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Abstract. A structural damage diagnosis method based on information exergy is developed in this 

study. Damage sensitive features are firstly extracted from the sensory information using 

information exergy philosophy and then structural health condition is evaluated using similarity 

matching. The proposed diagnostic method integrates multi-point and multi-moment structural 

health monitoring information to perform structural damage identification. Thus structural damage 

progressing information can be captured and uncertainty within the damage diagnostic process 

can be reduced. The effectiveness and accuracy of the proposed structural fault identification 

approach is demonstrated through experimental tests on a truss-type structure with singular value 

spectrum exergy as damage sensitive feature. 

Keywords: structural damage diagnosis, information exergy, process information fusion, singular 

value decomposition. 

1. Introduction 

Structures are often of security and economic significance and they deteriorate once put into 

service. How to perform structural health monitoring and damage diagnosis to sustain structural 

safety and reliability is the focus of both academics and practitioners [1]. Structural damage 

diagnosis technique can identify the occurrence, location and severity of damage in a structure, so 

that proper measures can be taken beforehand. 

Most structural damage identification methods are based on vibration signature analysis and 

have found promising applications [2, 3]. Some effects and features of system nonlinear vibration 

as well as troubleshooting measures have been outlined in [4]. Empirical mode decomposition and 

wavelet transform are combined in [5] to pinpoint occurring time and evaluate extent of structural 

damage. And ambient vibration response analysis is employed to calculate scour depth of bridge 

foundation in [6].  

Structural damage diagnosis results are of uncertainty due to various uncertainties, such as 

measurement uncertainty, modeling errors and physical variability [7, 8]. To obtain more reliable 

fault identification results, methods integrating multi-source information by D-S theory have been 

tailored for structural defects diagnosis [9, 10]. These methods mostly merging sensory 

information at the same moment and time-varying measurement uncertainty cannot be managed.  

For better structural damage diagnostic performance, an information exergy-based method 

integrating multi-point and multi-moment structural health monitoring information is proposed in 

this study. The proposed method can reveal structural damage evolving process and thus 

uncertainty within the damage diagnostic process can be reduced, especially the time-varying 

measurement uncertainty. 

The remainder of this paper is organized as follows. A brief introduction to information exergy 

is given in Section 2. Then the information exergy-based damage diagnosis method is developed 

in Section 3. Also, illustration for information-exergy feature extraction is presented in this section. 
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Damage identification of a truss structure is carried out in Section 4 with discussions. Section 5 

concludes this paper with some summaries and future research directions. 

2. A brief introduction to information exergy 

In this section, generalized information entropy is introduced firstly and then the definition of 

information exergy is given. 

2.1. Generalized information entropy 

Information entropy (Shannon entropy) was firstly proposed by C. E. Shannon as a criterion 

for analyzing and comparing probability distributions [11]. It provides a measure of information 

of any distribution and piece of information source. 

It is now clear that the information entropy � of an information source � is related to the space 

division and the corresponding measurement defined on the space as the following form [13]:  

� = − ��(��)

�

ln�(��), (1)

where: ��(� = 1, 2, … ), limited to �� ∩ �� = �, ∀� ≠ � and � = ∪ ��� , is a division of the information 

source, like the realizations of a random variable; �(•), limited to 
 �(•) = 1
�

, is the measurement of the information source on the dividing 

space, much like a probability density function.  

Like Shannon entropy, generalized information entropy can work as a criterion for 

interpretating a piece of information source. In the case of damage diagnosis, it can reveal useful 

information about the condition monitoring time series, which is associated with the damage 

dynamics of the structure or system.  

Generalized information entropy methods have been applied in mechanical and structural 

faults diagnosis using structural health monitoring information as information source and damage 

sensitive features as measures [12, 13]. Nevertheless these generalized entropy-based diagnostic 

methods are still based on moment sensory condition monitoring time series and uncertain 

diagnostic results may be resulted [14, 15]. Therefore the concept of information exergy is 

discussed in the following subsection. 

