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Abstract. Coupling loss factors (CLF) and velocity responses has been computed for two plates 

joined in a ‘L’ junction configuration using Statistical Energy Analysis. The analyses have been 

carried out to study the effects of internal loss/damping factor on the coupling factors. The effects 

of plate widths on the coupling factors and velocity responses at high frequencies has also been 

studied. The statistical energy parameters have been computed using analytical wave approach, 

finite element method and Free-SEA software. The studies have revealed that the coupling factor 

computed by the wave approach is independent of the internal loss factor as compared to the 

values computed using finite element method, wherein CLF increases linearly as the internal loss 

factor varies from a zero value, followed by a transition region and converges to the values 

obtained by the analytical wave approach and remains insensitive to changes at higher values of 

damping. The results obtained from the studies signify the effects of internal loss/damping factor 

and plate widths on proper selection and usage of the above mentioned methods for the estimation 

of coupling factors and velocity responses using statistical energy approach.  

Keywords: statistical energy analysis, equipartition of energy, finite element method, spatial 

averaging.  

1. Introduction  

Statistical Energy Analysis (SEA) is one of the widely used energy methods, developed in the 

early 1960s to predict the vibration response of structures at high frequencies [1, 2]. The initial 

applications were related to aerospace, to predict rocket noise of satellite launch vehicles, wherein 

the technological improvements leading to lightweight aerospace structures, and high frequency 

broad-band loads attracted more attention to higher order modal analyses for  predicting structural 

fatigue, equipment failure and noise production. SEA parameters can be computed by analytical 

wave approach, power injection method [3], experimental approach [4], finite element method or 

the receptance method [5]. The results for steady state excitation using the power injection method 

[3] has been found to be in good agreement with the predicted SEA parameters as compared to 

transient excitation. The method predicting the SEA parameters by power balance equations, 

wherein proper care has to be taken to avoid ill-conditioning of the matrices due to inversion, is 

achieved by keeping the values of internal loss factor higher than the coupling loss factor (CLF) 

to avoid equi-partition of modal energy and satisfy the assumption of weak coupling between the 

subsystems. 

SEA involves predicting the vibration response of a complex structure by dividing it into a 

number of subsystems, and is characterized by mean energy per mode. The change in energy level 

between subsystems is characterized by internal and coupling loss factors. Internal loss factor 

corresponds to damping factor in the subsystem itself and CLF corresponds to the energy 

dissipation during flow across the subsystems. Coupling loss and internal loss/damping factors 

constitute a matrix of energy balance equations, which is used to compute the energies by the 

power balance approach, once the power inputs are known. The CLFs can be obtained using 

analytical wave approaches from coefficients of energy propagation, via junctions of subsystems, 

known for several types of junctions like L, T, and X-junction [6] for semi-infinite beams/plates. 
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Alternatively, the values can also be found by the power injection approach after computing the 

energies and power inputs through experiments or finite element analysis.  

In this paper comparisons have been made for the computed coupling factors and velocity 

responses for an ‘L’ shaped junction between two sub-systems, by modeling it as two beams/plates 

at right angles using analytical wave approach, finite element method and Free-SEA software [7]. 

The effects of internal loss/damping factor on the computed coupling factors have been studied. 

It has been observed that though the coupling factor is independent of internal loss/damping factor 

according to classical SEA wave approach [8], it varies linearly with change in internal loss 

factor/damping factor at lower damping values, as computed using modal approach by the finite 

element method. The effect of plate widths on the computed coupling factors and velocity 

responses for the configuration has also been studied. 

2. Statistical energy analysis 

SEA derives its principles based on the first law of thermodynamics of conservation of energy. 

The system under consideration is divided into subsystems with the usual aim to predict the 

vibrational energy level of each subsystem, which is obtained by establishing a set of power 

balance equations, based on the assumption that the energy flow between two connected 

subsystems is proportional to the difference in the subsystem modal energies. Assuming power 

input injected to an independent single subsystem, i.e. not connected to other subsystems, the 

subsystem would vibrate with energy 𝐸 with a power loss only due to dissipation, associated with 

vibrational energy by the damping loss factor 𝜂, that can be expressed as: 

𝑃̅𝑖,𝑖𝑛 = 𝑃̅𝑖,𝑑𝑖𝑠𝑠 = 𝜔𝜂〈𝐸̅〉, (1) 

where, 𝑃̅𝑖,𝑖𝑛 – Power injected in subsystem 𝑖, 〈𝐸̅〉 – Frequency averaged energy in subsystem 𝑖, 𝜂 

– Structural damping loss factor, 〈  〉 – indicates spatial averaging, and bar indicates frequency 

averaging. 

