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Abstract. Planetary Drive with Small Teeth Number Difference (PDSTND) is widely utilized in 

industry for its advantages including large transmission ratio, huge torque and high efficiency. 

However, interference can easily occur due to the small teeth number difference between annulus 

and planetary gear, which can be solved by modification. Besides, noise and vibration are still the 

remained problems to influence its working performance. In order to discover the interaction of 

modification coefficient and vibration, a nonlinear dynamic model is established by using 

Lagrange equation and solved by the fourth-order Runge-Kutta method. Modification coefficient, 

backlash and transmission error are used as the control parameters to investigate their effects on 

the dynamic characteristics of the system, by means of bifurcation diagrams, Poincaré maps, 

trajectories and frequency spectrums. The results show that the system turns into quasi-periodic 

motion, and then alternates between period-𝑛 (𝑛 = 5, 6) and chaotic motion as modification 

coefficient increases. Moreover, the responses of backlash and transmission error to the system 

get more complex with increasing modification coefficient. The results can provide new 

theoretical basis for the design, manufacture and fault diagnosis of PDSTND.  

Keywords: modification coefficient, PDSTND, dynamic characteristics, noise and vibration. 

1. Introduction 

Planetary Drive with Small Teeth Number Difference (PDSTND) is widely applied in industry 

for its advantages including large transmission ratio, huge torque, small size and high efficiency. 

However, interference can easily occur because of the small teeth number difference between 

annulus and planetary gear, which will lead to the failure of PDSTND and can be solved by 

modification. Besides, the noise and vibration are still the remained problems, which not only 

deteriorate the working condition but also reduce the reliability and durability of machine systems. 

Therefore, it is necessary to study modification methodology and dynamic characteristics of 

PDSTND for prolonging lifetime and improving efficiency. 

In the early 20th century, different modification methods and laws were developed to solve 

interference, the proposal of “closed graph” method represented the maturity of modification 

methodology until the 1950s [1]. Subsequently, the problem of the distribution of the sum of 

profile shift coefficients on each cylindrical gear was treated and recommended especially in 

standards for gearing optimization [2, 3], which were compared and discussed by Mirică [4]. 

In order to prolong life and reduce power loss, more relevant studies on gears mainly focused 

on both good tooth load capacity and efficiency. In early studies, the analyses and load calculation 

of PDSTND obeyed the ISO standards approximately [5-7]. Afterwards, Chen and Walton [8] 

studied optimum design of PDSTND. Shu [9] and Zhou [10] conducted studies on determination 

of load-sharing factor of PDSTND. Li [11] presented an effective method to solve contact analysis 

and calculate the loads distributed on teeth, pins and rollers. Besides, various methods had been 

presented to evaluate the local friction coefficient and efficiency [12-14], and these methods were 

compared incorporating modification coefficient by Baglioni [15]. 
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Recently, a variety of mathematical models had been developed to investigate gear noise and 

vibration [16, 17]. With further research for the dynamic characteristics of PDSTND, more 

parameters were taken into consideration in the analysis of PDSTND. Time-varying stiffness, 

transmission error and backlash were analyzed as parametric excitation to study the effect of each 

to gearing system in [18-20]. Lumped parameter models were used to predict the free and forced 

vibration characteristics of the planetary gear sets [21-23], and finite element models were applied 

for complex analysis of the effects of design parameters on dynamic response [24, 25]. 

It is obvious that the previous studies on modification and dynamics are irrelevant. This present 

work aims to discover the interaction between modification coefficient and dynamics 

incorporating backlash and transmission error. A nonlinear dynamic model is proposed by using 

Lagrange equation and solved by the fourth-order Runge-Kutta method. Modification coefficient, 

backlash and transmission error are used as the control parameters to investigate their effects on 

the system, by means of bifurcation diagrams, Poincaré maps, trajectories and frequency 

spectrums. 