2.2. Information exergy 

Exergy is defined as the maximum theoretical useful work obtained if a system � is brought 

into thermodynamic equilibrium with the environment by means of processes in which the � 

interacts only with this environment [16]. Exergetic analysis has been used in [17] for chiller 

health monitoring and performance assessment.  

Before introduction of the information exergy, definition of moment condition monitoring time 

series should be cleared. It refers to one piece of sensory time series quickly acquired at one 

moment. While in a condition monitoring process serval sets of condition monitoring time series 

are recorded.  

Recently, information exergy based on the generalized information entropy has been coined 

for rotating machinery vibration faults diagnosis in [18]. 

Information exergy, denoted as �(�) is a time cumulating function of information entropy as 

follows: 
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�(�) =  �(�)d���

��

, (2)

where: �(�) is generalized information entropy of moment sensory condition monitoring time series 

at �;  �� and �2 are the starting and ending moment of the condition monitoring process.  �(�) is called planar information exergy. 

Planar information exergy �(�) is descreted as the following way to simplify the calculation 

and application: 

�(� − 1) = � �(�) + �(� + 1)

2

���

���

, (3)

where: �(�) is the generalized information entropy of sensory condition monitoring time series at 
descreted moment �;  � (� = 1, 2, … , �) is a discrete moment in the interval [�1, �2] and � is the number of total 

descrete moments of the condition monitoring process.  

Finally, all the �(� − 1)  are arranged into a vetor � = [�1, �2, … , ���1]T  ( �  is the 

transposition operator). This vetor combines all the information in a condition monitoring process, 

thus more confident diagnostic decision can be made.  

3. Structural damage diagnosis based on information exergy 

Based on the information exergy given in the previous section, a structural damage 

identification method is proposed in subsection 3.1 with interpretations. And singular value 

spectrum information exergy is presented in subsection 3.2 to illustrate how information 

exergy-based features can be extracted. 

3.1. Structural damage diagnostic method  

The proposed method for structural damage diagnosis (Fig. 1) primarily consists of two phases, 

the off-line learning phase (the part enclosed in the red dashed line) and the on-line exploiting 

phase as follows: 

(1) Acquire vibrational signals through the data acquisition system, especially from the 

structural health monitoring system of the structure of interest. 

(2) Extract features from the original vibration time series, such as singular value spectrum, 

wavelet packet decomposition power spectrum etc. 

(3) Calculate the generalized information entropy pertaining to the extracted feature according 

to Eq. (1). 

(4) Compute the information exergy related to the above information entropy with Eq. (3). 

(5) Construct the information exergy library of typical damage modes of the interested 

structure which is to be used as a searching pool during the exploiting phase. 

(6) Match retrieval based on similarity criterion (distance metrics or likelihood probability) 

when an unknown instance arrives. 

(7) Make decision-whether to output matched damage mode(s), or to compile the unkown 

instance into the library as a typical damage mode itself. 

Information exergy-based damage identification method is a generic framework that many 

kind of feature extraction techniques and similarity matching criterions can be embeded. Exergic 
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features combining muti-moment condition monitoring time series can caputure the damage 

dynamics of the structure and reduce the uncertainty of the diagnostic results.  

 
Fig. 1. Flow chart of the structural damage diagnostic method based on information exergy 

3.2. Extraction of singular value spectrum information exergy 

Many kinds of information exergic features can be constructed to perform structural damage 

diagnosis. Here singular value spectrum information exergy is used to illustrate how information 

exergic features are extracted from the condition monitoring time series.  

Firstly, the moment time series �	 (� = 1, 2, … , �), is embeded into the reconstructed phase 

space with an analysis window of width � and time-delay � (Fig. 2), thus its trajectory matrix is 

obtained as follows: 

� = � �� �
 … �����
⋮

��

⋱

���
⋮���� ⋯ �����

����×�

. (4)

Note that when the time-delay � equals unitary, then we get the Hankel matrix based trajectory 

matrices as in [19]. 

