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Abstract. Structural modeling and dynamical analysis of rotating composite shaft are conducted 

in this paper. A thin-walled composite shaft structure model, which includes the transverse shear 

deformation of the shaft, rigid disks and the flexible bearings, is presented and then used to predict 

natural frequencies and dynamical stability. Based on the thin-walled composite beam theory 

referred to as variational asymptotically method (VAM), the displacement and strain fields of the 

shaft are described. Hamilton’s principle is employed to derive the equations of motion of the 

shaft system. Galerkin’s method is used to discretize and solve the governing equations. The 

validity of the model is proved by comparing the results with those in literatures and convergence 

examination. The effects of fiber orientation, ratios of length over radius, ratios of radius over 

thickness and shear deformation on natural frequency and critical speeds are investigated. Finally 

the unbalance transient responses of the composite shaft system are also given by using the 

time-integration method.  

Keywords: composite shaft, rotating shaft, vibration and stability. 

1. Introduction 

The rotating shafts made from laminated composite materials are being used as structural 

elements in many application areas involving the rotating machinery systems. This is likely to 

contribute to the high strength to weight ratio, lower vibration level and a longer service life of 

composite materials. A significant weight saving can be achieved by the use of composite 

materials. Also by appropriate design of the composite layup configuration: orientation and 

number of plies the improved performance of the shaft system can be obtained. Furthermore, the 

use of composite would permit the use of longer shafts for a specified critical speed than is possible 

with conventional metallic shafts.  

Zinberg and Symonds [1] investigated the critical speeds of rotating anisotropic cylindrical 

shafts based on an equivalent modulus beam theory (EMBT), and Dos Reis et al. [2] evaluated the 

shaft of Zinberg and Symonds [1] by the finite element method. Kim and Bert [3] adopted the 

thin- and thick-shell theories of first-order approximation to derive the motion equations of the 

rotating composite thin-walled shafts. They used this model to obtain a closed form solution for a 

simply supported drive shaft and to analyze the critical speeds of composite shafts. Singh and 

Gupta [4] developed two composite spinning shaft models employing EMBT and layerwise beam 

theory (LBT), respectively. It was shown that a discrepancy exists between the critical speeds 

obtained from both models for the unsymmetric laminated composite shaft. Chang et al. [5] 

presented a simple spinning composite shaft model based on a first-order shear deformable beam 

theory. The finite element method is used here to find the approximate solution of the system. The 

model was used to analyze the critical speeds, frequencies, mode shapes, and transient response 

of a particular composite shaft system. Gubran and Gupta [6] presented a modified EMBT model 

to account for the effects of a stacking sequence and different coupling mechanisms. Song et al. 

[7] used Rehfield’s thin-walled beam theory [8] that presented a composite thin-walled shaft 

model. The effects of rotatory inertias, the axial edge load and boundary conditions on the natural 

frequencies and stability of the system were investigated. 

In the present study another composite thin-walled shaft model is proposed by means of the 

composite thin-walled beam theory, an asymptotically correct theory referred to as variational 
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asymptotically method (VAM) by Berdichevsky et al. [9]. Here, however, the original formulation 

of VAM is expanded and refined to take into account effects of transverse shear deformation. The 

flexible composite shaft is assumed supporting on bearings which are modeled as springs and 

dampers and containing of the rigid disks mounted on it. The equations of motion of the composite 

shaft and the rotor-composite shaft system are derived by the extended Hamilton’s principle. 

Galerkin’s method is used then to discretize and solve the governing equations. The natural 

frequencies and critical rotating speeds of the rotating composite shaft with the variation of the 

lamination angle, the ratios of length over radius, ratios of radius over thickness and shear 

deformation are then analyzed. The validity of the model is proved by comparing the results with 

those in literatures and convergence examination. Finally the unbalance transient responses of a 

rotating composite shaft system are calculated by using the time-integration method. 

2. Model and equations 

2.1. Strain energy and kinetic energy of composite shaft 

In the present study the composite shaft rotating along its longitudinal 𝑥-axis at a constant rate 

𝛺 is shown in Fig. 1. To describe the motion of the shaft the following coordinate systems are 

considered: (1) (𝑋, 𝑌, 𝑍) is inertial reference system whose origin 𝑂 is located in the geometric 

center, (2) (𝑥, 𝑦, 𝑧) is rotating reference system with the common origin 𝑂. (𝐼, 𝐽, 𝐾) and (𝑖, 𝑗, 𝑘) 

denote the unit vectors of the reference systems (𝑋, 𝑌, 𝑍) and (𝑥, 𝑦, 𝑧), respectively. In addition a 

local coordinate system (𝜉, 𝑠, 𝑥) is used, where 𝜉 and 𝑠 are measured along the directions normal 

and tangent to the middle surface respectively. 

The structural modeling is based on the following assumptions: (1) the shaft is characterized 

as a slender thin-walled elastic cylinder, satisfying 𝑑 ≪ 𝐿, ℎ ≪ 𝑑, ℎ ≪ 𝑟, where 𝐿, ℎ, 𝑟 and 𝑑 

denote the length, the thickness, the radius of curvature and the maximum cross sectional 

dimension of the cylinder respectively, (2) transverse shear effects are considered, (3) the loop 

stress resultant may be ignored, (4) a special laminated composite configuration, referred to as the 

circumferentially uniform stiffness configuration (CUS) achieved by skewing angle plies with 

respect to the longitudinal beam axis meeting the conditions 𝜃(𝑦) = 𝜃(−𝑦), 𝜃(𝑧) = 𝜃(−𝑧), is 

considered (Fig. 1). 

 
Fig. 1. Composite thin-walled shaft of a circular cross section 

It has been shown [10-12] that VAM is an asymptotically correct theory which can be used 

effectively for the analysis of tubular composite thin-walled structures. However, the classical 

VAM does not account for the effects of transverse shear because of which it may generate 

inaccurate predictions of the rotating composite shaft. Herein the original formulation of VAM is 

expanded and refined to include effects of transverse shear of the composite shaft. 

The displacement field incorporating shear deformation is assumed in the form: 
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𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈1(𝑥, 𝑡) − 𝑦(𝑠)𝜃𝑦(𝑥, 𝑡) − 𝑧(𝑠)𝜃𝑧(𝑥, 𝑡) + 𝑔(𝑠, 𝑥, 𝑡), 

𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈2(𝑥, 𝑡) − 𝑧𝜙(𝑥, 𝑡), 

𝑢3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑈3(𝑥, 𝑡) + 𝑦𝜙(𝑥, 𝑡), 

(1) 

in which: 

𝜃𝑦(𝑥, 𝑡) = 𝑈2
′(𝑥, 𝑡) − 2𝛾𝑧𝑥, 

𝜃𝑧(𝑥, 𝑡) = 𝑈3
′(𝑥, 𝑡) − 2𝛾𝑦𝑥, 

(2) 

where 𝑈1(𝑥, 𝑡), 𝑈2(𝑥, 𝑡), 𝑈3(𝑥, 𝑡) denote the rigid-body translations along the 𝑥-, 𝑦- and 𝑧-axis, 

while 𝜙(𝑥, 𝑡), 𝜃𝑦(𝑥, 𝑡), 𝜃𝑧(𝑥, 𝑡) denote the twist about the 𝑧-axis and rotations about the 𝑥- and 

𝑦 -axis respectively. 𝛾𝑧𝑥  and 𝛾𝑦𝑥  denote the transverse shear strains in the planes 𝑥𝑧  and 𝑥𝑦 

respectively. 