2. Nomenclature 

PDSTND planetary drive with small teeth number 

difference 
 𝑃 force 

DOF degree of freedom  𝑀,𝑚 mass 

𝐻 carrier  𝛼 pressure angle 

𝐾 annulus  𝑓 backlash function 

𝑉 planetary gear  𝐼 inertia 

𝐷 drive  𝑡 time 

𝐿 load  𝜏 dimensionless time 

𝐵 teeth facewidth  𝑧 teeth number 

𝜃 angular displacement  𝜀 contact ratio 

𝑋 displacement  𝜁 meshing damping coefficient 

𝑥1, 𝑥2 modification coefficient  𝜂 shaft damping coefficient 

𝑏 backlash  𝐌 mass matrix 

𝑒 transmission error  𝐊 stiffness matrix 

𝑟 radius  𝐂 damping matrix 

𝑐 damping  subscripts: 

𝑘 stiffness  𝑏 base circle 

𝑇 torque  𝑚 meshing 

3. Dynamic model of system 

3.1. Nonlinear model 

The object studied in this paper is the well-known KHV PDSTND used widely in industry, 

and the schematic diagram is shown in Fig. 1 [8], which consists of drive 𝐷, carrier 𝐻, annulus 𝐾, 

planetary gear 𝑉  and load 𝐿 . Annulus 𝐾  is fixed on the housing, and other components are 

mounted on the flexible shafts supported by bearings. 

In order to establish the dynamic model of the KHV shown in Fig. 1 efficiently, some 

assumptions are proposed as follows: 

a) The stiffness of the supporting bearings for each rotating part is large enough to neglect the 

transverse displacement of each part, and only torsional displacement is considered. 

b) Annulus 𝐾 is fixed on the housing; all displacements of annulus 𝐾 are not included. 

c) The effect of friction caused by moving bearings is not taken into account. 

d) The equal angular velocity mechanism in KHV is regarded as a flexible shaft with stiffness 
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and damping. 

Based on the above assumptions, the 4-DOF nonlinear dynamic model is established as shown 

in Fig. 2, and corresponding DOFs are rotations of drive 𝐷, carrier 𝐻, planetary gear 𝑉 and load 𝐿. 

 
Fig. 1. The schematic diagram of the KHV 

 
Fig. 2. The dynamic model of the KHV 

The angular displacement of each part is 𝜃𝐷 , 𝜃𝐻 , 𝜃𝑉  and 𝜃𝐿  respectively, meanwhile, the 

equivalent transverse displacements in the pressure line direction caused by rotational 

displacements are introduced to simplify the mathmatical model: 

𝑋𝐷 = 𝜃𝐷𝑟𝑏𝐻,   𝑋𝐻 = 𝜃𝐻𝑟𝑏𝐻,   𝑋𝑉 = 𝜃𝑉𝑟𝑏𝑉,   𝑋𝐿 = 𝜃𝐿𝑟𝑏𝑉 . (1) 

The following effects are calculated in the mathmatical model: inertia of drive 𝐷, torsional 

stiffness and damping of input drive shaft, inertia of carrier 𝐻 , inertia of planetary gear 𝑉 , 

time-varying meshing stiffness and damping of the meshing teeth between annulus 𝐾  and 

planetary gear 𝑉, torsional stiffness and damping of output drive shaft, inertia of load 𝐿, backlash, 

transmission error, drive and load torque. The dynamic mathematical model can be derived by 

using Lagrange equation as follows: 

{
 
 

 
 𝑀𝐷�̈�𝐷 + 𝑐𝐷𝐻(�̇�𝐷 − �̇�𝐻) + 𝑘𝐷𝐻(𝑋𝐷 − 𝑋𝐻) = 𝑃𝐷,

𝑀𝐻�̈�𝐻 − 𝑐𝐷𝐻(�̇�𝐷 − �̇�𝐻) − 𝑘𝐷𝐻(𝑋𝐷 − 𝑋𝐻) − 𝑘𝑚𝑓(𝑋𝑉 − 𝑋𝐻 − 𝑒(𝑡), 𝑏) − 𝑐𝑚(�̇�𝑉 − �̇�𝐻 − �̇�(𝑡)) = 0,

𝑀𝑉�̈�𝑉 + 𝑐𝑉𝐿(�̇�𝑉 − �̇�𝐿) + 𝑘𝑉𝐿(𝑋𝑉 − 𝑋𝐿) + 𝑘𝑚𝑓(𝑋𝑉 − 𝑋𝐻 − 𝑒(𝑡), 𝑏) + 𝑐𝑚(�̇�𝑉 − �̇�𝐻 − �̇�(𝑡)) = 0,

