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Abstract. Tool condition monitoring (TCM) takes an important position in CNC manufacturing 

processes, especially in damages avoiding of working parts and CNC itself. This paper presents a 

self-adaptive alarm method using probability density functions estimated with the Parzen window 

based on current signals, which gives an adaptively and rapidly corresponding alarm when the 

cutting tool fracture occurs. A CNC with cutting tools was obtained by Guangzhou CNC Company 

for test purpose, and the relative experiments were done in the state key laboratory. Current signals 

of the spindle motor and the main feed motor were acquired during the tool life. A probability 

model estimated with the Parzen window is established for current data fusion to alarm adaptively. 

At the meantime, the acoustic emission (AE) signals were acquired for comparison purpose. 

Experimental results show that this technique is flexible and fast enough to be implemented in 

real time for online tool condition monitoring. 

Keywords: probability density functions, self-adaptive alarm, current signals, Parzen window, 

tool condition monitoring. 

1. Introduction 

Tool condition monitoring plays an important role in modern automatic processing for 

ensuring the processing quality and the machine life [1-3]. It is important to study the abnormal 

state and alarm for tool condition monitoring. There are mainly two traditional tool monitoring 

alarm methods [4]: limit alarm and trend alarm. Limit alarm is that alarm when it is beyond the 

threshold which is defined statistically by experiences; trend alarm is that decides whether the 

faults occurred or will occur by the gradient change of monitoring parameters. As research 

progresses, many techniques and methods such as Fuzzy Logic (FL) [5], Neural Network (NN) 

[6] and Support Vector Machine (SVM) [7] have been used for monitoring alarm. They all 

obtained some effect on improving alarm intelligence and the adaptability of alarm threshold. 

While such techniques do have following disadvantages [8]: (1) working conditions and 

monitoring parameters cannot be adjusted dynamically by the fixed threshold, (2) the tool 

operating condition cannot be entirely reflected by the alarm algorithms.  

In order to monitor the tool condition and alarm as early as possible, many researchers have 

investigated different sensors like accelerometer, acoustic emission transducer, current transducer 

and force sensor [9-11]. Since the current transducer is non-destructive evaluation, easily installed, 

non-effective on the normal operation of machine tool, and whose current signals has lower SNR 

(Signal Noise Ratio) [12], it has been selected for tool condition monitoring throughout this paper. 

Research has shown that there exists a good linear relation between the spindle current and the 

tool wear [13]. The spindle current increases obviously when the cutting tool wears seriously or 

fails. On the other hand, cutting force is the direct reflection of tool condition, but the force sensor 

is hard to be installed. However, the change of cutting force leads to the change of the feed current. 

In general, the spindle current has simple frequency components and is influenced by operating 

condition greatly, while the feed current has complicated frequency components and is influenced 

by operating condition slightly. Therefore, the complementary spindle current and feed current 

are selected in monitoring the tool condition in the present work. 
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In this study, the self-adaptive alarm method using probability density functions estimated with 

the Parzen window is proposed. Current signals of the spindle motor and the main feed motor of 

a CNC are acquired during the tool life. According to their respective features, the amplitude of 

the spindle current and the root mean square (RMS) of the feed current are extracted. After that, a 

probability model estimated with the Parzen window is established for current data fusion to alarm 

adaptively. 

2. The probability model estimated with the Parzen window 

The Parzen window approach is widely used as a method in probability density estimation. It 

works properly in small samples and has smooth estimated curve. The Parzen window approach 

to obtain a non-parametric estimate from a collection of samples is applied as follows [14]. 

Consider the situation where we have a set of independent samples � = {��,��, . . . ,��} with an 

unknown underlying probability density function �(�). Then the non-parametric estimate of �(�) 

from � is provided by the function: 

���� =
1

�ℎ�
���� − ��

ℎ
	

�

���

, (1)

where ℎ is the window width coefficient, and 
 is the sample dimension, and � is a window or 

kernel function that integrates to unity. In the present work, by using Gaussian window, Eq. (1) is 

transformed to: 
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1
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The Parzen window probability model is estimated by using the quantized values of the signals. 