From the classical VAM the warping function 𝑔(𝑠, 𝑥, 𝑡) is modified as: 

𝑔(𝑠, 𝑥, 𝑡) = 𝐺(𝑠)𝜙′(𝑥, 𝑡) + 𝑔1(𝑠)𝑈1
′(𝑥, 𝑡) + 𝑔2(𝑠)𝜃𝑦

′ (𝑥, 𝑡) + 𝑔3(𝑠)𝜃𝑧
′(𝑥, 𝑡). (3) 

In the above equation the functions 𝑔1(𝑠), 𝑔2(𝑠), 𝑔3(𝑠), 𝐺(𝑠)  are associated with physical 

behavior for the axial strain, the bending curvatures, and the torsion twist rate respectively. The 

primes in Eqs. (1) and (2) denote differentiation with respect to 𝑥. 

Based on the displacement representations (1), (2) and (3), and using the linear 

strain-displacement relations [9], while referring to the [13], the strain of the composite shaft can 

be written as: 

𝛾𝑥𝑥 = 𝑈1
′(𝑥, 𝑡) − 𝑦𝜃𝑦

′ (𝑥, 𝑡) − 𝑧𝜃𝑧 
′ (𝑥, 𝑡), 

2𝛾𝑥𝑠 =
𝑑𝑔

𝑑𝑠
+ 𝑟𝑛𝜙′ + (𝑈2

′(𝑥, 𝑡) − 𝜃𝑦(𝑥, 𝑡))
𝑑𝑦

𝑑𝑠
+ (𝑈3

′(𝑥, 𝑡) − 𝜃𝑧(𝑥, 𝑡))
𝑑𝑧

𝑑𝑠
, 

2𝛾𝑥𝜉 = (𝑈2
′(𝑥, 𝑡) − 𝜃𝑦(𝑥, 𝑡))

𝑑𝑧

𝑑𝑠
− (𝑈3

′(𝑥, 𝑡) − 𝜃𝑧(𝑥, 𝑡))
𝑑𝑦

𝑑𝑠 
, 

(4) 

where 𝑟𝑛 denotes the project of the position vector 𝒓 of an arbitrary point on the cross-section of 

the deformed shaft in the normal direction: 

𝑟𝑛 = 𝑦
𝑑𝑧

𝑑𝑠
− 𝑧

𝑑𝑦

𝑑𝑠
. (5) 

The position vector 𝒓 can be expressed as: 

𝒓 = (𝑦 + 𝑢2)𝒊 + (𝑧 + 𝑢3)𝒋 + (𝑥 + 𝑢1)𝒌. (6) 

According to the constant rotating rate assumption and using the expressions for the time 

derivatives of unit vectors, one can obtain the velocity of a generic point as: 

𝑽 = 𝒓̇ = (𝑢̇2 − Ω(𝑧 + 𝑢3))𝒊 + (𝑢̇3 + 𝛺(𝑦 + 𝑢2))𝒋 + 𝑢̇1𝒌. (7) 

The strain energy of the composite shaft 𝑈𝑠 can be written as: 

𝑈𝑠 =
1

2
∫ ∬(𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑥𝑠𝜀𝑥𝑠 + 𝜎𝑥𝜉𝜀𝑥𝜉)

 

𝐴

𝐿

0

𝑑𝐴𝑑𝑥, (8) 

where 𝜎𝑥𝑥,  𝜎𝑥𝑠  and 𝜎𝑥𝜉  represent the engineering stresses associated with the engineering 
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strains 𝜀𝑥𝑥, 𝜀𝑥𝑠 and 𝜀𝑥𝜉 . 

Taking variation for the above strain energy expression one obtains: 

𝛿𝑈𝑠 = ∫ ∫(𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑥𝑠𝛿𝜀𝑥𝑠 + 𝜎𝑥𝜉𝛿𝜀𝑥𝜉)
 

𝐴

𝐿

0

𝑑𝐴 𝑑𝑥

= ∫ [𝐹𝑥
′𝛿𝑈1 + 𝑄𝑦

′ 𝛿𝑈2 + 𝑄𝑧
′𝛿𝑈3 + 𝑀𝑥

′𝛿𝜙 + (𝑀𝑧
′ + 𝑄𝑦)𝛿𝜃𝑦 + (𝑀𝑦

′ + 𝑄𝑧)𝛿𝜃𝑧]
𝐿

0

𝑑𝑥. 

(9) 

Stress resultants 𝐹𝑥, 𝑄𝑦 , 𝑄𝑧 and stress couples 𝑀𝑥, 𝑀𝑦, 𝑀𝑧 can be defined as: 

𝐹𝑥   = ∮𝑁𝑥𝑥𝑑𝑠, 

𝑀𝑥 = ∮𝑁𝑥𝑠𝑟𝑛𝑑𝑠 , 𝑀𝑦 = − ∮𝑁𝑥𝑥𝑧𝑑𝑠 , 𝑀𝑧 = −∮ 𝑁𝑥𝑥𝑦𝑑𝑠, 

𝑄𝑦 = ∮(𝑁𝑥𝑠

𝑑𝑦

𝑑𝑠
+ 𝑁𝑥𝜉

𝑑𝑧

𝑑𝑠
) 𝑑𝑠, 𝑄𝑍 = ∮(𝑁𝑥𝑠

𝑑𝑧

𝑑𝑠
− 𝑁𝑥𝜉

𝑑𝑦

𝑑𝑠
) 𝑑𝑠, 

(10) 

where 𝑁𝑥𝑥, 𝑁𝑥𝑠 and 𝑁𝑥𝜉  are shell stress resultants defined according to the following expressions: 

[
𝑁𝑥𝑥

𝑁𝑥𝑠
] = [

𝐴(𝑠)
𝐵(𝑠)

2
𝐵(𝑠)

2

𝐶(𝑠)

4

] [
𝛾𝑥𝑥

2𝛾𝑥𝑠
], 

𝑁𝑥𝜉   = 𝐷(𝑠)𝛾𝑥𝜉 , 

(11) 

where: 

𝐴(𝑠) = 𝐴11 −
𝐴12

2

𝐴22

, 𝐵(𝑠) = 2 (𝐴16 −
𝐴12𝐴26

𝐴22

), 

𝐶(𝑠) = 4 [𝐴66 −
(𝐴26)

2

𝐴22

] , 𝐷(𝑠) = (𝐴44 −
𝐴45

2

𝐴55

), 

𝐴𝑖𝑗 = ∑ 𝑄
𝑖𝑗

(𝑘)
(𝑍𝑘 − 𝑍𝑘−1) , (𝑖, 𝑗 = 1,2,6; 𝑖, 𝑗 = 4,5).

𝑁

𝑘=1

 

(12) 

Parameters 𝐴(𝑠)  and 𝐵(𝑠)  denote the reduced axial and coupling stiffnesses respectively, 

while 𝐶(𝑠)  and 𝐷(𝑠) denote the reduced shear stiffnesses. 𝐴𝑖𝑗  denote the in-plane stiffnesses 

components and 𝑄̅𝑖𝑗
(𝑘)

 denote transformed stiffnesses. 