In case of two coupled subsystems (Fig. 1), there is a power exchange among the coupled 

subsystems, resulting in energy loss in the form of vibrational energy from one subsystem and 

corresponding gain of the energy by the other connected subsystem. 

 
Fig. 1. Energy flow across two subsystems 

The power balance equation is given by: 

𝑃̅𝑖,𝑖𝑛 = 𝑃̅𝑖,𝑑𝑖𝑠𝑠 + 𝑃̅𝑖𝑗 , (2) 

𝑃̅𝑗,𝑖𝑛 = 𝑃̅𝑗,𝑑𝑖𝑠𝑠 + 𝑃̅𝑗𝑖 , (3) 
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where the power transmitted between subsystem 𝑖 and 𝑗 is given by: 

𝑃̅𝑖𝑗 = 𝜔𝜂𝑖𝑗〈𝐸̅𝑖〉 − 𝜔𝜂𝑗𝑖〈𝐸̅𝑗〉, (4) 

𝑃̅𝑗𝑖 = 𝜔𝜂𝑗𝑖〈𝐸̅𝑗〉 − 𝜔𝜂𝑖𝑗〈𝐸̅𝑖〉. (5) 

The CLFs (𝜂𝑖𝑗 and 𝜂𝑗𝑖) have been included in the Eqs. (4) and (5). The power balance equation 

can be further simplified as: 

𝑃̅𝑖,𝑖𝑛 = 𝜔𝜂𝑖〈𝐸̅𝑖〉 + 𝜔𝜂𝑖𝑗〈𝐸̅𝑖〉 − 𝜔𝜂𝑗𝑖〈𝐸̅𝑗〉, (6) 

𝑃̅𝑗,𝑖𝑛 = 𝜔𝜂𝑗〈𝐸̅𝑗〉 + 𝜔𝜂𝑗𝑖〈𝐸̅𝑗〉 − 𝜔𝜂𝑖𝑗〈𝐸̅𝑖〉, (7) 

where, 𝜔 – central band frequency, 𝜂𝑖 – internal damping loss factor in subsystem 𝑖, 𝜂𝑖𝑗 – CLF 

from subsystem 𝑖 to subsystem 𝑗, 𝜂𝑗𝑖 – CLF from subsystem 𝑗 to subsystem 𝑖, 〈𝐸̅𝑖〉 – frequency 

averaged energy in subsystem 𝑖, 〈𝐸̅𝑗〉 – frequency averaged energy in subsystem 𝑗. 

The power balance equation can be further related by defining new set of coefficients, called 

the power transfer coefficients (modal coupling factors) [2, 9]: 

𝑀𝑖𝑗 = 𝜂𝑖𝑗𝜔𝑛𝑖 = 𝜂𝑗𝑖𝜔𝑛𝑗 = 𝑀𝑗𝑖 , (8) 

where 𝑛𝑖 and 𝑛𝑗 are the modal density of subsystem 𝑖 and 𝑗 respectively. 

Assuming modal energy in both subsystems 𝑖  and 𝑗  are same, i.e. equipartition of modal 

energies in both subsystems 𝑖 and 𝑗 [4, 8], then: 

𝑛𝑖𝜂𝑖𝑗 = 𝑛𝑗𝜂𝑗𝑖 , (9) 

the power balance equation reduces to: 

𝑃̅𝑖,𝑖𝑛 = 𝜔𝜂𝑖〈𝐸̅𝑖〉 + 𝜔𝜂𝑖𝑗𝑛𝑖 (
〈𝐸̅𝑖〉

𝑛𝑖

−
〈𝐸̅𝑗〉

𝑛𝑗

), (10) 

𝑃̅𝑗,𝑖𝑛 = 𝜔𝜂𝑗〈𝐸̅𝑗〉 + 𝜔𝜂𝑗𝑖𝑛𝑗 (
〈𝐸̅𝑗〉

𝑛𝑗

−
〈𝐸̅𝑖〉

𝑛𝑖

), (11) 

where 
〈𝐸̅𝑖〉

𝑛𝑖
 and 

〈𝐸̅𝑗〉

𝑛𝑗
 are the modal energy (energy per mode) of subsystem 𝑖 and 𝑗 respectively. 