𝑀𝐿�̈�𝐿 − 𝑐𝑉𝐿(�̇�𝑉 − �̇�𝐿) − 𝑘𝑉𝐿(𝑋𝑉 − 𝑋𝐿) = −𝑃𝐿,

 (2) 

where: 𝑀𝐷 =
𝐼𝐷

𝑟𝑏𝐻
2 , 𝑀𝐻 = (𝐼𝐻 +

𝑚𝑉𝑟𝑏𝐻
2

cos2𝛼
) /𝑅𝑏𝐻

2 , 𝑀𝑉 = 𝐼𝑉/𝑅𝑏𝑉
2 , 𝑀𝐿 = 𝐼𝐿/𝑅𝑏𝑉

2 , 𝑃𝐷 = 𝑇𝐷/𝑟𝑏𝐻, 
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𝑃𝐿 = 𝑇𝐿/𝑟𝑏𝑉 , 
𝑓: the backlash function which will be given in section 3.4, 

𝑒(𝑡): the transmission error which will be given in section 3.5. 

Due to the linear and nonlinear resilience in the system, the equation can not be solved by 

analytic solution. Therefore, relative displacements in the direction of pressure line are defined as 

follows: 

{

𝑋𝐷𝐻 = 𝑋𝐷 − 𝑋𝐻,
𝑋𝑉𝐿 = 𝑋𝑉 − 𝑋𝐿,

𝑋𝑉𝐻 = 𝑋𝑉 − 𝑋𝐻 − 𝑒(𝑡).
 (3) 

Therefore, the set of simplified governing equations is obtained: 

{
  
 

  
 𝑀𝐷𝐻�̈�𝐷𝐻 + 𝑐𝐷𝐻�̇�𝐷𝐻 + 𝑘𝐷𝐻𝑋𝐷𝐻 +

𝑀𝐷𝐻

𝑀𝐻

𝑐𝑚(�̇�𝑉𝐻 − �̇�(𝑡)) +
𝑀𝐷𝐻

𝑀𝐻

𝑘𝑚𝑓(𝑋𝑉𝐻, 𝑏) =
𝑀𝐷𝐻

𝑀𝐷

𝑃𝐷,

𝑀𝑟𝑑�̈�𝑉𝐻 +
𝑀𝑉𝐻

𝑀𝑉

𝑐𝑉𝐿�̇�𝑉𝐿 +
𝑀𝑉𝐻

𝑀𝐻

𝑐𝐷𝐻�̇�𝐷𝐻 +
𝑀𝑉𝐻

𝑀𝑉

𝑘𝑉𝐿𝑋𝑉𝐿 +
𝑀𝑉𝐻

𝑀𝐻

𝑘𝐷𝐻𝑋𝐷𝐻 + 𝑐𝑚�̇�𝑉𝐻 + 𝑘𝑚𝑓(𝑋𝑉𝐻, 𝑏) = −𝑀𝑉𝐻�̈�(𝑡),

𝑀𝑉𝐿�̈�𝑉𝐿 + 𝑐𝑉𝐿�̇�𝑉𝐿 + 𝑘𝑉𝐿𝑋𝑉𝐿 +
𝑀𝑉𝐿

𝑀𝑉

𝑐𝑚(�̇�𝑉𝐻 − �̇�(𝑡)) +
𝑀𝑉𝐿

𝑀𝑉

𝑘𝑚𝑓(𝑋𝑉𝐻, 𝑏) =
𝑀𝑉𝐿

𝑀𝐿

𝑃𝐿,

 (4) 

where 𝑀𝐷𝐻 =
𝑀𝐷𝑀𝐻

𝑀𝐷+𝑀𝐻
, 𝑀𝑉𝐻 =

𝑀𝑉𝑀𝐻

𝑀𝑉+𝑀𝐻
, 𝑀𝑉𝐿 =

𝑀𝑉𝑀𝐿

𝑀𝑉+𝑀𝐿
. 

If a displacement vector 𝐗 is introduced: 

𝐗 = {𝑋𝐷𝐻, 𝑋𝑉𝐻, 𝑋𝑉𝐿}
𝑇. (5) 

the Eq. (4) can be given in the matrix form as: 

𝐌�̈� + 𝐂�̇� + 𝐊(𝑡)𝐟(𝐗, 𝑏) = 𝐏(𝑡), (6) 

where 𝐌 is the mass matrix, 𝐂 is the damping matrix, 𝐊 is the sitffness matrix, 𝐟(𝐗, 𝑏) is the 

vector expression of the backlash nonlinearity in section 3.4 and 𝐏(𝑡) is the vector expression of 

excitation. 