Moreover by taking into account of Eqs. (4) and (11), the stress resultants and stress couples 

given by Eqs. (10) can be expressed in the following form: 

𝐹𝑥 = 𝑘11𝑈1
′ + 𝑘12𝜙

′ + 𝑘13𝜃𝑧
′ + 𝑘14𝜃𝑦

′ + 𝑘15(𝑈2
′ − 𝜃𝑦) + 𝑘16(𝑈3

′ − 𝜃𝑧), 

𝑀𝑥 = 𝑘12𝑈1
′ + 𝑘22𝜙

′ + 𝑘23𝜃𝑧
′ + 𝑘24𝜃𝑦

′ + 𝑘25(𝑈2
′ − 𝜃𝑦) + 𝑘26(𝑈3

′ − 𝜃𝑧), 

𝑀𝑦 = 𝑘13𝑈1
′ + 𝑘23𝜙

′ + 𝑘33𝜃𝑧
′ + 𝑘34𝜃𝑦

′ + 𝑘35(𝑈2
′ − 𝜃𝑦) + 𝑘36(𝑈3

′ − 𝜃𝑧), 

𝑀𝑧 = 𝑘14𝑈1
′ + 𝑘24𝜙

′ + 𝑘34𝜃𝑧
′ + 𝑘44𝜃𝑦

′ + 𝑘45(𝑈2
′ − 𝜃𝑦) + 𝑘46(𝑈3

′ − 𝜃𝑧), 

𝑄𝑦 = 𝑘51𝑈1
′ + 𝑘52𝜙

′ + 𝑘53𝜃𝑧
′ + 𝑘54𝜃𝑦

′ + 𝑘55(𝑈2
′ − 𝜃𝑦) + 𝑘56(𝑈3

′ − 𝜃𝑧), 

𝑄𝑧 = 𝑘61𝑈1
′ + 𝑘62𝜙

′ + 𝑘63𝜃𝑧
′ + 𝑘64𝜃𝑦

′ + 𝑘65(𝑈2
′ − 𝜃𝑦) + 𝑘66(𝑈3

′ − 𝜃𝑧), 

(13) 
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where 𝑘𝑖𝑗  (𝑖, 𝑗 = 1,… ,6)  are the stiffness coefficients of the composite shaft, which can be 

expressed in terms of the cross sectional geometry and material properties as: 

𝑘11 = ∮ (𝐴 −
𝐵2

𝐶
)

 

𝛤

𝑑𝑠 + {[∮ (
𝐵

𝐶
)𝑑𝑠

 

𝛤

]

2

∮ (
1

𝐶
)𝑑𝑠

 

𝛤

⁄ }, 

𝑘12 = [∮ (
𝐵

𝐶
)𝑑𝑠

 

𝛤

∮ (
1

𝐶
)𝑑𝑠

 

𝛤

⁄ ]𝐴𝑒 , 

𝑘13 = −∮ (𝐴 −
𝐵2

𝐶
)

 

𝛤

𝑧𝑑𝑠 − {[∮ (
𝐵

𝐶
)

 

𝛤

𝑑𝑠 ∮ (
𝐵

𝐶
)

 

𝛤

𝑧𝑑𝑠] ∮ (
1

𝐶
)

 

𝛤

𝑑𝑠⁄ }, 

𝑘14 = −∮ (𝐴 −
𝐵2

𝐶
)

 

𝛤

𝑦𝑑𝑠 − {[∮ (
𝐵

𝐶
)

 

𝛤

𝑑𝑠 ∮ (
𝐵

𝐶
)

 

𝛤

𝑦𝑑𝑠] ∮ (
1

𝐶
)

 

𝛤

𝑑𝑠⁄ }, 

𝑘22 = [1 ∮ (
1

𝐶
)

 

𝛤

𝑑𝑠⁄ ] 𝐴𝑒
2, 

𝑘23 = − [∮ (
𝐵

𝐶
)

 

𝛤

𝑧𝑑𝑠 ∮ (
1

𝐶
)

 

𝛤

𝑑𝑠⁄ ]𝐴𝑒, 

𝑘24 = − [∮ (
𝐵

𝐶
)

 

𝛤

𝑦𝑑𝑠 ∮ (
1

𝐶
)

 

𝛤

𝑑𝑠⁄ ]𝐴𝑒 , 

𝑘33 = ∮ (𝐴 −
𝐵2

𝐶
)

 

𝛤

𝑧2𝑑𝑠 + {[∮ (
𝐵

𝐶
)

 

𝛤

𝑧𝑑𝑠]

2

∮ (
1

𝐶
)

 

𝛤

𝑑𝑠⁄ }, 

𝑘34 = ∮ (𝐴 −
𝐵2

𝐶
)

 

𝛤

𝑦𝑧𝑑𝑠 + {[∮ (
𝐵

𝐶
)

 

𝛤

𝑦𝑑𝑠 ∮ (
𝐵

𝐶
)

 

𝛤

𝑧𝑑𝑠] ∮ (
1

𝐶
)

 

𝛤

𝑑𝑠⁄ }, 

𝑘44 = ∮ (𝐴 −
𝐵2

𝐶
)

 

𝛤

𝑦2𝑑𝑠 + {[∮ (
𝐵

𝐶
)

 

𝛤

𝑦𝑑𝑠]

2

∮ (
1

𝐶
)

 

𝛤

𝑑𝑠⁄ }, 

𝑘15 =
1

2
∮ 𝐵

𝑑𝑦

𝑑𝑠

 

𝛤

𝑑𝑠, 𝑘16 =
1

2
∮ 𝐵

𝑑𝑧

𝑑𝑠

 

𝛤

𝑑𝑠, 𝑘25 =
1

4
∮𝑟𝑛

 

𝛤

𝐶
𝑑𝑦

𝑑𝑠
𝑑𝑠, 

𝑘26 =
1

4
∮𝑟𝑛

 

𝛤

𝐶
𝑑𝑧

𝑑𝑠
𝑑𝑠, 𝑘35 = −

1

2
∮𝐵𝑧

 

𝛤

𝑑𝑦

𝑑𝑠
𝑑𝑠, 𝑘36 = −

1

2
∮𝐵𝑧

 

𝛤

𝑑𝑧

𝑑𝑠
𝑑𝑠, 

𝑘45 = −
1

2
∮𝐵𝑦

 

𝛤

𝑑𝑦

𝑑𝑠
𝑑𝑠, 𝑘46 = −

1

2
∮𝐵𝑦

 

𝛤

𝑑𝑧

𝑑𝑠
𝑑𝑠,  

𝑘55 = ∮ [
1

4
𝐶 (

𝑑𝑦

𝑑𝑠
)

2

+ 𝐷 (
𝑑𝑧

𝑑𝑠
)

2

]
 

𝛤

𝑑𝑠, 𝑘56 = ∮ (
1

4
𝐶 − 𝐷)

𝑑𝑦

𝑑𝑠

𝑑𝑧

𝑑𝑠
𝑑𝑠

 

𝛤

, 

𝑘66 = ∮ [
1

4
𝐶 (

𝑑𝑧

𝑑𝑠
)

2

+ 𝐷 (
𝑑𝑦

𝑑𝑠
)

2

]
 

𝛤

𝑑𝑠. 

