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Abstract. Matching pursuit (MP) with pulse atoms adaptively matches the pulse components in 

the vibration signals of faulty rolling bearings, and the atomic parameters correspond with the 

fault features. However, the decomposition of matching pursuit with pulse atoms (MP_PA) is 

equivalent to searching extremum of multimodal function with considerably large calculation. 

Therefore, a niching particle swarm optimization, which has high global convergence ability and 

convergence speed, was combined with the segment and joint method to simplify MP_PA, and 

the efficiency was greatly improved. The parameters of pulse atom which contain almost all the 

information of pulse nearly completely reflect the status of bearings, by them not only the 

characteristic defect frequency could be extracted, but also the other features such as frequency 

center, damping coefficient and so on. The random in the motion of the bearings makes the pulses 

in vibration signals be cyclostationary rather than purely periodic, thus by using cyclostationary 

statistics, more accurate characteristic defect frequency could be obtained. Followed by a 

comparison with wavelet transform (WT) and Empirical Mode Decomposition (EMD), the 

techniques based on parameters of pulse atoms and degree of cyclostationarity (DCS) provide 

precise and explicit characteristic defect frequency of the bearing with weak defect. At last, the 

multi features from DCS and atomic parameters were applied to identify the status of the measured 

bearings accurately. These results indicate that, due to the extraction of comprehensive and 

accurate fault features, and strong anti-interference ability, these techniques are appropriate to 

fault diagnosis of bearings. 

Keywords: matching pursuit, bearing diagnosis, degree of cyclostationary, pulse atom, niching 

particle swarm optimization, support vector machine. 

1. Introduction 

Rolling bearings are widely used in construction machinery, power station, spacecraft and 

other equipment, their conditions often directly affects the accuracy, reliability and lifetime of the 

entire system. Therefore, an accurate, efficient and intelligent fault diagnosis of rolling bearings 

is of great significance. Demodulated resonance technique [1], Wigner-Ville distribution (WVD) 

[2] and wavelet transform (WT) [3] are commonly used approaches for bearing diagnosis, 

however, they still have some drawbacks. For example, the resolutions are not high enough, and 

the appropriate frequency bands or decomposition levels often need to be selected manually, 

which requires the experienced diagnostic persons. 

In recent years, matching pursuit [4] proposed by Mallat has been a powerful tool for non-

stationary signal processing, considerable attempts have been made to apply MP in the fault 

diagnosis of rolling bearing [5, 6], gear [7]. Especially some researchers applied MP_PA [8] 

whose atoms correspond to fault features and attenuate in one side into the fault diagnosis of 

reciprocating machinery [9] and gear [10], etc. Because MP_PA adaptively selects the atom which 

matches pulse components with no intermediate process, it not only maximally reserves the 

intrinsic features of the signal, but also filters noises and interferential components, so that many 

successes have been achieved. MP_PA works perfectly because the pulse atoms (also named 
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damped sinusoidal atom) match the pulse components. But solving MP_PA is a problem of 

searching the extremum of a complex, continuous and non-differentiable multimodal function [9], 

due to huge calculation, it often needs to resort to artificial intelligence algorithms [6], yet it is 

easy to be trapped into local optimal solutions. The niching particle swarm optimization (NPSO) 

[11-14] has received more attention in recent years due to the high global convergence ability and 

convergence speed which is more suitable for solving such sort of problems; consequently it is a 

good choice to employ NPSO to optimize MP_PA. 
Existing studies are often based on the reconstructed signal by MP, and almost only one feature 

of characteristic defect frequency is extracted for fault diagnosis. In fact, the parameters of pulse 

atoms which correspond with fault features and almost contain all the information of pulses. If the 

features are extracted directly from these parameters, not only the process would be more direct 

and convenient, but also more comprehensive faulty information could be extracted. What’s more, 

the pulses of faulty bearings are cyclostationary rather than purely periodic [15]. Therefore, by the 

help of DCS [16], more accurate characteristic defect frequency could be acquired. 

