�

�4�=����

, �
, ���[�. 

(24b)

When Eq. (24a) and Eq. (24b) are placed into Eq. (23), the later results in the regression vector: 

�� = Y�\� + U� . (25)

Now, with the simulated data set 0��, ��1��
�  of the nonlinear aeroelastic system with freeplay 

and defining the matrices �� ≜  �
, ⋯ , ��!�,  ]� ≜  U
, ⋯ , U�!�  and ^� ≜  \
, ⋯ , \�! , we 

obtain: 

�� = ^�
�Y + ]�. (26)

First, the initial values of the switching points �
 and �� are given and \� is calculated. The 

estimated Y_ of the parameters Y are obtained by using the least square estimation or the bias-

eliminated least square method [19]. According to the definition of the parameter Y, its first ` 

parameters are the coefficients of the linear part /�
�4�, and the else are the coefficients of the 

nonlinear part /���4�#�∙�. Since the parameters of the saturation function #�∙� and the linear 

system /���4�  are coupling, the unique estimated parameters P
,  P�,  P�,  P� and ��  �@ = 0, 1, ⋯ , ` − 1� can be obtained if the parameter a =  P
 P� P� P�!� are normalized, 

that is, ‖a‖� = 1 [16]. Since the parameters a are normalized, the identified parameters P
, P�, P� and P� lose the physical significance defining in the above, but the switching points �
 and �� 

can be estimated by �c
 = Pc� Pc
⁄  and �c� = Pc� Pc
⁄ . Using the renewed switching points �c
 and �c� 

repeat the above identified procedure until the convergence of the switching points �
 and ��. 

Then all parameters of this nonlinear model including the switching points can be obtained. 

5. A simulated example 

The parameters of a two-dimensional airfoil with nonlinear structural freeplay in the pitch 

degree-of-freedom to be used in the numerical simulation are given in Table 1. The output of the 

simulated measured system is the pitch angle ��5�, which is corrupted with additive Gaussian 

distributed white noise with a signal-to-noise ratio of 20 dB, and the input is the flap deflection ��5�, which is a zero-mean Gaussian distributed white noise with standard deviation 10. A key 

issue in the time marching integration of a piecewise linear system is accurately integrating to the 

“switching points” where the change in linear subdomains occurs. It is indicated that a standard 

time marching scheme, for example, the Runge-Kutta method with the uniform time step, may 
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lead to inconsistent or even incorrect numerical results [21]. In this paper, the response of the 

system in the first 50 seconds is computed by using the Henon’s method [22, 23] whose time step 

is 5� = 0.001 s. 

It is easy to know the number of the degree-of-freedom for the discrete system. This sumulated 

model has two degree-of-freedoms. Assuming 7(4) and 6(4) are: 

7�4� = 1 + �
4

 + ��4
� + ��4
� + ��4
�, (27)6�4� = �	4

 + �
4
� + ��4
� + ��4
�. (28)

Table 1. Parameters of a nonlinear airfoil model with freeplay 

Parameters Value Parameters Value 

� 6 m/s � -0.6 

� 0.135 m 	 1.225 kg/m3 


 12.387 kg �� 0.2466 

�� 0.065 m2kg 
� 2844.4 N/m 

�� 0.180 m2kg/s �� 27.43 kg/s 

��� 6.28 ��� -0.628 

��� 3.358 ��� -0.635 


� 2.82 Nm/rad �� 0.05 

�� 0.25 �� 0.282 Nm 

According to section 3.2, we may as well assume ℎ
 = 0.4 and ℎ� = -0.1 since �>� = 0.7307 

and �>
 = -0.7454. Here selecting ℎ
 = 0.4 and ℎ� = -0.1 make full of the input-output data in 

order to eliminate measurement noise. When ℎ
 = 0.4 is used, the parameter C is estimated by the 

bias-eliminated least square method [19], and given in Table 2; when ℎ� = -0.1 is used, the 

parameter  C is estimated by the bias-eliminated least square method [19], and also given in 

Table 2. The estimated parameters are the same in ℎ
 = 0.4 and ℎ� = -0.1 cases except :
 ≠ :�. 

The parameter :
 ≠ :� is caused by the asymmetric switching points of a freeplay nonlinearity. 

Table 2. Estimated parameters 

 ℎ� = 0.4 ℎ� = -0.1 

�� 1.5059×10-6 1.5059×10-6 

�� -1.5265×10-6 -1.5265×10-6 

�� -1.4923×10-6 -1.4923×10-6 

�	 1.5107×10-6 1.5107×10-6 

�� -3.9931 -3.9931 

�� 5.9798 5.9798 

�	 -3.9801 -3.9801 

�
 0.9935 0.9935 

�� 1.8882×10-9 - 

�	 - -6.2941×10-10 

Table 3. Comparison between the identified modes and the true modes of the system 

 True modes ℎ� = 0.4 ℎ� = -0.1 #
, Hz 1.1660 1.1660 1.1660 #�, Hz 2.6509 2.6509 2.6509 e
 0.2081 0.2081 0.2081 e� 0.1049 0.1049 0.1049 