(14) 

The coefficients 𝑘𝑖𝑗 (𝑖, 𝑗 = 1,2, … ,4) represent the stiffnesses, as described in [9, 12] for the 

case of a non-shearable thin-walled beam, while the shear contribution to the stiffness coefficients 

is represented by the new terms 𝑘𝑖𝑗  (𝑖 = 1,2, … ,6; 𝑗 = 5,6), 𝑘𝑗𝑖  (𝑖 = 1,2, … ,4; 𝑗 = 5,6). 

The kinetic energy of the composite shaft 𝑇𝑠 can be written as: 

𝑇𝑠 =
1

2
∫ ∬𝜌(𝑽 · 𝑽)𝑑𝐴𝑑𝑥

 

𝐴

𝐿

0

, (15) 

where 𝜌 denotes the mass density of the shaft. In view of Eq. (7) the expression of the kinetic 

energy can be obtained and taking variation of 𝑇𝑠 yields: 



1089. MODELING AND DYNAMIC ANALYSIS OF ROTATING COMPOSITE SHAFT.  

REN YONGSHENG, DAI QIYI, ZHANG XINGQI 

 © VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2013. VOLUME 15, ISSUE 4. ISSN 1392-8716 1795 

𝛿𝑇𝑠 = −∫ (𝐼1𝛿𝑈1 + 𝐼2𝛿𝑈2+𝐼3𝛿𝑈3 + 𝐼4𝛿𝜃𝑦 + 𝐼5𝛿𝜃𝑧+𝐼6𝛿𝜙)
𝐿

0

, (16) 

where: 

𝐼1 = 𝑏1𝑈̈1 − 𝑏2𝜃̈𝑦 − 𝑏3𝜃̈𝑥, 

𝐼2 = 𝑏1(𝑈̈2 − 2𝛺𝑈̇3 − 𝛺2𝑈2) − 𝑏2(2𝛺𝜙̇ + 𝛺2) − 𝑏3(𝜙̈ − 𝛺2𝜙), 

𝐼3 = 𝑏1(𝑈̈3 + 2𝛺𝑈̇2 − 𝛺2𝑈3) + 𝑏2(𝜙̈ − 𝛺2𝜙) − 𝑏3(2𝛺𝜙̇ + 𝛺2), 

𝐼4 = 𝑏2𝑈̈1 − 𝑏4𝜃̈𝑦 − 𝑏6𝜃̈𝑧 , 

𝐼5 = 𝑏3𝑈̈3 − 𝑏6𝜃̈𝑦 − 𝑏5𝜃̈𝑧 , 

𝐼6 = 𝑏2(𝑈̈3 + 2𝛺𝑈̇2 − 𝛺2𝑈3) + (𝑏4 + 𝑏5)(𝜙̈ − 𝛺2𝜙) − 𝑏3(𝑈̈2 − 2𝛺𝑈̇3 − 𝛺2𝑈2), 

𝑏1 = ∬𝜌𝑑𝐴
 

𝐴

, 𝑏2 = ∬𝜌𝑦𝑑𝐴
 

𝐴

, 𝑏3 = ∬𝜌𝑧𝑑𝐴
 

𝐴

, 

𝑏4 = ∬𝜌𝑦2𝑑𝐴
 

𝐴

, 𝑏5 = ∬𝜌𝑧2𝑑𝐴
 

𝐴

, 𝑏6 = ∬𝜌𝑦𝑧𝑑𝐴
 

𝐴

. 

(17) 

2.2. Kinetic energy of rigid disks 

According to Eqs. (16) and (17) the expression of variation of the kinetic energy of the rigid 

disks fixed to the shaft is written as: 

𝛿𝑇𝐷 = −∫ (∑(𝐼1𝑙
𝐷𝛿𝑈1 + 𝐼2𝑙

𝐷𝛿𝑈2 + 𝐼3𝑙
𝐷𝛿𝑈3 + 𝐼4𝑙

𝐷𝛿𝜃𝑦 + 𝐼5𝑙
𝐷𝛿𝜃𝑧 + 𝐼6𝑙

𝐷𝛿𝜙)

𝑁𝐷

𝑙=1

𝛥(𝑥 − 𝑥𝐷𝑙))𝑑𝑥
𝐿

0

, (18) 

in which: 

𝐼1𝑙
𝐷 = 𝑏1𝑙

𝐷 𝑈̈1 − 𝑏2𝑙
𝐷 𝜃̈𝑦 − 𝑏3𝑙

𝐷 𝜃̈𝑍, 

𝐼2𝑙
𝐷 = 𝑏1𝑙

𝐷 (𝑈̈2 − 2𝛺𝑈̇3 − 𝛺2𝑈2) − 𝑏2𝑙
𝐷 (2𝛺𝜙̇ + 𝛺2) − 𝑏3𝑙

𝐷 (𝜙̈ − 𝛺2𝜙), 

𝐼3𝑙
𝐷 = 𝑏1𝑙

𝐷(𝑈̈3 + 2𝛺𝑈̇2 − 𝛺2𝑈3) + 𝑏2𝑙
𝐷 (𝜙̈ − 𝛺2𝜙) − 𝑏3𝑙

𝐷 (2𝛺𝜙̇ + 𝛺2), 

𝐼4𝑙
𝐷 = 𝑏2𝑙

𝐷 𝑈̈1 − 𝑏4𝑙
𝐷 𝜃̈𝑦 − 𝑏6𝑙

𝐷 𝜃̈𝑍, 

𝐼5𝑙
𝐷 = 𝑏3𝑙

𝐷 𝑈̈3 − 𝑏6𝑙
𝐷 𝜃̈𝑦 − 𝑏5𝑙

𝐷 𝜃̈𝑍, 

𝐼6𝑙
𝐷 = 𝑏2𝑙

𝐷 (𝑈̈3 + 2𝛺𝑈̇2 − 𝛺2𝑈3) + (𝑏4𝑙
𝐷 + 𝑏5𝑙

𝐷 )(𝜙̈ − 𝛺2𝜙) − 𝑏3𝑙
𝐷 (𝑈̈2 − 2𝛺𝑈̇3 − 𝛺2𝑈2), 

𝑏1𝑙
𝐷 = ∬𝜌𝑙

𝐷
 

𝐴

𝑑𝐴, 𝑏2𝑙
𝐷 = ∬𝜌𝑙

𝐷 𝑦𝑑𝐴
 

𝐴

, 𝑏3𝑙
𝐷 = ∬𝜌𝑙

𝐷
 

𝐴

𝑧𝑑𝐴, 

𝑏4𝑙
𝐷 = ∬𝜌𝑙

𝐷𝑦2𝑑𝐴
 

𝐴

, 𝑏5𝑙
𝐷 = ∬𝜌𝑙

𝐷
 

𝐴

𝑧2𝑑𝐴, 𝑏6𝑙
𝐷 = ∬𝜌𝑙

𝐷𝑦𝑧𝑑𝐴
 

𝐴

, 

(19) 

where 𝜌𝑙
𝐷  denotes the mass density of the disk 𝑙. The symbol 𝛥(𝑥 − 𝑥𝐷𝑙) denotes Dirac delta 

function, 𝑁𝐷 the number of the disks mounted on the shaft and 𝑥𝐷𝑙 the location of the 𝑙th disk.  