In order to diagnose the fault of rolling bearings automatically and efficiently, firstly, we used 

MP_PA which has been simplified by NPSO and the segment and joint method (SJ) to decompose 

the vibration signals of bearings, and then extracted characteristic defect frequency on the 

foundation of DCS, followed by a comparative analysis with wavelet envelope spectrum and EMD 

envelope spectrum of raw vibration signals. Finally, multi features, including the amplitude of 

characteristic defect frequency, frequency center, pulse energy and damping coefficient, were 

extracted from a set of bearings in different status and applied to diagnose by the help of support 

vector machine (SVM). The results showed that this scheme had a high value in engineering 

applications due to its simple, direct process, and accurate features. 

2. The diagnosis based on the parameters of pulse atoms, DCS and SVM 

2.1. The process of matching pursuit and its problems 

2.1.1. The construction of pulse dictionary 

The rotation of the bearing with localized defects generates periodic pulses [2] which induce 

some modes of resonances decaying exponentially, and these pulse responses reflect the status of 

bearings, therefore, extracting or recognizing these pulse responses is the main task in the 

detection of the defect. The pulse response signals could be simplified as the damped sinusoidal 

functions [8], and in mechanical systems this kind of signal exist widely and are usually generated 

by pulses, thus if the atom which is used to represent this kind of signal is termed as “pulse atom” 

[9, 10], it will be more concrete, clear, and easy to understand. The pulse atom is as follows [8-10]: 

�� = ����(���) sin�2���� − 	
 + ∅
 , �� > � > 	,
0,  	 ≥ � ≥ 0,

 (1)

where � is time, �� is the duration of the signal �. �� is a normalized pulse atom indexed by the 

parameter group , here  = ��, 	, �, ∅
, so �� = ���,�,�,∅	. � is the normalization factor. � is the 

damping coefficient, it denotes the decaying speed of pulse. 	  is the lag of the pulse, which 

represents the starting point of the atom. � is oscillation frequency, it indicates the damped natural 

frequency of the system. The inner product �〈�� , �〉� is the amplitude of the pulse, represents the 

energy of the atom, and ∅ is the phase. 

When the pulse dictionary is constructed, in the first place, appropriate ranges are chosen for 

each parameter according to bearing’s geometry, followed by a discretization. Let ��, ��, �∅, �� 
represents the number of elements of �, �, ∅, 	 in dictionary, after discretization, respectively, it 

is easy to know that �� = �, hence the total number of atoms in the dictionary is �����∅�. 
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Apparently, the greater the value of ��, ��, �∅ or ��, the bigger the dictionary is, the sparser  the 

signal represents. Consequently, it is necessary to choose a wide atomic dictionary for better 

decomposition results. 

2.1.2. The problems of MP_PA implementation procedure 

MP introduced by Mallat and Zhang selects atoms one by one from the dictionary [4], in each 

step the most suitable atom will be selected and added to the approximation model until a desired 

energy precision or a prespecified number of iterations is approached. In matching pursuit process 

of signal �, the atom ��
 , namely the appropriate parameter group  = ��, 	, �, ∅
, which satisfies 

Eq. (2) is repeatedly: 

�〈�
 , ��
〉� = sup
�∈�

�〈�
 , ��〉�, (2)

where �
 is the residual after � iterations, and � is the set of the parameter group . 

This is a problem of solving the maximum value, in order to choose the suitable atom, the 

inner product of each atom and residual should be calculated and compared with each other, and 

it usually needs many iterations before up to the termination condition, resulting in a large amount 

of computation. Reference [4] has proved that, when the length of the signal is fixed, with the 

increase of iteration steps, the residual ‖�
‖� decays exponentially, therefore, � ≈ ∑ 〈�
 , �
〉�
�

�� . 

Fig. 1 is the measured vibration signal of bearing with outer race fault, Fig. 2a, b displayed the 

functional diagram of inner product � = |〈�, �〉| varied with the parameter group  = ��, 	, �, ∅
, 
obviously, this function is a complex multimodal function. 

 
Fig. 1. The vibration signal of bearing with outer race fault 

 
a) 

 
b) 

Fig. 2. The diagram of the function of inner product: a) the function varies with � and �,  

where ∅ and � are fixed, b) the function varies with ∅ and �, where � and � are fixed 

Therefore, the decomposition of vibration signals of bearings by MP_PA is solving the 

maximum value of a non-linear, non-differentiable, continuous and complex multimodal function, 

which cannot be directly solved by the techniques depending on gradient [9]. In order to meet the 

practical application, artificial intelligent algorithms were usually chosen to simplify the process 
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of MP_PA, for example, genetic algorithm (GA) [6]. 