According to the relationship of poles of the discrete system with the continue system f = e��  
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(g and  f denote a pole of the discrete system and the one of the corresponding continue system 

pole, respectively), the frequency #� and damping e�  (? = 1, 2) of these two physical modes of the 

linear part of the nonlinear airfoil are given in Table 3. In Table 3, the second column indicates 

the frequency and damping of the true modes. The third and fourth columns present the estimated 

frequency and damping of the true modes using the proposed method in section 3. Comparing the 

estimated modes and true modes in Table 3, it is obvious to see that the frequency #� and damping e�  �? = 1, 2� of these two physical modes are estimated consistently. 

The poles of the linear part of the nonlinear model are the same with the ones of the first and 

third linear subsystem, that is Eq. (15a) and Eq. (15c). The poles and the orthonormal basis 

functions constructed by them [20] are: 

f
,� = 0.9981 ± h0.0165, (29a)f�,� = 0.9985 ± h0.0072, (29b)6	�4� =
0.001394� − 1.9964 + 0.9965

, (30a)

6
�4� =
0.083464 − 0.083454� − 1.9964 + 0.9965

, (30b)

6��4� =
0.00056924� − 0.001144 + 0.00057124� − 3.9934� + 5.984� − 3.984 + 0.9935

, (30c)

6��4� =
0.07774� − 0.23334� + 0.23364 − 0.077974� − 3.9934� + 5.984� − 3.984 + 0.9935

. (30d)

The convergence of the switching points �� and �
 are illustrated in Fig. 6, when the initial 

switching points �� and �
 are (0.18, -0.04), (0.24, 0.02), (0.30, 0.03), (0.36, 0.04) and (0.40, 0.10). 

It is found from Fig. 6 that the switching points are converged to the true values only through the 

6 steps iteration, and meanwhile it is stated that the convergence of the switching points is good 

when the different initial value of the switching points �� and �
 are utilized. When the initial 

value of the switching point �� and �
 are (0.40, 0.10), through the 20 steps iteration the estimated 

parameters of the system are: V̂	 = 7.4606×10-3,  V̂
 = 4.9613×10-3,  V̂� = -1.7787×10-2,  V̂� = -5.2651×10-3, Pc
 = 0.9642, Pc� = 0.2424, Pc� = 0.04806, Pc� = 0.09645, R̂	 = 1.6616×10-2, R̂
 = -1.5177×10-2,  R̂� = 7.4796×10-2,  R̂� = 1.6150×10-2 . The identified switching points are �c� = 0.2514 and �c
 = 0.04985, and the true switching points are �� = 0.25 and �
 = 0.05. The 

relative errors which are caused by the number computation are 0.5573 % and 0.3052 % and 

satisfied the engineering requirements.  

 
a) 

 
b) 

Fig. 6. Convergence of switching points �� and ��: (a) the initial values of switching point �� are 0.18, 

0.24, 0.30, 0.36 and 0.4; the true value of switching point �� is 0.25; (b) the initial values of switching 

point �� are -0.04, 0.02, 0.03, 0.04 and 0.10; the true value of switching point �� is 0.05 
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a) 

 
b) 

Fig. 7. Output of nonlinear system (dotted line) and identified nonlinear model (solid line) with Gauss 

white noise input: (a) with measurement noise; (b) without measurement noise 

Fig. 7 shows the output of the nonlinear system (dotted line) and the identified nonlinear model 

(solid line) with the Gauss white noise input. Because of the output of nonlinear system with the 

measurement noise in Fig. 7(a), there is a clear difference between them. In Fig. 7(b) they are 

almost coincided due to the outputs without the measurement noise. The validity of the identified 

nonlinear model is checked by several other input signals without shown here.  

6. Conclusions 

In this paper, a novel identification algorithm is proposed for the estimation of the nonlinear 

system with freeplay. In this algorithm, an orthonormal basis function expansion and a 

Hammerstein model are applied to represent the linear and nonlinear parts of the system, 

respectively; and an orthonormal basis function expansion and the constructional basis functions =����

, �
, ��� �? = 1, 2, ⋯ , 4� are used to represent the linear and nonlinear functions of the 

Hammerstein model. An approach synthesized of the non-iterative and iterative algorithms is 

implemented to estimate the parameters of the system including the switching points. Furthermore, 

a method is proposed to estimate physical poles of the system which could be essentially reduced 

to a linear parametric problem by a simple data rearrangement in an ascending order according to 

their values. Thus, the data which is concerned with the degree-of-freedom of the freeplay 

nonlinearity are partitioned into three data sets that correspond to distinct linear regression models. 

Later on the estimates of unknown parameters of linear regression models can be calculated by 

processing respective sets of the rearranged input and associated output observations. The 

consistent estimation of these physical poles plays a crucial role for the generation of the 

orthonormal basis functions and for the model approximation results. 
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