2.3. Work of external forces 

The external forces include the centrifugal force resulting from the unbalanced rigid disks and 

the force from the bearings. 

The bearings are considered as the springs and viscous dampers and these elements have linear 

stiffness and damping characteristics. 
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The virtual work associated with the springs and viscous dampers can be expressed as: 

𝛿𝑊𝑏 = ∫ [∑(
−𝐾𝑦𝑦

𝑏𝑙 𝑈2𝛿𝑈2 − 𝐾𝑧𝑦
𝑏𝑙𝑈2𝛿𝑈3 − 𝐾𝑦𝑧

𝑏𝑙𝑈3𝛿𝑈2 − 𝐾𝑧𝑧
𝑏𝑙𝑈3𝛿𝑈3

−𝐶𝑦𝑦
𝑏𝑙 𝑈̇2𝛿𝑈̇2 − 𝐶𝑧𝑦

𝑏𝑙𝑈̇2𝛿𝑈̇3 − 𝐶𝑦𝑧
𝑏𝑙𝑈̇3𝛿𝑈̇2 − 𝐶𝑧𝑧

𝑏𝑙𝑈̇3𝛿𝑈̇3

)Δ(𝑥 − 𝑥𝑏𝑙)

𝑛𝑏

𝑙=1

]
𝐿

0

𝑑𝑥, (20) 

where 𝑛𝑏  denotes the number of the bearings, 𝑥𝑏𝑙  the location, 𝐾𝑏𝑙  and 𝐶𝑏𝑙  the equivalent 

stiffness and damping coefficients of the 𝑙th bearings. 

The virtual work done by the centrifugal force of rigid disks can be given by: 

𝛿𝑊𝑒 = ∫ (𝑝𝑥
𝑢𝛿𝑈1 + 𝑝𝑦

𝑢𝛿𝑈2 + 𝑝𝑧
𝑢𝛿𝑈3 + 𝛤𝑥

𝑢𝛿𝜙 + 𝛤𝑦
𝑢𝛿𝜃𝑦 + 𝛤𝑧

𝑢𝛿𝜃𝑧)
𝐿

0

𝑑𝑥, 

where 𝑝𝑥
𝑢, 𝑝𝑦

𝑢, 𝑝𝑧
𝑢 denote centrifugal force per unit length, 𝛤𝑥

𝑢, 𝛤𝑦
𝑢, 𝛤𝑧

𝑢 denote centrifugal moment 

per unit length. They are given by: 

𝑝𝑥
𝑢 = 0,   𝑝𝑦

𝑢 = 𝛺2(cos𝛺𝑡) ∑𝑏1𝑙
𝐷𝑒𝑙𝛥(𝑥 − 𝑥𝐷𝑙)

𝑁𝐷

𝑙=1

,   𝑝𝑧
𝑢 = 𝛺2(sin𝛺𝑡) ∑ 𝑏1𝑙

𝐷𝑒𝑙𝛥(𝑥 − 𝑥𝐷𝑙)

𝑁𝐷

𝑙=1

, 

𝛤𝑥
𝑢 = 0, 𝛤𝑦

𝑢 = 0, 𝛤𝑧
𝑢 = 0, 

(21) 

where the mass unbalance associated with disks is assumed as the concentrated masses  

𝑏1𝑙
𝐷 = ∬ 𝜌𝑙

𝐷𝑑𝐴
 

𝐴
 at points with small distances of eccentricity 𝑒𝑙 . 

2.4. Motion equations of systems 

In view of Eqs. (9), (16), (28) and (30), and employing the following variational principle: 

∫ [𝛿𝑈𝑠 − 𝛿(𝑇𝑠 + 𝑇𝐷) − 𝛿𝑊𝑏 − 𝛿𝑊𝑒]𝑑𝑡 = 0
𝑡1

𝑡0

, (22) 

one obtains: 

−𝐹𝑥
′ + 𝐼1 + 𝐼1

𝐷 = 𝑝𝑥
𝑢, 

−𝑄𝑦
′ + 𝐼2 + 𝐼2

𝐷 + 𝐹𝑈2
𝑏 = 𝑝𝑦

𝑢, 

−𝑄𝑧
′ + 𝐼3 + 𝐼3

𝐷 + 𝐹𝑈3
𝑏 = 𝑝𝑧

𝑢 , 

−𝑀𝑥
′ + 𝐼6 + 𝐼6

𝐷 = 𝛤𝑥
𝑢 , 

−𝑀𝑧
′ + 𝐼4 + 𝐼4

𝐷 = 𝛤𝑦
𝑢 , 

−𝑀𝑦
′ + 𝐼5 + 𝐼5

𝐷 = 𝛤𝑧
𝑢 , 

(23) 

where: 

𝐹𝑈2
𝑏 = ∑(𝐾𝑦𝑦

𝑏𝑙𝑈2 + 𝐾𝑦𝑧
𝑏𝑙𝑈3 + 𝐾𝑦𝑦

𝑏𝑙 𝑈̇2 + 𝐾𝑦𝑧
𝑏𝑙𝑈̇3)Δ(𝑥 − 𝑥𝑏𝑙)

𝑛𝑏

𝑙=1

, 

𝐹𝑈3
𝑏 = ∑(𝐾𝑧𝑧

𝑏𝑙𝑈3 + 𝐾𝑧𝑦
𝑏𝑙𝑈2 + 𝐾𝑧𝑧

𝑏𝑙𝑈̇3 + 𝐾𝑧𝑦
𝑏𝑙𝑈̇2)Δ(𝑥 − 𝑥𝑏𝑙)

𝑛𝑏

𝑙=1

. 

(24) 

The boundary conditions at 𝑥 = 0, 𝐿 are: 
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𝐹𝑥 = 𝐹̅𝑥 or 𝑈1 = 𝑈1, 𝑄𝑦 = 𝑄̅𝑦 or 𝑈2 = 𝑈2, 𝑄𝑧 = 𝑄̅𝑧 or 𝑈3 = 𝑈3, 

𝑀𝑥 = 𝑀̅𝑥 or 𝜃𝑦 = 𝜃̅𝑦, 𝑀𝑦 = 𝑀̅𝑦 or 𝜃𝑧 = 𝜃̅𝑧, 𝑀𝑧 = 𝑀̅𝑧 or 𝜙 = 𝜙̅. 
(25) 

As a result of CUS configuration, the equations of motion involving variables in terms of 

displacements can be reduced and split into two independent equation systems associated with 

both bending-transverse shear and extension-twist motions. 