Only accurate extraction of features from signals especially for weak fault signals, the correct 

diagnosis could be achieved. NPSO which has received much attention in recent years could 

maintain good biodiversity and reduce the probability of falling into local optimal solutions, and 

it performs excellently for this kind of complex multimodal function [11, 13, 14]. 

2.2. The simplification of MP_PA by NPSO and SJ 

2.2.1. The implement of MP_PA by NPSO 

The implement of MP_PA by NPSO is simple, namely, in each iteration of MP_PA, the atom 

which satisfies sup�〈�� , ��〉� is selected by NPSO, here � is the iteration number of MP, and �� is 

the residual signal. In NPSO, the position of �th  particle is �
 =  = ��, 	, �, ∅
 , the fitness 

function is ���

 = �〈�� , ���〉�, after searching by particles, the position of the particle with the 

maximum fitness will be the parameter group  which we are solving, i.e., the desired atom is 

obtained. 

On the foundation of the features of MP_PA, the optimization in this paper was conducted by 

FERPSO (Fitness Euclidean-distance ratio PSO, a kind of NPSO) [11] and local optimization [13] 

and their excellent performance has been proved in reference [13]. The following briefly describes 

their improvements relative to PSO, the detailed explanation for this optimization procedure can 

be referred to [11, 13]. 

FERPSO is an effective local-best niching PSO which converges quickly and adopts fitness 

Euclidean-distance ratio (FER) value as an evaluation index, the difference from PSO is the 

velocity update mode of the particles, FERPSO uses a local optimum position which is determined 

by the largest FER value, instead of the global optimum position in velocity update equation. The 

FER value of particle �  corresponding to particle �  is determined by the relationship of their 

personal best positions previously visited, FER value is calculated using the following equation: 

�����,
	 = � ∙
� !�" − ��!



#!$���� − !$���
#, (3)

where � =
‖�‖

����������	
 is a scaling factor, ‖�‖ is the Euclidian norm of the distance between the 

upper and lower of the search space, � is fitness function. !� is the fittest particle in the current 

population, whereas !� is the worst fit particle; !$���� and !$���
  are the current personal best 

positions of particle � and particle �, respectively. In FERPSO, the velocity update equation of 

each dimension for particle � is modified as: 

%
�� + 1
 = & ∙ %
��
 + '� ∙ �� ∙  !$���
��
 − �
��
" + '� ∙ �� ∙  ($���
��
 − �
��
", (4)

where all the symbols are the same as that in PSO except ($���
. � represents the current evolution 

generation count, %
  is the velocity of particle � , &  is the inertia weight, '�  and '�  are both 

acceleration constants, �� and �� are two random numbers from a uniform distribution within the 

range of [0, 1], �
��
 is the current position of particle �, ($���
��
 is the personal best position of 

the particle whose FER value is the largest with particle �. 
In order to further improve the performance of FERPSO, local optimization is added after the 

update of the velocity of particles, which not only enhances the fine-searching ability of the 

original niching PSO algorithms but also speeds up the convergence. The local optimization 

technique is to move !$���
  a small step to or away the nearest personal best position of another 

particle (!$���_(������
), the process is as follows: 

Step 1, find !$���_(������
 ; 
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Step 2, if ��!$���_(������

 > ��!$���

, 
let ��)! = !$���
 + '� ∙ �� ∙ �!$���_(������
 − !$���

; 
otherwise, let ��)! = !$���
 + '� ∙ �� ∙ �!$���
 − !$���_(������

. 

Step 3, if ����)!
 > ��!$���

, let !$���
 = ��)!. 