3.2. Modification coefficient 

In order to analyse the dynamic characteristics of the KHV, the structural parameters of the 

KHV are given in Table 1. 

Table 1. Structural parameters of the KHV 

Parameters Teeth number Module (mm) ha* Facewidth (mm) 

𝑉 30 3.5 0.8 20 

𝐾 33 3.5 0.8 20 

The closed graph of the system in Fig. 2 can be obtained and plotted in Fig. 3 based on the 

method in [26]. 

The lines in Fig. 3 are defined as follows: Line 1: limited line with 𝜀 = 1; line 2: restrict line 

with no teeth profile interference; line 3: limited line with no shortcut of the gear; line 4: restrict 

line with equal meshing angle. 

The points located on line 4 and in the region encompassed by the lines 1-3 are qualified for 

modification coefficient. 𝑀 (0.416, 0.601) and 𝑁 (0.835, 0.995) are two limited points. In order 

to simplify calculation, 𝑥1  will take place of the coordinate pair (𝑥1, 𝑥2)  in the following 

discussion. 



1131. EFFECT OF MODIFICATION COEFFICIENT ON NONLINEAR DYNAMIC CHARACTERISTICS OF PLANETARY DRIVE WITH SMALL TEETH NUMBER 

DIFFERENCE. HONGTAO LI, WENTIE NIU, DAWEI ZHANG, YANLING TIAN, SHENGLI FU 

94 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEBRUARY 2014. VOLUME 16, ISSUE 1. ISSN 1392-8716  

 
Fig. 3. Closed graph 

3.3. Calculation of mesh stiffness 

A method has been proposed for the meshing stiffness calculation of a spur gear pair [27], in 

which parabola is applied to fit the stiffness variation with time. The stiffness change for a 

single-tooth engagement is shown in Fig. 4. 

 
Fig. 4. Stiffness for a single-tooth engagement 

The stiffness of meshing point is 1.67 times as large as that of engaging-in point for inner 

gearing. The stiffness of engaging-in point 𝐴, pitch point 𝐶 and meshing point 𝐵 are 𝑘𝐴, 𝑘𝐶 and 

𝑘𝐵 respectively, and 𝑘𝛢 = 𝑘𝛣 = 𝑘′, 𝑘𝐶 = 1.5𝑘′. 
According to the ISO Standard [28], when 𝛼 = 20∘, 𝑥1 ≥ 𝑥2, −0.5 ≤ 𝑥1 + 𝑥2 ≤ 2, where 𝛼 

is the pressure angle, 𝑥1 and 𝑥2 are the gear and annulus modification coefficient respectively, the 

meshing stiffness in pitch point can be calculated by the following equation: 

𝑘𝐶 = 0.8 × 10
3𝐵/𝑞 (N/mm), (7) 

where 𝐵 is the teeth facewidth. 

𝑞 = 0.04732 +
0.15551

𝑧𝑣1
+
0.25791

𝑧𝑣2
− 0.00635𝑥1 −

0.11654𝑥1
𝑧𝑣1

± 0.00193𝑥2

±
0.24188𝑥2

𝑧𝑣2
+ 0.00529𝑥1

2 + 0.00182𝑥2
2, 

(8) 

where “+”is used for inner gearing, “–”is used for external gearing, 𝑧𝑣1 and 𝑧𝑣2 are the quivalent 

teeth numbers.  

The meshing stiffness expression is deduced by 𝐴, 𝐵, 𝐶 as follows: 
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𝑘(𝑡) = {
𝐴𝑡2 + 𝐵𝑡 + 𝐶,   𝑡 ∈ [0, 𝜀 − 1],

2𝐴𝑡2 + 2(𝐴 + 𝐵)𝑡 + (𝐴 + 𝐵 + 2𝐶),  𝑡 ∈ [𝜀 − 1, 1],
 (9) 

where 𝐴 = −2𝑘′/𝜀2, 𝐵 = 2𝑘′/𝜀, 𝐶 = 𝑘′. 
The average meshing stiffness can be derived by integration: 

�̅� = 0.866268𝜀𝑘𝐶 . (10) 

The time-varying meshing stiffness of the KHV for different 𝑥1 is shown in Fig. 5. 