The motion equations of bending-transverse shear coupling: 

−𝑘35𝜃𝑧
′′ − 𝑘55(𝑈2

′′ − 𝜃𝑦
′ ) + 𝑏1(𝑈̈2 − 2𝛺𝑈̇3 − 𝛺2𝑈2) 

      +∑[𝑏1𝑙
𝐷(𝑈̈2 − 2𝛺𝑈̇3 − 𝛺2𝑈2)]

𝑁𝐷

𝑙=1

(𝑥 − 𝑥𝐷𝑙) + 𝐹𝑈2
𝑏 = 𝑝𝑦

𝑢 , 

−𝑘46𝜃𝑦
′′ − 𝑘66(𝑈3

′′ − 𝜃𝑧
′) + 𝑏1(𝑈̈3 + 2𝛺𝑈̇2 − 𝛺2𝑈3)

+ ∑[𝑏1𝑙
𝐷(𝑈̈3 + 2𝛺𝑈̇2 − 𝛺2𝑈3)](𝑥 − 𝑥𝐷𝑙)

𝑁𝐷

𝑙=1

+ 𝐹𝑈3
𝑏 = 𝑝𝑧

𝑢, 

−𝑘44𝜃𝑦
′′ − 𝑘46(𝑈3

′′ − 𝜃𝑧
′) − 𝑘35𝜃𝑧

′ − 𝑘55(𝑈2
′ − 𝜃𝑦

 ) − 𝑏4𝜃̈𝑦 + ∑(−𝑏4𝑙
𝐷 𝜃̈𝑦

 )𝛥(𝑥 − 𝑥𝐷𝑙)

𝑁𝐷

𝑙=1

= 0, 

−𝑘33𝜃𝑧
′′ − 𝑘35(𝑈2

′′ − 𝜃𝑦
′ ) − 𝑘46𝜃𝑦

′ − 𝑘66(𝑈3
′ − 𝜃𝑧

 ) − 𝑏5𝜃̈𝑧 + ∑(−𝑏5𝑙
𝐷 𝜃̈𝑧

 )𝛥(𝑥 − 𝑥𝐷𝑙)

𝑁𝐷

𝑙=1

= 0. 

(26) 

The motion equations of extension-twist coupling: 

−𝑘11𝑈1
′′ − 𝑘12

 𝜙′′ + 𝑏1𝑈̈1 = 0, 

−𝑘12𝑈1
′′ − 𝑘22𝜙

′′ + (𝑏4 + 𝑏5)(𝜙̈ − 𝛺2𝜙) = 0. 
(27) 

By using the coordinate transformation Eq. (26) can be transformed to the inertia reference 

frame (𝑋, 𝑌, 𝑍). The results are not presented in this paper for the sake of simplicity. 

In present study emphasis is placed on only the problem involving the bending-transverse 

shear coupling. 

2.5. Approximate solution method 

In order to find the approximate solution of the rotating composite shaft, the quantities 𝑈2(𝑥, 𝑡), 

𝑈3(𝑥, 𝑡), 𝜃𝑦(𝑥, 𝑡) and 𝜃𝑧(𝑥, 𝑡) are assumed in the form: 

𝑈2(𝑥, 𝑡) = ∑𝑈𝑗(𝑡)𝛼𝑗(𝑥)

𝑁

𝑗=1

, 𝑈3(𝑥, 𝑡) = ∑𝑈𝑗(𝑡)𝛼𝑗(𝑥)

𝑁

𝑗=1

, 

𝜃𝑦(𝑥, 𝑡) = ∑ 𝛩𝑗(𝑡)𝜓𝑗(𝑥)

𝑁

𝑗=1

, 𝜃𝑧(𝑥, 𝑡) = ∑ 𝛩𝑗(𝑡)𝜓𝑗(𝑥)

𝑁

𝑗=1

, 

(28) 

where 𝛼𝑗(𝑥) and 𝜓𝑗(𝑥) denote mode shape functions which fulfill all the boundary conditions of 

the composite shaft, 𝑈𝑗(𝑡) and 𝛩𝑗(𝑡) are the generalized coordinates. 

Substituting Eq. (28) into the governing Eq. (26) and applying Galerkin’s procedure, the 

following governing equations in matrix form can be found: 
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[𝑀]{𝑋̈} + [𝐶]{𝑋̇} + ([𝐾𝛺] + [𝐾1]){𝑋} = {𝑓}, (29) 

where [𝑀] denotes the mass matrix, [𝐶] the gyroscopic matrix, [𝐾1] the elastic stiffness matrix, 
[𝐾𝛺] stiffness matrix which depends on the rotational speed 𝛺, {𝑓} the generalized force vector. 

{𝑋̈},  {𝑋̇}  and {𝑋}  denote the generalized acceleration, velocity and displacement vectors 

respectively. 

These matrices can be written as follows: 

[𝑀] =

[
 
 
 
 
 
 
 
 𝑏1𝐸𝑖𝑗 + ∑ 𝑏1𝑙

𝐷𝐸𝑖𝑗
𝐷𝑙

𝑁𝐷

𝑙=1
0 0 0

0 𝑏1𝐸𝑖𝑗 + ∑ 𝑏1𝑙
𝐷𝐸𝑖𝑗

𝐷𝑙
𝑁𝐷

𝑙=1
0 0

0 0 −𝑏4𝐹𝑖𝑗 − ∑ 𝑏4𝑙
𝐷

𝑁𝐷

𝑙=1
𝐹𝑖𝑗

𝑙 0

0 0 0 −𝑏5𝐹𝑖𝑗 − ∑ 𝑏5𝑙
𝐷

𝑁𝐷

𝑙=1
𝐹𝑖𝑗

𝑙

]
 
 
 
 
 
 
 
 

, (30) 

[𝐶] =

[
 
 
 
 
 
 
 
 

∑ 𝐶𝑦𝑦
𝑏𝑙

𝑁𝐷

𝑙=1
𝐸𝑖𝑗

𝑏𝑙

(

 
−2𝛺𝑏1𝐸𝑖𝑗 − 2𝛺 ∑ 𝑏1𝑙

𝐷
𝑁𝐷

𝑙=1
𝐸𝑖𝑗

𝐷𝑙

+∑ 𝐶𝑦𝑧
𝑏𝑙

𝑁𝐷

𝑙=1
𝐸𝑖𝑗

𝑏𝑙

)

 0 0

2𝛺𝑏1𝐸𝑖𝑗 − 2𝛺 ∑ 𝑏1𝑙
𝐷

𝑁𝐷

𝑙=1
𝐸𝑖𝑗

𝐷𝑙 + ∑ 𝐶𝑧𝑦
𝑏𝑙

𝑁𝐷

𝑙=1
𝐸𝑖𝑗

𝑏𝑙 ∑ 𝐶𝑧𝑧
𝑏𝑙

𝑁𝐷

𝑙=1
𝐸𝑖𝑗

𝑏𝑙 0 0

0 0 0 0
0 0 0 0]

 
 
 
 
 
 
 
 

, (31) 

[𝐾𝛺] =

[
 
 
 
 
 −𝑏1𝛺

2𝐸𝑖𝑗 − 𝛺2 ∑ 𝑏1𝑙
𝐷𝐸𝑖𝑗

𝐷𝑙
𝑁𝐷

𝑙=1
0 0 0

0 −𝑏1𝛺
2𝐸𝑖𝑗 − 𝛺2 ∑ 𝑏1𝑙

𝐷𝐸𝑖𝑗
𝐷𝑙

𝑁𝐷

𝑙=1
0 0

0 0 0 0
0 0 0 0]

 
 
 
 
 

, (32) 

[𝐾1] =

[
 
 
 
 
 