To test the performance of MP_PA which is implemented by FERPSO with local optimization, 

a simulated vibration signal of a bearing with defect was decomposed. In FERPSO, the number 

of the particles in the population was 30; the max iteration number was 300. The signal � is a 

simulated vibration signal of a bearing with localized defects; it consists of a pulse sequence �′ 
(as Eq. (5)) and Gaussian noise with signal to noise ratio (SNR) of 1dB. These signals are showed 

in Fig. 3a, it shows that the left pulse of signal � is almost completely submerged in noise. After 

iterating three times of MP_PA using FERPSO, the results are illustrated in Fig. 3b, a comparison 

is also made by PSO and GA respectively in Fig. 3c, d. The comparison shows that MP_PA using 

FERPSO extracted the pulse components very well, and the SNR is as high as to 19 dB between 

the reconstructed signal �  and signal �′ , and the SNR are 9 dB and 8 dB by PSO and GA, 

respectively. What’s more, we also test the three methods when the signal �′ was added Gaussian 

noise with different SNR, and the results, which represent the average values from ten-time 

calculations, are listed as in Table 1, they furthermore indicate that FERPSO performs better when 

solving this problem. 

�� = ������,��� ��⁄ ,����,�	 + 2 ∙ ������,��� ��⁄ ,����,�	 + 1.5 ∙ ������,��� ��⁄ ,����,�	, (5)

where ���,�,�,∅	 is a normalized pulse atom, the sampling frequency �� = 12000 Hz. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3. The original signal and its decompositions: a) the simulated signal �′ and signal  �;  

reconstruction and residual by MP_PA simplified by different methods: b) FERPSO, c) PSO, d) GA 



1068. THE DIAGNOSIS OF ROLLING BEARING BASED ON THE PARAMETERS OF PULSE ATOMS AND DEGREE OF CYCLOSTATIONARITY.  

XINQING WANG, HUIJIE ZHU, DONG WANG, YANG ZHAO, YANFENG LI 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2013. VOLUME 15, ISSUE 3. ISSN 1392-8716 1565 

Table 1. The results by FERPSO, PSO, GA with different noises 

The SNR of noise 
The SNR of the reconstruction by different methods 

FERPSO PSO GA 

-3.0 dB 13.2 dB 7.1 dB 5.3 dB 

-1.0 dB 15.5 dB 8.3 dB 6.6 dB 

1.0 dB 18.8 dB 9.2 dB 8.2 dB 

3.0 dB 19.3 dB 12.9 dB 9.7 dB 

5.0 dB 20.7 dB 15.8 dB 10.5 dB 

2.2.2. The simplification of MP_PA by SJ 

When applying MP_PA to decompose a signal directly without the help of artificial 

intelligence algorithms, the selection of one suitable atom needs the computation complexity as 

follow: 

*� = �����∅� ∙ '�, (6)

where '�  represents the computation of calculating one time the inner product of two signals 

whose length are both �. With the same accuracy, if the signal’s length grows to 2�, and the 

computation complexity will be: 

*� = 2�����∅� ∙ '��. (7)

Obviously, the amount of computation of '��  is double to that of '� , and the amount of 

computation of *� is four times to that of *�. If the signal whose length is 2� is divided into two 

signals whose length are both �, because the total number of the selected atoms are the same, and 

then the computation complexity would reduce to one half. It means that decomposing a signal 

after segmentation will reduce the amount of computation, and the more the segments it has the 

less computation that needs. For example, if a signal is divided into eight segments with the same 

length, the computation complex will reduce to 1/8 of the origin. The experimental results in 

reference [10] show that, even if applying genetic algorithm, such kind of artificial intelligence 

algorithms to implement MP_PA, almost the same ratio of computation complexity will also be 

reduced due to segmentation. 

However, the fixed length of segmentation of original signal may divide the pulse components 

which locates at the endpoint of segments into two parts, this may cause error even wrong in 

process of decomposition (namely reconstruction), so an appropriate segmentation is necessary 

[17]. There are several segmentation techniques which have been introduced and successfully 

applied in different areas, such as an improved algebraic segmentation technique [17], the 