Similarly for 𝑛 subsystems the power balance equation can be given by: 

𝜔

[
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=

[
 
 
 
 
𝑃̅𝑖,1

𝑃̅𝑖,2

⋮
𝑃̅𝑖,𝑁]

 
 
 
 

. (12) 

In predictive SEA, coupling and damping loss factors are estimated through experiments, 

analytical or numerical approaches by solving the power balance equations for the unknown’s i.e. 

the energies of subsystems [6, 10]. In case of experimental SEA, power is injected to each 
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subsystem in the structure in turn by means of a hammer, a shaker or a loudspeaker. Then, each 

time the energy in each subsystem is measured (by accelerometers or microphones). Once the 

energies in all the subsystems are computed for the corresponding power to the respective 

sub-systems, with known material damping, the coupling factors in Eq. (12) can be found out by 

the matrix inversion approach. 

3. Analysis and procedure 

The coupling factor and velocity responses for two thin plates joined by ‘L’ junction (Fig. 2) 

has been analyzed by using analytical wave approach, finite element method and Free-SEA 

software. The material properties assumed for the configurations are given in Table 1. The length 

of each beam/plate has been assumed to be 1.0 m with a thickness of 2 mm. Pinned boundary 

conditions have been assumed both the beams/plates near the ‘L’ junction. The analyses have been 

carried out to study the effect of internal loss/damping factor on the CLF for the configuration by 

varying the internal loss factor in the range of 0.00001 to 0.04, for a width of 0.01 m for beam and 

0.9 m for the plate configuration. In addition studies have also been carried out to estimate the 

coupling factors and velocity responses for different widths, varying from 0.0025 m to 0.1 m for 

the beam and 0.01 m to 0.9 m for the plate with a constant value of internal loss factor of 0.04. 

 
Fig. 2. Two plates coupled at right angles 

Table 1. Material and geometrical specifications 

Internal damping 𝜂1 = 𝜂2 = 0.00001 to 0.04 

Width 𝑤 = {
0.0025 m to 0.1 m (Beam)

0.01 m to 0.9 m (Plate)
 

Length 𝐿 = 1.0 m 

Thickness 𝑡1 = 𝑡2 = 2 mm 

Density 𝜌 = 7800 kg/m3 

Poisson’s ratio 𝜐 = 0.3 

Young’s modulus 𝐸 = 200 GPa 

Force 𝐹 = 1 N 

Frequency 𝑓 = 1000 to 8000 Hz 

A brief description of the applied methods has been explained in the following sections. 

3.1. Analytical wave approach for plates 

The subsystems in consideration have been analyzed for flexural waves, which plays an 

important role for vibrations at high frequencies and sound radiation. The CLF 𝜂12 between two 
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plates for a line junction is given by [11, 12]: 

𝜂12 =
2𝐶𝐵𝐿𝜏12

𝜋𝜔𝐴
, (13) 

where 𝜔 is the angular forcing frequency, 𝐴 is the surface area, 𝑤 is the length of the junction of 

the two plates and 𝐶𝐵 is the bending wave speed of the first plate for two connected plates as the 

function of center frequency, 𝑓 given by: 

𝐶𝐵 = √1.8𝐶𝐿𝑡𝑓. (14) 

𝜏12  is the wave transmission coefficient defined as the ratio of transmitted power to the 

incident power. The wave transmission coefficient for random incidence vibrational energy of two 

coupled plates at right angles to each other can be calculated by the approximate formula as: 

𝜏12 = 𝜏12(0)
2.754𝑋

1 + 3.24𝑋
 , (15) 

where, 𝑋 is the ratio of plate thicknesses. 

The normal transmission coefficient 𝜏12(0) may be calculated as: 

𝜏12(0) = 2(𝜓
1

2⁄ + 𝜓−1
2⁄ )−2, (16) 

where, 𝜓 =
𝜌1 𝐶𝐿1

3
2⁄  𝑡1

5
2⁄

𝜌2 𝐶𝐿2

3
2⁄  𝑡2

5
2⁄
 . 