 
Fig. 5. The time-varying meshing stiffness of the KHV for different modification coefficient 

( : 𝑥1 = 0.416, : 𝑥1 = 0.626, : 𝑥1 = 0.835) 

3.4. Backlash 

The backlash is inevitable in gear engagement due to the purpose for lubrication, machining 

error and wear at work. Under the condition of high speed and light load or frequent starting, the 

exsit of backlash will influence the contact condition. Meanwhile, the teeth will contact and 

separate repeatedly, which produces great impact on the dynamic characteristics of the system. 

The backlash nonlinearity can be expressed by a piecewise function as illustrated in Fig. 6. 

𝑓(𝑋) is nonlinear function of 𝑋, and is calculated by Eq. (11) [29]: 

𝑓(𝑋) = {
𝑋 − 𝑏, 𝑋 > 𝑏,
0, |𝑋| ≤ 𝑏,
𝑋 + 𝑏, −𝑏,

 (11) 

where 𝑏 is half of the backlash between the meshing teeth. 

 
Fig. 6. Backlash nonlinearity 
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3.5. Transmission error 

Gear transmission error excitation, which is essentially a type of displacement excitation, 

results from a combination of the gear machining and installation errors, uncoaxiality and gear 

teeth elastic deformation. Due to gear transmission error, oscillation will occur. The transmission 

error is set as a sine period function [30]: 

𝑒(𝑡) = 𝑒sin(𝜔𝑚𝑡 + 𝜙), (12) 

where 𝑒 is the transmission error amplitude, 𝜔𝑚 is the meshing frequency and 𝜙 is the meshing 

phase. 

3.6. Dimensionless dynamic equation 

Rigid displacement, linear and nonlinear resilience are included in Eq. (6). Meanwhile, due to 

the huge difference among the orders of magnitude of each coefficient, it is difficult to solve the 

equation by analytical solution. Therefore, dimensionless dynamic equation should be deduced by 

proper transformation. 

Propose 𝜔𝑛 = √�̅�𝑚 𝑀𝑣ℎ⁄ , where �̅�𝑚 is the average meshing stiffness. 

Meanwhile, a displacement scale 𝑏𝑐 = 1 μm and redefined dimensionless time 𝜏 = 𝑡𝜔𝑛 are 

introduced, other variables can be deduced as: 

�̅� = 𝐗/𝑏𝑐 , �̅� = 𝐈, 𝑐�̅�𝑗 = 𝑐𝑖𝑗/(𝑀𝑖𝑖𝜔𝑛), �̅�𝑖𝑗 = 𝑘𝑖𝑗/(𝑀𝑖𝑖𝜔𝑛
2), �̅�𝑖(𝑡) = 𝑃𝑖(𝑡)/(𝑀𝑖𝑖𝑏𝑐𝜔𝑛

2), 

�̅�𝑉𝐻 = 𝑒𝑉𝐻/𝑏𝑐, �̅� = 𝑏/𝑏𝑐 , �̅� = 𝜔/𝜔𝑛. 
(13) 

The backlash function in Eq. (11) can be transformed as: 

𝑓(�̅�) = {

�̅� − �̅�, �̅� > �̅�,

0, |�̅�| ≤ �̅�,

�̅� + �̅�, −�̅�.

 (14) 

The transmission error function in Eq. (12) also can be transformed as: 

�̅�(𝜏) = �̅�𝑉𝐻sin(�̅�𝜏 + 𝜙). (15) 

The dimensionless dynamic equation can be derived by substituting Eqs. (13-15) into Eq. (6): 

�̅��̈̅� + �̅��̇̅� + �̅�(𝜏)𝑓(�̅�, �̅�) = �̅�(𝜏). (16) 

4. Simulation results and discussion 

Due to the strong nonlinear characteristics of the dynamic model involving backlash and 

transmission error, established in section 3, the fourth-order Runge-Kutta method, ODE45, is 

adopted for the integration of sets of differential equations. The former 500 periods are discarded, 

and the last 100 periods are remained for analysis to eliminate the effect of free vibration. 

Modification coefficient, backlash and transmission error are used as the control parameters to 

investigate their effects on the system, by means of bifurcation diagrams, Poincaré maps, 

trajectories and frequency spectrums. System parameters of the KHV are given in Table 2. 
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Table 2. System parameters of the KHV 

𝐼𝐷  

(kg·m2) 
𝐼𝐾  

(kg·m2) 
𝐼𝑉  

(kg·m2) 
𝐼𝐿  

(kg·m2) 
𝜁 𝜂 

𝑇𝐷  

(N·m) 
𝑇𝐿  

(N·m) 

0.03 0.15 0.2175 0.03 0.1 0.005 50 50 

4.1. The effect of modification coefficient 

The change of modification coefficient can lead to the change of meshing stiffness which 

influences dynamic characteristics of the system [27]. Therefore, the study of effect of 

modification coefficient on the dynamic characteristics is beneficial to improve the dynamic 

characteristics of the system in design stage. 