Kramers-Moyal coefficient method [18], statistical methods [19] and so on. In this paper, a simple 

and reasonable technique is employed, as shown in Fig. 4, let the segments overlap one by one, 

and make the overlap contain the pulse of the former segment, in joint process the overlap in the 

former segment will be deleted. The core of this technique is that the pulse which locates at the 

endpoint of a segment will be decomposed in next segment, and the beginning of one segment 

was selected adaptively according to the former one. The process is as follows: first, a proper fixed 

length of segments should be determined; here we let the duration of a segment be about one 

rotation of the bearing. Firstly, segment 1 is selected and decomposed (namely reconstructed), and 

then from the end of its reconstruction to forward, we find the point whose amplitude is less than 

a certain prespecified threshold which is near zero, then delete the part behind the selected point 

in its reconstruction, and make the point correspond to the selected point in original signal be the 

beginning of segment 2. Afterwards we decompose next segment one by one, until the whole 

signal is reconstructed, at last, all the reconstructions of segments are joined together one by one. 
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Fig. 4. The process of SJ, the original signal is the same as Fig. 1 

2.3. The multi features extraction based on parameters of pulse atom 

2.3.1. The extraction of characteristic defect frequency based on DCS 

It has been proved by Antoni [15], owing to the slight random slip between the rolling element 

and the cage, the pulse response induced by localized fault is not the same as the process of faulty 

gears which is of a purely periodic process, but close to second-order cyclostationary process. In 

the spectral correlation density of a failure bearing, the characteristic defect frequency displays as 

a prominent peak. 

The methods based on cyclostationarity could eliminate the interference of random noises and 

improve the SNR, they have received more and more attentions in the application of the bearing 

fault diagnosis [15, 16, 20, 21]. As an important second-order cyclic statistic, DCS is defined on 

the foundation of cyclic autocorrelation function (CAF) or cyclic spectrum density (CSD) as 

follows: 

+*,�-
 =
. |� �	
|� �	�
��

. |���	
|� �	�
��

=
. |, ��
|� ���
��

. |,���
|� ���
��

, (8)

where |�!(	)| is the CAF, - is cyclic frequency, 	 is delayed time, , ��
 is the CSD. It is known 

that DCS indicates the ratio of the energy of cyclic frequency - to the energy of stationary part in 

the signal; DCS is a physical quantity which is able to completely describe the cyclostationarity. 

DCS is a function with cyclic frequency - as the single variable, thus it is simpler than CAF or 

CSD which is a function of two variables. In theory, only if the signal is cyclostationary at the 

cyclic frequency -, it will be that +*,�-
 > 0, otherwise +*,�-
 = 0, in actual fact, measured 

signal is complicated so that DCS is greater than 0 at many cyclic frequencies, in order to 

recognize the cyclic frequency clearly, the DCS is normalized in this paper. 
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After MP_PA, the conventional methods reconstructing signal accord to  

� ≈ ∑ 〈�
 , �
��,�,�,∅	〉�
��,�,�,∅	�

�� , but in this way it will also take the high resonance frequencies 

which are not help to extract characteristic defect frequency into the reconstruction. If we 

reconstruct signal in accordance with Eq. (9), namely each pulse atom is simplified to a pulse 

which occurs at the delayed time 	 and the pulse’s amplitude is the same as the amplitude of atom, 

it should be noted that the reconstruction in this way is termed as pulse sequence, because the 

reconstruction will filter the resonance components and only preserves the low frequency 

components, the DCS of pulse sequence will become more simple and easy to identify. What’s 

more, because the DCS is obtained on the foundation of matching pursuit and DCS, it is termed 

as MP_DCS in this paper. 

� ≈ /〈�
 , �
��,�,�,∅	〉0�� − 	
,

�


��

 0��
 = 11, � = 0,
0, 2�ℎ���.

 (9)

Taking into account the calculation error in actual fact, if we directly use the amplitude of the 

characteristic defect frequency as the feature value, it will inevitably be inconsistent with the 

practice. Therefore, the weighted sum of the amplitude of the characteristic defect frequency and 

its neighbors is taken as the feature value, as follows: 

3, = ���
 + /�
 ∙  ��� + � ∙ ∆�
 + ��� − � ∙ ∆�
"
"




, (10)

where 3, is weighted sum, � is characteristic defect frequency, � is amplitude, �
 is weighted 

factor, and 1 > �� > �� > �� > ⋯ , ∆�  is frequency interval which equals the frequency 

resolution of DCS, and ( represents the number of weighted points. 