The modal density of flat plate in flexural vibration is given by: 

𝑛(𝜔) =
𝐴√12

2𝜋𝐶𝐿𝑡
, (17) 

where longitudinal wave speed is given by: 

𝐶𝐿 = √
𝐸

𝜌(1 − 𝜐2)
. (18) 

𝐸 is the Young’s modulus, 𝜐 is the Poisson’s ratio, 𝐴 is the surface area and 𝑡 the thickness of 

the plate under consideration. The time averaged power input for a unit force 𝐹 is given by: 

𝑃𝑖𝑛 =
1

2
|𝐹̃|

2
Re{𝑍𝑚

−1}. (19) 

The real part of drive-point mechanical impedance of an infinite plate of thickness 𝑡 and mass 

per unit area 𝜌𝑎 in flexural vibration is given by: 

Re{𝑍𝑚
−1} = 8 √

𝐸𝑡3𝜌𝑎

12(1 − 𝜐2)
. (20) 

The forcing frequencies are in the range of 0-8000 Hz. The energies in each subsystem can be 

computed by the matrix inversion approach from Eq. (12) after computation of power input and 
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coupling factor. The maximum velocity response 𝑉𝑖 of each subsystem can be obtained from the 

obtained energy 𝐸𝑖 under a particular power input by Eq. (20): 

𝑉𝑖 = √
2𝐸𝑖

𝑀
. (21) 

3.2. Analytical wave approach for beams 

The CLF for two beams joined at right angles to each other in terms of transmission coefficient 

𝜏12 is given by [13]: 

𝜂𝑖𝑗 =
𝐶𝐵𝑖𝜏𝑖𝑗

𝜔𝐿𝑖

, (22) 

where the bending wave speed is given by: 

𝐶𝐵𝑖 = √
𝜔4𝐸𝑖𝐼𝑖
𝜌𝑖𝐴𝑖

, (23) 

where 𝐿𝑖 is the length of the beam 𝑖 under consideration, 𝜔 is the angular forcing frequency and 

𝐶𝐵𝑖 is the sound speed of flexural waves, 𝐸𝑖 is the Young’s modulus, 𝐼𝑖  is the second moment of 

area, 𝜌𝑖 is the density and 𝐴𝑖 is the cross-sectional area. The transmission coefficient across the 

joint relating the incident waves in subsystem 𝑖 to be transmitted in subsystem 𝑗 for the flexural 

wave may be computed as: 

𝜏𝑖𝑗 =
2𝛽2 + 1

9𝛽2 + 6𝛽 + 2
 , (24) 

where: 

𝛽 =
𝐶𝐿𝑖

𝐶𝐵𝑖

, (25) 

and the longitudinal wave speed for beam is given by: 

𝐶𝐿 = √
𝐸

𝜌
. (26) 

The time averaged power input for a unit force 𝐹 is obtained as: 

𝑃𝑖𝑛 =
1

2
|𝐹̃|

2
Re{𝑍𝑚

−1}. (27) 

The real part of drive-point mechanical impedance of an infinite beam of thickness ( 𝑡 ), 

cross-sectional area (𝐴) and density (𝜌) in flexural vibration for an end loading is given by [11]: 

Re{𝑍𝑚
−1} = 2.67𝜌𝐴√𝐶𝐿𝑡𝑓, (28) 

and: 
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Re{𝑍𝑚
−1} = 0.67𝜌𝐴√𝐶𝐿𝑡𝑓, (29) 

for central loading respectively. The forcing frequencies are in the range of 0-8000 Hz. The 

energies in each subsystem can be computed by the matrix inversion approach from Eq. (12) after 

computation of power inputs and coupling factor. The maximum velocity response 𝑉𝑖  of each 

subsystem can be computed from the energy 𝐸𝑖 under a particular power input, i.e.: 

𝑉𝑖 = √
2𝐸𝑖

𝑀
. (30) 

The coupling factors and velocity responses have been computed by in-house program built 

using the analytical wave approach as discussed above, in MATLAB software. 

3.3. Finite element analysis 

The finite element analysis using the modal approach has been carried out using Ansys 

Software [14]. In numerical methods the behavior of SEA parameters with change in inputs 

(geometry, boundary conditions and damping) for the given structure can be modeled easily and 

is less time consuming as compared with the experimentation of the real structure. The other 

advantages of numerical method include cost efficiency and flexibility. In case of beam elements, 

the configuration under consideration has been modeled using 200 beam3 elements (Fig. 3). Beam 

3 is a uni-axial element with tension, compression, and bending capabilities. The element has three 

degrees of freedom at each node: translations in the nodal 𝑥 and 𝑦 directions and rotation about 

the nodal 𝑧-axis. 