Then, the trajectory matrix � is subjected to singular value decomposition [20]: � = ���� , (5)

and the diagnal matrix � is as the following form: 

� = �� 0

0 0
�
����×�

, � = diag !�, !
, … , !�",    ∀!� > 0, # ≤ �". (6)
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None-zero !�  (� = 1, 2, … , #) preserves principal information of the trajectory matrix and is 

defined as singular value spectrum of the original moment time series �	.  

Singular value spectrum can be viewed as a division of the original moment time series in the 

singular value spectrum space with the following measure: 

� !�" =
!�∑ !��

. (7)

Thus generalized information entropy can be difined according to Eq. (1) using �(!�) . 

Hereafter this kind of generalized information entropy is denoted as singular value spectrum 

infomation entropy (SVS-InEn).  

1
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Fig. 2. Illustration of the trajectory matrix construction schematic 

To some exent, SVS-InEn reflects the complexity of energy distribution of the moment time 

series in the singular value spectrum space. The larger the SVS-InEn is, the more disperse the 

energy is and the more complicated the moment time series is. 

Based on the above analysis, one SVS-InEn can be derived for each moment time series using 

Eq. (7) and Eq. (1). Considering Eq. (3), corresponding singular value spectrum information 

exergy is obtained by combining results of all the moment time series together, hereafter 

abbrivated as SVS-InEx.  

Further taking the multi-points sensory information into account, a SVS-InEx feature matrix % can be obtained arranging multi-moment and multi-point condition monitoring information in 

the row and column, respectively:  

% =

&''
'''
''(

)�� + )
�
2

)�
 + )


2

⋯
)�� + )
�

2

�)�� + )�����
2




���

⋮

�)�
 + )����

2

⋯




���

⋱

�)�� + )�����
2




���

⋮

� )�� + )�����
2

���

���

⋯ � )�� + )�����
2

���

��� *++
+++
++,

�����×�

, (8)

where � and - are the number of total discrete moments and sensory points of the condition 

monitoring process.  

Other types of information exergic feature can be constructed in a similar procedure. The 

SVS-InEx feature matrix merging time and space information of a structure as damage sensitive 

index will be applied to the damage diagnosis of a truss-like structure in the following section. 

4. Experimantal case study and results analysis 

Damage diagnosis of an experimental truss structure using information exergy-based method 
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is studied in this setion. Damage modes of single and multipe bolt looseness are investigated in 

this case study as these kind of damages are more common in practice [21]. 

4.1. Experimental setup 

The structure (Fig. 3(a)) used in this study is a one by one bay three-story truss structure. It is 

composed of angle steel bolted together in the four vertices of each level and the dimension is 400 

by 400 by 900 (in mm). To facilitate the management of the date files and damage scenarios, all 

the 16 vertices of the structure are marked as � � � from the top to the bottom, where � and � are 

the level number and the vertices of each level, respectively. Each bolted point off-table is installed 

an acceleration sensor (Fig. 3(b)) to collect its vibrational time-series signal and total of 12 channel 

signals are acquired in every running. During the study, ES-15 hydraulic shaking table (Fig. 4) 

output a sine wave of 3 mm amplitude and 12 Hz frequency is employed in the experiment to 

excite the truss structure.  

 
(a) 

 
(b) 

Fig. 3. Three-story truss structure: (a) overall view and (b) details of the sensor installation 

 
Fig. 4. ES-15 hydraulic shaking table 

4.2. Damage modes and data preparation 

Three structural damage modes are considered in this case study and they are tabulated in 

Table 1. The structure was initially bolted by a dynamic wrench to work as benchmark undamaged 
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condition. While bolt at the 1-2 point of the structure was loosed to simulate single bolt loosing 

damge mode 2 and both bolts at the 1-2 and 2-2 joint were released as multiple bolt loosness 

damge mode 3. During the tests, other factors that may have impacts on the diagnostic processes 

were tightly controlled to study potentials of the proposed information exergy-based method for 

damage identification. 