Its physical interpretation has been shown in Fig. 1, in which the total probability density 

estimation �(�) is the sum of every sample’s Gaussian window. 
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Fig. 1. Parzen window density estimation 

By Eq. (2), the shape of Gaussian window is mainly decided by ℎ. It becomes smoother as ℎ 

increases, while some details of the density function are buried. When ℎ is small, some details are 

described enough but the curve can be easily disturbed by random disturbance. Therefore, a proper 

ℎ is required to balance the above effects. In the present work, ℎ is calculated by: 
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ℎ = � ∗ 
, (3)

where � is an experience constant in [1.1, 1.4], and 
 is the mean minimum distance between 

samples, given by: 


 =
1

� � min
�	

�

�,	��

,   
�	 = ��� − �	�,   ��, � = 1,2, . . . ,�,   � ≠ ��. (4)

3. Comprehensive alarm method for condition monitoring 

3.1. Alarm boundary 

When the machine is in a steady state, the monitoring data is large and the probability density 

function appears to be normal distribution �(�,�) approximately, where � is the mean value and 

� is the variance. Due to the 3 sigma rules, the probability that the monitoring parameters are in 

the range [� − 3�, � + 3�] is 99.7 %. Therefore, � + 3� is taken as the upper limit of the alarm 

in the present work.  

As shown in Fig. 1, the probability density curve �(�) is close to the real distribution and 

therefore the boundaries are able to describe the monitoring parameters accurately. With the 

confidence level �, the boundaries of �(�) satisfy: 

� �(�)

�


�


� = �, (5)

where �� , ��  are the upper and the lower confidence limit respectively. However, �� , �� 

calculated by Eq. (5) costs heavy computation, which is not suitable for online calculation. 

In the present work, Gaussian window is chosen in Eq. (2), therefore based on the traditional 

Pauta criterion, the density change caused by �� that ‖� − ��‖ > 3ℎ is just 0.3 % [15], which can 

be ignored. Therefore, in the present work, we take the 3ℎ  neighbourhood of monitoring 

parameters as the alarm threshold. The 3ℎ neighbourhood of the boundary samples is shown in 

Fig. 2, in which �
 is the low boundary sample and �� is the upper boundary sample. �
 − 3ℎ is 

able to represent the low boundary of �(�), and �� + 3ℎ is able to represent the upper boundary 

of �(�). 
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Fig. 2. 3ℎ neighbourhood of the boundary samples 
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Considering the two-dimensional monitoring parameters, taking every sample value as circle 

centre and 3ℎ as radius, the alarm boundary is formed by every circle. Due to the overlaps of 

circles, the alarm boundary is the envelope of all circles. Considering the high-dimensional 

monitoring parameters, the alarm boundary is a complex surface which is the envelope of all 3ℎ 

hyperspheres. The method to determine the alarm boundary is as shown in Fig. 3. After obtaining 

monitoring parameters, the mean minimum distance would be calculated, then followed by the 

window width coefficient and the Gaussian window function, we get the alarm boundary. 
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Fig. 3. Method for determining alarm boundary Fig. 4. Comprehensive alarm method 

3.2. Method of alarm 

As the probability model is established by the data acquired in the normal operating condition, 

alarm occurs when the new monitoring parameter is beyond the alarm boundary. As shown in 

Fig. 4, the comprehensive alarm method is separated into two aspects based on the distance 

between the new parameter and the normal parameters. If the distance ‖� − ��‖ ≥ 3ℎ, alarm 

occurs and new fault classes would be built up. If ‖� − ��‖ < 3ℎ, the window width coefficient 

would be adjusted and a new boundary would be formed. 

3.3. Optimized method of alarm 
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Fig. 5. Optimized algorithm for minimum distance 
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If the monitoring data is large, or high-dimensional, the calculation of the distance between 

new data and all existed data would be of low efficiency, which cannot meet the factual 

requirements. To improve this algorithm, we start by rapidly searching neighbouring points and 

cutting calculation times. 

Suppose the monitoring parameter is a �-dimensional vector, �� = (���, ���, ⋯ , ���), the new 

monitoring value � = (��, ��, ⋯ , ��), then the optimized algorithm is as shown in Fig. 5. 

By this method, we would achieve the shortest distance among data with few calculations to 

high-dimensional distance, and new monitoring data could be identified faster. Also, the 

probability density function would be updated as well, which forms a new alarm boundary. Further 

algorithm effect will be shown in the next section. 

4. Simulations 

A random 2-dimensional vector with length 65 and range [0, 1] was created by MATLAB. 

The original algorithm and the optimized algorithm are both applied to the vector. The results are 

shown in Fig. 6, in which the original boundary is composed of red “+”, and the optimized 

boundary is composed of black “o”. The calculation time is 23.81 s and 2.294 s respectively, 

which means that the calculation time of the optimized algorithm is reduced significantly.  