The same structure has also been modeled using shell 63 elements with a size of 0.01 m for 

the configuration with plate width of 0.9 m and a size of 0.02 m for the rest of the considered 

configurations (Fig. 4) with pinned boundary conditions. Shell63 has both bending and membrane 

capabilities. Both in-plane and normal loads are permitted. The element has six degrees of freedom 

at each node: translations in the nodal 𝑥, 𝑦 and 𝑧 directions and rotations about the nodal 𝑥, 𝑦, and 

𝑧-axes. 

A harmonic force with unit load intensity has been applied in the range of frequencies of 

0-8000 Hz. The load has been applied on one beam/plate and the velocity responses on both the 

beams/plates were computed. Macros have been developed in Ansys Parametric Design language 

(APDL) for automating the computation of energy (𝐸𝑖) of each subsystem with mass (𝑀𝑖) and 

maximum subsystem velocity (𝑉𝑖) according to Eq. (12). Spatial energy average has been obtained 

by loading each subsystem at 25 %, 50 %, 75 % and 100 % of its length: 

𝐸𝑖 =
𝑀𝑖𝑉𝑖

2

2
. (31) 

 

  

Fig. 3. Finite element model (beam elements) Fig. 4. Finite element model (shell elements) 
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The coupling factors are computed by the matrix inversion approach from Eq. (12) after 

computation of power inputs and corresponding energies in all the subsystems. The maximum 

average velocity response 𝑉𝑖 of each subsystem can be obtained directly from the post-processing 

of the output results. 

3.4. Free-SEA software 

Free SEA is a free software running under Win32, developed as a result of several SEA codes 

used in research work, by Dr. Ennes Sarradj at Technische Universität, Dresden [7]. It implements 

the SEA – for the calculation of high frequency air- and structure-borne sound. The software is 

available free of charge and may be used for educational purposes, non-commercial and 

commercial research as long the user accepts the terms and conditions of the license as stated by 

the author. The coupling factors and velocity responses for the two plates joined at right angles 

obtained from the above – mentioned methods for different cases has been compared with the 

results obtained through Free SEA software in the results section. 

4. Results and discussion 

The variation of CLF against frequencies, for a width of 0.01 m and internal loss factor of 0.04 

has been shown in Table 2 and Fig. 5 for the beam formulation. The same has been shown using 

the plate formulation for a plate width of 0.9 m and internal loss factor of 0.04 in Table 3 and 

Fig. 6. The frequency averaged coupling factors computed by both of the methods are in good 

agreement. 

Table 2. Variation of coupling factor v/s frequencies for the beam 

Frequency 

(Hz) 

Coupling Loss Factor 

Analytical FEM 

1000 0.0050 0.000171 

2000 0.0034 0.003185 

3000 0.0027 0.003420 

4000 0.0023 0.001785 

5000 0.0020 0.001800 

6000 0.0018 0.003060 

7000 0.0017 0.001062 

8000 0.0015 0.001831 

Average 0.0025 0.002310 

Table 3. Variation of coupling factor vs frequencies for the plate 

Frequency 

(Hz) 

Coupling Loss Factor 

Analytical FEM Free-SEA Software 

1000 0.0046 0.006268 0.004709 

2000 0.0032 0.005084 0.00326 

3000 0.0026 0.001899 0.002682 

4000 0.0023 0.001878 0.002277 

5000 0.0020 0.001196 0.002036 

6000 0.0019 0.000986 0.001848 

7000 0.0017 0.000804 0.001687 

8000 0.0016 0.000746 0.001545 

Average 0.0025 0.002359 0.002505 

The CLF obtained using the analytical wave approach for beam and plate is insensitive to the 

variation in internal loss factor. The CLF computed using finite element method increases linearly 

as the internal loss factor varies from a zero value, followed by a transition region and converges 
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to the values obtained by the analytical wave approach and remains insensitive to changes at 

higher values of damping (Fig. 7, 8) for both beam and plate formulation. The observed results 

are in agreement with similar studies carried out by Woodhouse [8] for simply supported coupled 

beams and plates. 