Table 1. Seeded damage modes 

Damage mode 
1 2 3 

Integrity Single bolt looseness Two bolt looseness 

During conditioning motoring process, four pieces of moment condition monitoring time series 

of acceleration signals were acquired. Each moment condition monitoring time series was sampled 

with a sampling frequency of 200 Hz and data points of 1 K with the Emerson 2130. 

a)  

b)  

c)  

Fig. 5. Acceleration time-histories of point 1-2 under three scenarios:  

a) damage mode 1; b) damage mode 2; c) damage mode 3 
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4.3. Results and discussions 

The acceleration signals of point 1-2 and point 2-2 under these three scenarios are illustrated 

in Fig. 5 and Fig. 6, respectively. For space reasons, the four pieces of time series of each scenario 

are plotted in the same subfigures with a spacing of 1 s (the corresponding flat parts).  

a)  

b)  

c)  

Fig. 6. Acceleration time-histories of point 2-2 under three scenarios:  

a) damage mode 1; b) damage mode 2; c) damage mode 3 

It is noticed that the moment time series from the same damage modes aquired consecutively 

demonstrated very different patterns, such as Fig. 6(a). Also, there are outliers in one of the four 

samples (Fig. 5(b) and Fig. 6(c)). Damage diagnosis based on these moment time series will result 

in uncertain or even errorous results. 
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4.3.1. Qualitative results with discussions 

Four consecutive moment time series of the accleration of the chalked sensory points (Fig. 3) 

are employed for damage identification of each scenario. After data preprocesssing, the SVS-InEn 

and SVS-InEx features for the two bolt looseness damage modes are respectively shown in Fig. 7 

and Fig. 8. Please note that the sensory pionts (1-1, 1-2, ..., 3-4, as marked in Fig. 3(a)) are 

sequentially denoted from 1 to 12.  

a)  

b)  

c)  

Fig. 7. Singular value spectrum information entropy under three scenarios:  

a) Damage mode 1; b) Damage mode 2; c) Damage mode 3 

Some results can be concluded from these two figures. Firstly, the SVS-InEn is inclined to 

decrease with the occurrence of bolt looseness and this is true as the less uncertainty one 

information source is the smaller the information entropy is. Secondly, although the SVS-InEn 

can differentiate damage mode 2 from damage mode 1, it can not identify the multiple bolt 

looseness (damage mode 3) from undamaged scenario (damage mode 1) with high confidence, 

because SVS-InEn of the two cases are both within almost the same range, i.e. 1~3 (Fig. 7). 

Thirdly, both the two damaged modes are regconized as different from the integrity mode by the 

SVS-InEx feature since SVS-InEx of the three senarios are varying within different ranges  

(Fig. 8). Finally, it is observed that the variance between damage mode 2 and damage mode 1 is 

much larger than that between damage mode 3 and damage mode 1, which is counter-intuition 

and needs further studies. 
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a)  

b)  

c)  

Fig. 8. Singular value spectrum information exergy under three scenarios:  

a) damage mode 1; b) damage mode 2; c) damage mode 3 

a)  

b)  

c)  

Fig. 9. Residual singular value spectrum information exergy:  

a) damage mode 1 vs. 2; b) damage mode 1 vs. 3; c) damage mode 2 vs. 3 
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4.3.2. Quantative results with discussions 

To perform quantitative analysis, residual SVS-InExs (Fig. 9) are calculated firstly based on 

SVS-InEx of the three damage modes and then three indices are used in the similarity matching 

step. 

The first two indices are common statistical features, i.e. absolute mean (�) and variance (.): 

� = � � |/��|

�

���

���

���

, (9)

. =
1

(� − 1) × - − 1
� �(/�� − �)


�

���

���

���

, (10)

where, /��  (� = 1, 2, … , � − 1; � = 1, 2, … , -),  is the entry of the residual SVS-InExs matrix. 

Absolute mean (� ) and variance (. ) of the residual SVS-InEx represents the average and 

fluctuation of the difference between two singular value spectrum exergy involved, respectively. 

Also, the proximity (0) which was superior in [18] is employed here for comparing purposes: 

0 = 1�2
 /�����

���� − 1
3�

���




. (11)

Index 0 demonstrates the closeness of the two SVS-InExs by interval.  