 −𝑘55𝐼𝑖𝑗 + ∑ 𝐾𝑦𝑦

𝑏𝑙
 
𝐸𝑖𝑗

𝑏𝑙
𝑁𝐷

𝑙=1
∑ 𝐾𝑦𝑧

𝑏𝑙
 
𝐸𝑖𝑗

𝑏𝑙
𝑁𝐷

𝑙=1
𝑘55𝐽𝑖𝑗 −𝑘35𝐾𝑖𝑗

∑ 𝐾𝑧𝑦
𝑏𝑙

 
𝐸𝑖𝑗

𝑏𝑙
𝑁𝐷

𝑙=1
−𝑘66𝐼𝑖𝑗 + ∑ 𝐾𝑧𝑧

𝑏𝑙
 
𝐸𝑖𝑗

𝑏𝑙
𝑁𝐷

𝑙=1
−𝑘46𝐾𝑖𝑗 𝑘66𝐽𝑖𝑗

−𝑘55𝑂𝑖𝑗 −𝑘46𝑃𝑖𝑗 −𝑘44𝑄𝑖𝑗 + 𝑘55𝐹𝑖𝑗 0

−𝑘35𝑃𝑖𝑗 −𝑘66𝑂𝑖𝑗 0 −𝑘33𝑄𝑖𝑗 + 𝑘66𝐹𝑖𝑗]
 
 
 
 
 
 

, (33) 

{𝑓}𝑇 = 𝛺2 ∑ 𝑏1𝑙
𝐷𝑒𝑙𝐵𝑖

𝐷𝑙(𝑐𝑜𝑠 𝛺𝑡 𝑠𝑖𝑛 𝛺𝑡 0 0)1×4𝑁

𝑁𝐷

𝑙=1

, (34) 

where: 

𝐸𝑖𝑗 = ∫ 𝛼𝑖𝛼𝑗𝑑𝑥
𝐿

0

, 𝐹𝑖𝑗 = ∫ 𝜓𝑖𝜓𝑗𝑑𝑥
𝐿

0

, 𝐸𝑖𝑗
𝐷𝑙 = ∫ 𝛼𝑖𝛼𝑗𝛥(𝑥 − 𝑥𝐷𝑙)𝑑𝑥

𝐿

0

, 

𝐹𝑖𝑗
𝐷𝑙 = ∫ 𝜓𝑖𝜓𝑗𝛥(𝑥 − 𝑥𝐷𝑙)𝑑𝑥

𝐿

0

, 𝐸𝑖𝑗
𝑏𝑙 = ∫ 𝛼𝑖𝛼𝑗𝛥(𝑥 − 𝑥𝑏𝑙)𝑑𝑥

𝐿

0

, 𝐼𝑖𝑗 = ∫ 𝛼𝑖𝛼𝑗
′′

𝐿

0

𝑑𝑥, 

𝐽𝑖𝑗 = ∫ 𝛼𝑖𝜓𝑗
′

𝐿

0

𝑑𝑥, 𝐾𝑖𝑗
 = ∫ 𝛼𝑖𝜓𝑗

′′𝑑𝑥
𝐿

0

, 𝑂𝑖𝑗 = ∫ 𝜓𝑖𝛼𝑗
′𝑑𝑥

𝐿

0

, 𝑃𝑖𝑗 = ∫ 𝜓𝑖𝛼𝑗
′′𝑑𝑥

𝐿

0

, 

𝑄𝑖𝑗 = ∫ 𝜓𝑖𝜓𝑗
′′𝑑𝑥

𝐿

0

, 𝐵𝑖
𝐷𝑙 = ∫ 𝛼𝑖𝛥(𝑥 − 𝑥𝐷𝑙)𝑑𝑥

𝐿

0

,   (𝑖, 𝑗 = 1,2, … ,𝑁). 

(35) 
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The above approximate equations of the motion (29) can be easily simplified as the generalized 

eigenvalue problem. So the free vibration, stability and response of the composite shaft system 

can be studied by the eigenvalue equation. The resulting equation is not presented for the sake of 

simplicity. 

3. Numerical simulations 

3.1. Model verifications 

In order to examine the influence of the number of mode shape functions used in the solution 

of the equation on the accuracy of the results, the numerical results of natural frequencies are 

shown in Table 1 for an increasing number of mode shape functions. From Table 1 it can be seen 

that to obtain accurate results of the first three natural frequencies, no more than six mode shape 

functions are required. This indicates clearly that the convergence of the present model is quite 

good. 

The natural frequencies of a cantilever composite shaft obtained for the problem without shear 

deformation using the present model together with those obtained in [14] are shown in Table 2 for 

different rotating speeds. A perfect agreement of numerical results with those in [14] can be seen. 

Table 1. Effect of model number 𝑁 on natural frequencies (𝛺∗ = 0 and 𝜃 = 30°) 

𝑁 𝜔1
∗ 𝜔2

∗  𝜔3
∗  𝜔4

∗ 𝜔5
∗  𝜔6

∗  

2 2.99 11.87 - - - - 

4 2.98 11.68 25.17 42.41 - - 

6 2.97 11.65 25.12 41.90 60.29 80.02 

8 2.97 11.64 25.10 41.84 60.21 79.22 

10 2.97 11.64 25.09 41.82 60.18 79.14 

Table 2. Comparison of the natural frequencies of a cantilever composite shaft without shear deformation 

𝛺∗ 𝜔1
∗ 𝜔2

∗  𝜔3
∗  𝜔4

∗ 𝜔5
∗  𝜔6

∗  

0 3.5160 3.5160 22.0345 22.0345 61.6973 61.6973 

Ref. [14] 3.5160 3.5160 22.0340 22.0340 61.6970 61.6970 

2 1.5160 5.5160 20.0345 24.0345 59.6973 69.6973 

Ref. [14] 1.5160 5.5160 20.0340 24.0340 59.6970 63.6970 

3.5 0.0160 7.0160 18.5345 25.5345 58.1973 65.1973 

Ref. [14] 0.0000 7.0160 18.5340 25.5340 58.1970 65.1970 

4 - 7.5160 18.0345 26.0345 57.6973 65.6973 

Ref. [14] - 7.5160 18.0340 26.0340 57.6970 65.6970 

8 - 11.5160 14.0345 3.30345 53.6973 69.6973 

Ref. [14] - 11.5160 14.0340 30.0340 53.6970 69.6970 

The variation of natural frequencies vs. rotating speed for simply supported shear shaft is 

shown in Fig. 2 from the present model with the ones from [7]. The numerical results are given in 

terms of the normalized natural frequencies and rotating rate that are defined by  
𝜔∗ = 𝜔 𝜔0⁄ , 𝛺∗ = 𝛺 𝜔0⁄ , where the normalizing factor 𝜔0 = 138.85 rad/s is the fundamental 

frequency of the non-rotating shaft with 𝜃 = 0°. 
From this figure it clearly appears that when  𝛺∗ = 0 a single zero-speed mode natural 

frequency is obtained. As the rotating speed 𝛺∗ is increased, due to the gyroscopic effect the 

natural frequencies ‘split’ into the upper and lower frequency branches. The upper frequency 

branch is associated with the forward whirling frequency (FW or F) motion. Similarly lower 

frequency branch is associated with the backward whirling frequency (BW or B) motion. The 

minimum rotating rate at which the BW frequency becomes zero is referred to as the critical 

rotating speed, which will cause the dynamically unstable motion of the rotating shaft. In addition 

to this, it can obviously be seen that the present numerical results are in good agreement with the 
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results presented in [7]. 
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Fig. 2. The natural frequency of a simply supported composite shaft versus rotating speed  

for different ply angles 

3.2. Results and discussion 

In the following application the natural frequencies, critical rotating speeds and the unbalance 

response of a composite shaft system are computed using presented model. The composite rotor 

system is a composite shaft with one rigid disk supported by two bearings at the ends, the disk is 

at the mid-point of the shaft as shown in Fig. 3. The shaft geometrical properties are: 𝐿 = 2.47 m, 

𝑟 = 0.0635 m, ℎ = 0.001321 m [15]. Ratio of length over radius of the shaft is 38.89764 and 

radius over thickness 48.10606, which are suitable for features of the slender thin-walled shaft and 

consistent with assumption as used in the present model. The shaft is made by boron-epoxy 

composite material with parameters as follows: 𝐸11 = 2.11 GPa,  𝐸22 = 24.1 GPa,  

𝐺12 = 𝐺13 = 𝐺23 = 6.9 GPa, 12 = 0.36,  = 1967.0 kg/m3 [3]. The stacking sequence of the 

composite shaft is [±𝜃]5. The properties of the disk and the two bearings are given in Table 3. 