 
Fig. 5. Variation of coupling loss factor vs frequencies for beam 

 
Fig. 6. Variation of coupling loss factor vs frequencies for plate 

 
Fig. 7. Variation of coupling factor with internal loss factor for beam 
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Fig. 8. Variation of coupling factor with internal loss factor for plate 

 
Fig. 9. Variation of coupling factor with width for beam 

 
Fig. 10. Variation of coupling factor with width for shell 



1098. A COMPARISON OF DIFFERENT METHODS FOR DETERMINATION OF COUPLING FACTOR AND VELOCITY RESPONSE OF COUPLED PLATES.  

ACHUTHAN C. PANKAJ, SRIDHAR SASTRY, S. M. MURIGENDRAPPA 

 © VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2013. VOLUME 15, ISSUE 4. ISSN 1392-8716 1895 

The variation of CLF with variation in width for the beam and plate has been plotted in Fig. 9 

and Fig. 10. The values computed by analytical wave approach for both beam and plates are 

independent of the change in width. The CLF computed for beam using the finite element method 

is in agreement with the analytical values. It is evident (Fig. 10) that, the variation of the CLF 

obtained by finite element method, analytical method and Free-SEA software is high, but as the 

width increases it converges, where the plate theory is valid.  

The results for velocity responses obtained for horizontal beam with unit force loading against 

the variation in frequencies for a width of 0.01 m and internal loss factor of 0.04 has been plotted 

in Fig. 11. In all the cases, the velocity response decreases with increase in the frequencies, as 

expected. The velocity responses obtained using the finite element method are closer to the 

responses found using analytical wave approach for beams with increase in the frequency. 

 
Fig. 11. Velocity responses for the horizontal beam 

The results for velocity responses obtained for horizontal plate with unit force loading against 

the variation in frequencies for a plate width of 0.9 m and internal loss factor of 0.04 has been 

plotted in Fig. 12. The trend of the observed curves remains similar to the earlier one; and the 

velocity responses obtained using analytical wave approach and Free-SEA software are similar 

with a close match in the values obtained using the finite element method, as the plate theories 

govern the results for the considered width. 

 
Fig. 12. Velocity responses for the horizontal plate 



1098. A COMPARISON OF DIFFERENT METHODS FOR DETERMINATION OF COUPLING FACTOR AND VELOCITY RESPONSE OF COUPLED PLATES.  

ACHUTHAN C. PANKAJ, SRIDHAR SASTRY, S. M. MURIGENDRAPPA 

1896 © VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. DECEMBER 2013. VOLUME 15, ISSUE 4. ISSN 1392-8716  

Finally the results for velocity responses obtained for horizontal plate under the action of unit 

force on it has been plotted in Fig. 13 against the variation in widths of the plate for the value of 

internal loss factor of 0.04 and a frequency of 8000 Hz. The velocity responses obtained using the 

analytical wave approach for plates; finite element method and Free-SEA software closely match 

with each other at larger values of widths. The velocity responses obtained using analytical 

approach and finite element method for beams agrees well with each other. Similarly the velocity 

responses obtained by the analytical wave approach for plates and Free-SEA software is 

underestimated for lower values of widths, whereas the velocity responses obtained using finite 

element method overestimates the responses at lower widths. 

 
Fig. 13. Velocity responses for horizontal plate 

5. Conclusion 

The CLF values computed by analytical wave approach for beam, plates and the free-sea 

software are independent of the change in width and damping/internal loss factor. The CLF 

computed using finite element method increases linearly as the internal loss factor varies from a 

zero value, followed by a transition region and converges to the values obtained by the analytical 

wave approach and remains insensitive to changes at higher values of damping. At low values of 

damping, common for most of the materials, the coupling factors computed by the analytical 

approach would be overestimated. The coupling factor computed by finite element methods or 

experimental SEA is expected to be more accurate in this region. 

The accuracy of the CLFs and velocity responses computed using the finite element and 

analytical wave approach for plates/shells is in agreement for larger values of widths, wherein the 

plate/shell theories are valid. The velocity responses obtained by the analytical wave approach for 

plates and Free-SEA software is underestimated for lower values of widths, whereas the velocity 

responses obtained using finite element method overestimates the responses at lower widths. 

Similarly, the velocity responses obtained using analytical approach and finite element method 

for beams agree well with each other, but underestimate the responses at larger widths as the beam 

theory assumptions become invalid. 
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