Since the scenarios considered in the experimental study are not enough to perform learning 

and exploiting phase of the proposed damage diagnosis method individually, the same damage 

modes are used both in the two phases. Thus the above three extracted SVS-InExs are complied 

as the information exergy library in the learning phase, while in the exploiting phase they are also 

input as unknown structural damage mode to be classified. Damage identification results using 

the above three indices are presented in Table 2. 

Table 2. Damage diagnostic results based on SVS-InEx 

 Damage mode 

1 vs. 2 

Damage mode 

1 vs. 3 

Damage mode 

2 vs. 3 

Absolute mean of the residual SVS-InEx (A) 0.810 0.562 0.248 

Variance of the residual SVS-InEx (V) 0.126 0.174 0.048 

Proximity of two SVS-InExs (P) 1.480 1.150 0.478 

All the three exergy-based indicators can discern the three damage scenarios with much margin 

and the largest ones of the three indices are marked bold. Similarly, the absolute mean (�) and 

proximity (0) indices of the SVS-InExs indicate that the biggest difference is between damage 

mode 1 and 2, while the variance (.) index captures the true severity of the bolt loosening. Thus 

indicator . is better than 0 in this case study. 

Statistical significance tests of the performances for the proposed method and singular value 

spectrum exergy feature are not included in the present paper due to limited experimental data. 

Nevertheless, other exergy-based damage sensitive features, i.e. information exergy, wavelet 

packet decomposition information exergy and continuous wavelet transform information exergy 

are used in the damage diagnositic framework and similar promising results are obtained (see 

Appendix). With the increasing of samples from structural health monitoring system, thresholds 

for pre-warning of structural failure can be statistically defined and safety-guarantee actions can 

be prepared and taken beforehand. 
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5. Conclusions  

A generic method based on information exergy for structural damage diagnostic is proposed 

in this paper to reduce uncertainty in the diagnosis process. Three damage modes seeded on a 

truss-type structure are all classified accurately both from qualitative and quantitative perspectives 

using information exergy method. Unlike information entropy or most other damage identification 

approaches, information exergy-based methods fuse muti-moment and multi-point information of 

a condition monitoring process to perform diagnosis, thus more reliable results can be obtained. 

Also information exergy feature demonstrates an increasing trend, which is desirable for structural 

diagnosis purposes. 

Information exergy is still at its early stage of engineering applications, especially for structural 

engineering fieds. As the proposed method is also a quantitative analysis framework, it will apply 

not only to health monitoring and safety assessment of truss-type structures, but also to safety 

assessment of other engineering structures, such as bridges, high buildings, oil/gas pipelines and 

pressure vessels. Also, more factors that may have great influence on the information exergy-

based damage diagnosis should be addressed in the future. 
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Appendix 

Table A1. Damage diagnostic results based on energy information exergy (E-InEx) 

 Damage mode 

1 vs. 2 

Damage mode 

1 vs. 3 

Damage mode 

2 vs. 3 

Absolute mean of the residual E-InEx (�) 3.510 2.680 0.825 

Variance of the residual E-InEx (�) 5.070 4.440 0.470 

Proximity of two E-InExs (�) 6.930 5.660 1.610 

Table A2. Damage diagnostic results based on  

wavelet packet decomposition information exergy (WPD-InEx) 

 Damage mode 

1 vs. 2 

Damage mode 

1 vs. 3 

Damage mode 

2 vs. 3 

Absolute mean of the residual WPD-InEx (A) 0.666 0.381 0.285 

Variance of the residual WPD-InEx (V) 0.067 0.074 0.038 

Proximity of two WPD-InExs (P) 1.180 0.754 0.514 

Table A3. Damage diagnostic results based on  

continuous wavelet transform information exergy (CWT-InEx) 

 Damage mode 

1 vs. 2 

Damage mode 

1 vs. 3 

Damage mode 

2 vs. 3 

Absolute mean of the residual CWT-InEx (�) 1.130 0.479 0.214 

Variance of the residual CWT-InEx (�) 0.538 0.174 0.034 

Proximity of two CWT-InExs (�) 2.240 1.900 0.401 

 