Table 3. The properties of disk and bearings [5] 

 Disk Bearings 

𝑏1𝑙
𝐷  (kg) 2.4364 - 

𝑒 (10-5 m) 5.0000 - 

𝑏4𝑙
𝐷 , 𝑏5𝑙

𝐷  (kg m2) 0.1901 - 

𝐾𝑦𝑦 , 𝐾𝑧𝑧 (107 N/m) - 1.75 

𝐶𝑦𝑦, 𝐶𝑧𝑧 (107 Ns/m) - 5.00 

 
Fig. 3. The composite shaft system with bearings and disk 
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Fig. 4. The Campbell diagram of a composite shaft system (𝜃 = 0°) 
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Fig. 5. The Campbell diagram of a composite shaft system (𝜃 = 60°) 

0 4000 8000 12000 16000 20000
0

160

320

480

640

3B,3F 2F

2B

=

1B,1F

 

 

N
a

tu
ra

l 
fr

e
q
u
e
n
c
y
 

(H
z
)

Speed of rotation (rpm)

4023rpm

 
Fig. 6. The Campbell diagram of a composite shaft system (𝜃 = 90°) 

Based on mode convergence examination it is found that 𝑁 = 5 gives suitably converged 

eigenvalues. So for all results given in this paper 𝑁 = 5 unless otherwise noted. 

Figs. 4-6 present the Campbell diagrams which display the variation of the first three 

frequencies with respect to rotating speed for various fiber ply-angles. The crossover point of the 

straight line with BW curves yields the critical rotating speed of the composite shaft system. The 
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predicted critical rotating speeds for the fiber ply-angles 𝜃 = 0°, 60°, 90° are 𝛺𝑐𝑟 = 1414 rpm, 

2477 rpm and 4023 rpm respectively. The results show that non-rotating natural frequencies and 

the critical rotating speeds increase as fiber ply-angle increases. The reason is that the bending 

siffnesses 𝑘33 and 𝑘44 increase when fiber ply-angle increases. 
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Fig. 7. The Campbell diagram of a composite shaft system  

(— with shear deformation; - - - without shear deformation) 
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Fig. 8. The first two critical speeds of a composite shaft system versus ratio of length over radius 
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Fig. 9. The first two critical speeds of a composite shaft system versus ratio of radius over thickness 
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Fig. 7 presents the Campbell diagrams both with and without transversal shear effects. The 

critical rotating speeds predicted by the model with and without transversal shear deformation are 

found to be 𝛺𝑐𝑟 =  2477 rpm and 3081 rpm for the first critical rotating speed and  
𝛺𝑐𝑟 = 23542 rpm and 24750 rpm for the second critical rotating speed respectively. The error of 

24.38 % in the first critical rotating speed and 5.13 % in the second critical rotating speed can be 

observed for problems with and without shear effects. As a result, the classical composite thin-

walled beams over-estimate the stability of composite shaft system. 

Figs. 8 and 9 present the variation of critical rotating speed with respect to the shaft parameters 

𝐿 𝑟⁄  (ratio of length over radius) and 𝑟 ℎ⁄  (ratio of radius over thickness) for different fiber 

ply-angles respectively. The results show that critical speeds decrease as 𝐿 𝑟⁄  increases, whereas 

they increase as 𝑟 ℎ⁄  increases. 
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Fig. 10. The first two natural frequencies of a composite shaft system versus  

ratio of length over radius (𝛺 = 20000 rpm) 
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Fig. 11. The first two natural frequencies of a composite shaft system versus  

ratio of radius over thickness (𝛺 = 20000 rpm) 

Figs. 10 and 11 present the variation of the first two natural frequencies with respect to the 

shaft parameters 𝐿 𝑟⁄  and 𝑟 ℎ⁄  for different fiber ply-angles respectively. Because of the 

influences of rotating speed (𝛺 = 20000 rpm) there are the upper and lower frequency branches 

for each whirling mode as shown in these figures. 

From Figs. 10 and 11 it can be seen that the variations of natural frequencies with the 
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parameters 𝐿 𝑟⁄  and 𝑟 ℎ⁄  are similar to that previously presented for the critical rotating speed. 

However, from these figures it is evident that rotating speed has much more influence on the 

higher-mode ones than the lower-mode ones. 
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Fig. 12. Trajectory of a composite shaft system for a transient unbalance load:  

(a) undercritical rotating speed 𝛺 = 3000 rpm; (b) critical rotating speed 𝛺 = 𝛺𝑐𝑟 = 4023 rpm;  

(c) supercritical rotating speed 𝛺 = 5000 rpm 
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Fig. 12 presents the trajectories of the geometric center of the rigid disk for various rotating 

speeds (3000, 4023 and 5000 rpm). It clearly shows that when rotating speed is equal to the critical 

rotating speed 𝛺 = 𝛺𝑐𝑟 = 4023 rpm, a violent whirling response occurs due to resonant vibration. 

It can also be noted that the forward mode of a supercritical composite shaft system is stable since 

the internal damping of the composite shaft is not taken into account in the presented model. 
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Fig. 13. The time response of the displacement at the disk center: (a) 𝑈2(𝐿/2, 𝑡); (b) 𝑈3(𝐿/2, 𝑡) 

Fig. 13 presents the time response of the displacement at the disk center which corresponds to 

that previously presented in Fig. 12. It can be seen from Fig. 12 and 13 that the unbalance 

responses arrive rapidly to the steady state vibration due to the external damping from bearings. 

4. Conclusion 

This paper deals with the structural modeling and dynamical analysis of rotating composite 

shaft. An analytical model capable of predicting of the natural frequency, the critical rotating speed 

and the unbalanced response of composite shaft system has been proposed based on the 

thin-walled composite beam theory referred to as VAM. Numerical simulations of the effects of 

various parameters including fiber ply-angle, geometric dimension and the transverse shear 

deformation on frequencies and critical rotating speeds are performed. The comparative study and 

the convergence examination of the approximate solution methodology show that the analytical 
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model and numerical method developed in this paper can be used to highlight the dynamical 

behaviors of rotating composite shaft system. The present model can further be extended to 

incorporate the effects of internal damping of composite shaft for evaluating the dynamical 

instabilities due to internal damping. This improvement will be reported in the forthcoming paper.  
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