2.3.2. The extraction of additional multi features 

Besides the feature of characteristic defect frequency in the vibration signal of bearing with 

localized defects, there are other features, for example, the pulse energy will be much more than 

that of normal bearings; the signal will be dominated by high frequency due to some modes of 

resonance; what’s more, compared with normal bearings, the damping coefficients of pulses in 

fault ones will also vary. The parameters of pulse atom have explicit physical significances and 

almost contain all the information of pulses. If the features are extracted directly from these 

parameters, not only the process is more direct and convenient, but also the multi fault features 

could be extracted from multi dimensions, therefore, the diagnosis and detection would be more 

reliable and accurate. Consequently, besides characteristic defect frequency, the pulse  

components’ mean energy, frequency center and mean damping coefficients were all taken as 

features for better diagnosis, the equations based on parameters of pulse atoms are as follows: 

� = /�
�/(
"


��

, (11)

where � is the mean energy of pulse atoms, � is the amplitude of atom, ( is the number of atoms. 

�* =
∑ �
�
"



∑ �
"



, (12)

where �* is frequency center, � is resonance frequency of the pulse atom. 
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4+ = /��
/�

/(
"

�

, (13)

where 4+ is mean damping coefficient, � is the damping coefficient of pulse atom. 

2.3.3. Fault classification based on SVM 

SVM is a machine learning algorithm based on statistical learning theory and structure risk 

minimization [22], it converts the optimization problem to a convex quadratic programming 

problem, and overcomes the problems of neural network such as its structure is complex, it is easy 

to fall into local minima and over learning, and has weak generalization capacity. SVM also has 

excellent learning ability and adaptability for small samples, and has been widely used in fault 

diagnosis in recent years [9, 23]. 

SVM multi-class classifier is generally constructed by multiple SVM two-classifiers 

combining together [24], for instance, one-against-all algorithm, and one-against-one algorithm. 

For the pattern recognition of bearing failure, to determine whether the bearing is failure or not is 

the most important issue, the second is the judgment which kind of failure. Therefore, the 

one-against-all algorithm is selected in this paper. 

3. Experiment and discussion 

3.1. The comparison of MP_DCS with WT and EMD 

In the following analysis we used the rolling bearing data from the website of Case Western 

Reserve University, the model of rolling bearing is SKF 6205, the sampling frequency of the data 

is 12 kHz, the shaft speed is 1772 r/min, i.e., the rotation frequency � =  29.5 Hz, and the 

characteristic defect frequency of outer race failure �# =  105.8 Hz, the characteristic defect 

frequency of inner race failure �$ = 159.9 Hz, and that of rolling element failure �% = 139.2 Hz. 

In order to verify the performance of these techniques proposed, the weak fault of bearings in 

early stage which is a challenge was selected, namely, we chose the signals with more interference 

which was collected by the sensor placed on the base plate, the fault diameters was only 0.178 mm, 

and the load on bearing was just 1 horsepower. It should be noted that, because the data for normal 

bearing collected on the base plate is missing in the database, we used the data of normal status 

directly collected on the drive end instead, other test conditions are the same as mentioned above. 

The length of the signals is 4096 points, and the length of each segment is 512 points. Because 

the atoms of low frequency do not satisfy the nature of pulse oscillating in high frequency, and 

they usually are trends and do not contain rich information about machine condition, only the 

atoms whose resonance frequency is above 300 Hz were selected when pulse sequence were 

reconstructed. At the same time, a comparison of wavelet envelope spectrum (WES) and EMD 

envelope spectrum (EMDES) of the raw vibration signals was also made, and the db8 wavelet was 

chosen as the basis wavelet. Pulse components tend to distribute in anterior intrinsic mode function 

(IMF) components [25], so that only the first four IMF components were displayed. 

3.1.1. The analysis of normal bearing 

Fig. 5a is the vibration signal of normal bearing, we cannot determine which state the bearing 

is from Fig. 5a. Fig. 5b is the pulse sequence correspondingly, due to the high frequency 

interferences eliminated, only the pulses were reserved, as a result the pulse sequence is very 

sparse and easy to be calculated. 