 
Fig. 6. The alarm boundaries of the original algorithm and the optimized algorithm 

 
Fig. 7. Running time of the original algorithm and the optimized algorithm 
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Furthermore, for the detail comparison of the calculation time, we select different data lengths 

that the original length is 15, 5 steps to the whole length 65. Then followed by the linear regression 

algorithm [16], the time curves are shown in Fig. 7. As shown in Fig. 7, the calculation time of 

the original algorithm is shorter when the data length is small, while as the length increases, the 

time increased sharply, but the time of the optimized algorithm increases smoothly. Therefore, the 

optimized algorithm is able to monitor tool condition with a high efficiency and precision for 

industrial requirements. 

5. Experimental method 

A CNC with cutting tools was studied by Guangzhou CNC Company. Tool life tests were 

carried out in the state key laboratory under a constant operating condition. The experimental 

setup is shown in Fig. 8 and the operating parameters are shown in Table 1. The current signals 

were acquired by two commercial current sensors (Fluke i200s). The sample rate is 2 kHz, and 

the sample time is 70 seconds per group. 60 groups of data were collected since the tool damage 

occurs at the 60th group. 

 
Fig. 8. Experimental setup 

Table 1. Operating parameters 

Cutting tool 
Rake  

angle 

Relief  

angle 

Work  

material 

Spindle  

speed 

Feed  

speed 

Cutting  

depth 

Cemented carbide 6º 8º Steel 45# 800 rpm 0.5 mm/m 0.5 mm 

In above tests, an optical microscope (KEYENCE VHX-6000) with 1000x magnification was 

applied for observing the tool wear extent. Fig. 5 shows the wear extent in different stages. 

 
(a) New tool (b) Initial wear (c) Fast wear (d) Stable wear 

 
(e) Stable wear (f) Stable wear (g) Sharp wear (h) Breakage 

Fig. 9. Images during tool life 
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6. Signal processing and discussion 

Fig. 10 depicts the current trends during the whole tool life. It can be seen that the characteristic 

values did not change much in the early stage since the tool is at the normal wear stage, while the 

value increases as the wear exacerbates. Also, the value increases sharply when the tool damage 

occurs. 

 
(a) RMS of feed current 

 
(b) Amplitude of spindle current 

Fig. 10. Current trend through the tool life 

Due to the large differences of the characteristic values between the feed current and the 

spindle current, they are first normalized and then analysed by the optimized alarm method. 

Fig. 11 illustrates the result of the optimized alarm method. It shows that the alarm boundary is 

almost the envelope. As the new characteristic value is beyond the boundary at the 59th group, 

this method gives alarm, which means the tool wears seriously or fails and the machine should be 

stopped. Compared with Fig. 9, the result shown in Fig. 11 matches the fact and proves that this 

technique alarms adaptively under the occurrence of the cutting tool fracture and is able to meet 

the factual requirements. 

For comparison, the AE signals were acquired at the meantime. Fig. 12(a) shows the raw AE 

signal at the time when the tool damage occurs, and its morphological filtered signal is shown in 

Fig. 12(b). Take the feature values of filtered signals as a 1-dimensional vector, and apply the 

optimized algorithm to the vector. The results are shown in Fig. 13, in which the historical curve 

is the trend of the feature values and the dynamic alarm curve is the boundary after optimized 

algorithm, and the detail view when the tool damage occurs is shown as well. 

 
Fig. 11. Result of the alarm method 
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Fig. 12. AE signals and feature extraction 
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Fig. 13. Alarm result based on AE signals 

As shown in Fig. 13, at the 59th group, the feature value is below the alarm curve. The method 

based on AE signals gives alarm at the 60th group, while the method based on current signals 

gives alarm at the 59th group. This comparison proves the effectiveness and efficiency of the 

method based on current signals. 

7. Conclusions 

In this paper, we proposed a self-adaptive alarm method for tool condition monitoring using 

probability density functions estimated with the Parzen window based on current signals by two 

steps. First, we calculated the window width coefficient with the help of the mean minimum 

distance between samples. Then it followed that the probability density function was estimated 

with the Parzen window and the alarm boundary had been formed. The data from current sensors 

were compared with those obtained from an AE transducer. The results were promising with the 

current signals. The main conclusions are as follows: 

1. The non-contact current sensor could be considered as an attractive quality for tool condition 

monitoring. 

2. Under data-accumulation, the window width coefficient and the alarm boundary are 

adjusted adaptively to make the alarm more accurate and adaptive. 

3. The method based on current signals gives alarm earlier than the method based on AE 

signals. 
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4. The experimental result proves that this alarm method provides an adaptively and rapidly 

corresponding alarm when the cutting tool fracture occurs. 
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