Fig. 5c is MP_DCS, the rotation frequency and its double could be seen clearly, and the 

amplitudes of the other frequencies are all very small, we could easily determine that the bearing 



1068. THE DIAGNOSIS OF ROLLING BEARING BASED ON THE PARAMETERS OF PULSE ATOMS AND DEGREE OF CYCLOSTATIONARITY.  

XINQING WANG, HUIJIE ZHU, DONG WANG, YANG ZHAO, YANFENG LI 

  VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2013. VOLUME 15, ISSUE 3. ISSN 1392-8716 1569 

is normal. Fig. 6a is WES corresponding to Fig. 5a, d1 to d4 are the envelope spectrum of the first 

to fourth levels of wavelet high frequency coefficients, a4 is the envelope spectrum of wavelet 

low frequency coefficient, the rotation frequency and its double could be seen in d2, d3 with many 

interference and including a peak of characteristic defect frequency of rolling element failure, it 

is difficult to determine the bearing condition and may cause confusion in a routine diagnostic 

survey. Fig. 6b is EMDES correspondingly, the rotation frequency or its double could be clearly 

identified only in IMF1, IMF2, however, there exists many interferential components resulting in 

difficult to diagnose. 

 
a) 

 
b) 

 
c) 

Fig. 5. The vibration signal of normal bearing and its decomposition:  

a) vibration signal of normal bearing, b) the pulse sequence, c) the DCS of pulse sequence 

 
a) 

 
b) 

Fig. 6. The decomposition corresponding to Fig. 5a: a) WES, b) EMDES 

3.1.2. The analysis of outer race failure bearing 

Fig. 7a is the vibration signal of outer race failure, Fig. 7b, Fig. 8a, b are MP_DCS, WES and 
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EMDES respectively of the fault signal. The outer characteristic defect frequency and its 

harmonics (up to eighteenth harmonic) are all clear and with few noises, these features indicate 

clearly that the bearing carries an outer race defect. In contrast, although the outer characteristic 

defect frequency and its harmonics could be recognized in WES or EMDES, they provide less 

explicit information about the condition of bearing, in addition, the random noise in the spectrum 

also blurs the featured components. 

 
a) 

 
b) 

Fig. 7. The vibration signal of the bearing with outer race failure and its MP_DCS:  

a) vibration signal of outer race, b) MP_DCS 

 
a) 

 
b) 

Fig. 8. The decomposition corresponding to Fig. 7a: a) WES, b) EMDES 

3.1.3. The analysis of inner race failure bearing 

The inner race fault vibration signal is shown in Fig. 9a. Fig. 9b, and Fig. 10a, b are its 

MP_DCS, WES, and EMDES respectively. In Fig. 9b, the frequency of the peak with the largest 

amplitude is 158.2 Hz, is approximately the inner race characteristic defect frequency, hence we 

could determine that the bearing was failure in inner race. For WES, nevertheless there exist peaks 

of 158.2 Hz in d3 and d4, the amplitude of other frequencies, for example, 58.6 Hz (double of 

rotation frequency), are relatively high, thus it is a challenge to determine the bearing condition, 

a similar situation also occurs in EMDES. 
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a) 

 
b) 

Fig. 9. The vibration signal of the bearing with inner race failure and its MP_DCS: 

a) vibration signal of outer race, b) MP_DCS 

 
a) 

 
b) 

Fig. 10. The decomposition corresponding to Fig. 9a: a) WES, b) EMDES 

3.1.4. The analysis of ball failure bearing 

The ball fault vibration signal is shown in Fig. 11a. Fig. 11b, and Fig. 12a, b are its MP_DCS, 

WES, EMDES respectively. In Fig. 11b, from the peak with the frequency of 137.7 Hz, we can 

speculate that the bearing was ball failure. For WES, despite there exists ball characteristic defect 

frequency in d3, but the peak is not prominent enough, and it has been almost submerged in 

interferential components. For EMDES, it displays as a peak of ball characteristic defect frequency, 

as well as the inner race characteristic defect frequency, on the other hand it produces more 

irrelevant components which do not contribute to fault features and can further lead to inaccurate 

diagnosis. 

 
a) 

 
b) 

Fig. 11. The vibration signal of the bearing with ball failure and its MP_DCS:  

a) vibration signal of outer race, b) MP_DCS 
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a) 

 
b) 

Fig. 12. The decomposition corresponding to Fig. 11a: a) WES, b) EMDES 

3.2. The analysis of multi features bearing diagnosis 

From the comparison above, we can know that MP_DCS combines the advantages of matching 

pursuit, pulse atoms and cyclostationary, it adaptively matches the pulse components with sparse 

and accurate representation, removes high-frequency noise and improves the SNR thereby 

accentuating the defect frequency components and conducting the identification with confidence. 

Whereas the methods of wavelet transform and EMD, not only need the appropriate selection of 

component of decompositions, but also exist many interferential components and noises in their 

spectra, these will play a bad role in the fault diagnosis of bearings. 

Besides the characteristic defect frequency, MP_PA can extract other features easily, such as 

the mean energy, frequency center, mean damping coefficient, and an analysis will be illustrated 

in below. 

 
Fig. 13. The distribution of multi features of the bearings in different conditions 
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For accurate comparison, the signals should be collected in the same condition, thus we 

selected the signals collected by the sensor placed on the drive end, namely the same measured 

condition as the signal of Fig. 5a. After the raw signals were decomposed by MP_PA, the mean 

energy, frequency center, mean damping coefficient of the pulse atoms were calculated according 

to Eq. (11), (12), (13), respectively. Fig. 13 shows the results of bearings of different status, the 

multi features of fault bearings are greatly different from those of normal ones, the frequency 

centers of fault ones are much more than that of normal ones, as the same as the mean energy, 

these phenomena are consistent with failure mechanism. 

3.3. The intelligent fault diagnosis of bearings based on SVM 

In the following the extraction of multi features based on MP_PA and DCS was tested on an 

experimental measurement. The experiment equipment is shown in Fig. 14, the model of the 

bearings is HRB 6304, the sensor is B&K accelerometer, single point faults were created to the 

test bearings using electro-discharge machining with fault diameters of 0.53 mm and depth of 

2.1 mm. 

Firstly, each of 20 samples of data from normal state, outer race failure, inner race failure and 

ball failure bearings, namely a total of 80 sets of sample data were input to SVM learning machine, 

and then using this learning machine to predict the state of bearings in different status, the results 

are shown in Fig. 15, the accurate rate is as high as 100 %, it demonstrated that the multi-features-

diagnosis based on MP_PA and DCS was effective and accurate, and meets the requirements for 

fault diagnosis of bearings. 

 
Fig. 14. The test rig 

 
Fig. 15. The SVM classification result, classification ‘1’ represents normal condition,  

‘2’ is outer race fault, ‘3’ is inner race fault, and ‘4’ is ball fault 
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4. Conclusion 

This paper employed simplified MP_PA based on the model of fault bearings and NPSO to 

obtain the parameters of atoms, on the foundation of these parameters and DCS we could acquire 

multi features, and identify the state of bearing effectively. The results showed that, this scheme 

has a simple and direct process, the features are prominent and the results are accurate, we could 

mainly come to these conclusions as follows: 

(1) Firstly, from the model of fault bearings we derived the pulse atom, afterwards we 

explained that MP_PA was suitable for the bearing fault diagnosis in theory, and make the pulse 

atom parameters correspond with the fault features. 

(2) The decomposition of vibration signals is equivalent to solving the maximum value of the 

high dimension and multimodal function, whose computation is considerably huge, and it is easy 

to be trapped into local optimal solutions by traditional artificial intelligent algorithms. To solve 

this problem, NPSO which is appropriate to this kind of problems was introduced, combined with 

SJ techniques to further reduce the amount of computation, at the same time the effectiveness of 

NPSO are verified by a simulated bearing fault signal. 

(3) The periodicity of the pulse resonance sequence is not pure, but it have second-order 

cyclostationarity, consequently it is a good way to analyze the DCS of the pulse sequence which 

only preserve the low frequency components, and a comparison with WES and EMDES of the 

original signals were also made. The results showed that, MP_DCS could adaptively match the 

pulse components, has fine resolution and robust anti-interference ability, and provide more 

flexibility and accuracy for representing the vibration characteristics of rolling bearings. 

(4) The multi features including the amplitude of characteristic frequency, mean energy, 

frequency center, mean damping coefficient, were applied to identify the status of the bearings 

based SVM, the accuracy rate was as high as 100 %, which means that these features can 

comprehensively reflect the condition of the bearings and are characterized by higher reliability. 
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