Fig. 7 shows the bifurcation diagram of system using modification coefficient as the control 

parameter from 𝑥1 = 0.416 to 0.835 while 𝑏 = 2, 𝑒 = 5. It can be seen that when 𝑥1 is located at 

the range from 0.416 to 0.565, the motion is synchronous, and only one isolated point is 

correspondingly shown in Poincaré map for 𝑥1 = 0.5, as illustrated in Fig. 8a.With the increase in 

𝑥1, the response of system comes into quasi-periodic motion ranging from 0.565 to 0.568. Fig. 8b 

shows the trajectory, Poincaré map and frequency spectrum for 𝑥1 = 0.565; There are few points 

limited in certain region in the Poincaré map, closed curves with certain width in the trajectory 

and continuous bands with 1 peak, 1×, in frequency spectrum. When 𝑥1 varies at the interval of 

[0.568, 0.593], the motion becomes a sub-synchronous vibration with period-five, which can be 

proved by the five closed curves in the trajectory, five points in the Poincaré map and five peaks, 

0.48×, 0.57×, 0.8099×, 1×, 1.2×, in the frequency spectrum for 𝑥1 = 0.585 as shown in Fig. 8c. 

When 𝑥1 is larger than 0.593, irregular trajectory, discrete points in the Poincaré map as well as 

the continuous, broad band in frequency spectrum are shown in Fig. 8d for 𝑥1 = 0.63. All of these 

results prove that the system motion is chaotic. As 𝑥1 increases, the system response leaves chaotic 

motion and turns into period-six motion. The trajectory, Poincaré map and frequency spectrum 

for 𝑥1 =  0.761 illustrated in Fig. 8e convey information in accordance with that in Fig. 7. 

However, when 𝑥1 exceeds 0.768, the points of the attractor in Poincaré map gradually increase, 

the curves in the trajectory become wined and irregular, continuous and broad band appears in 

frequency spectrum as shown in Fig. 8f for 𝑥1 = 0.8, which means that the system comes into 

chaotic again. 

 
Fig. 7. The bifurcation diagram of 𝑥1 on the response of system 

What have been depicted in Figs. 7-8 demonstrate that modification coefficient has great 

influence on the dynamic behavior of system. When modification coefficient is small, the response 

of system is period-one motion and the amplitude decreases as modification coefficient increases. 

Afterwards, the system turns into quasi-periodic motion and alternates between period- 𝑛  

(𝑛 = 5, 6) and chaotic motion, and it can be explained that when the modification coefficient 

increases, the meshing stiffness becomes small, shock resistance becomes weak, and then the 

system motion gets more complex. 
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a) 𝑥1 = 0.5 

   
b) 𝑥1 = 0.565 

   
c) 𝑥1 = 0.585 

   
d) 𝑥1 = 0.63 

   
e) 𝑥1 = 0.761 

   
f) 𝑥1 = 0.8 

Fig. 8. Poincaré maps, trajectories and frequency spectrums of system at different 𝑥1 
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4.2. The effect of backlash with different modification coefficient 

Backlash is inevitable in gear meshing for the purpose of lubrication, machining and assembly 

errors. The effect of backlash on the dynamic characteristics of the system has been analyzed [31]. 

However, it is significant to analyze the dynamic characteristics of the system with different 

modification coefficient, by using the backlash as the control parameter. 

The bifurcation diagrams in Fig. 9 show how different 𝑥1 influences the effect of backlash on 

the system at the interval of [0, 2.2] when 𝑒 = 5. Regular trajectory, isolate point in the Poincaré 

map and single peak in frequency spectrum for 𝑏 = 0.5 and 𝑥1 = 0.5 illustrated in Fig. 10a show 

that the response of the system is period-one motion, which coincides with that in Fig. 9a. 

However, for the same 𝑏 = 0.5, the response becomes quasi-periodic motion for 𝑥1 = 0.761 as 

shown in Fig. 9b and Fig. 10b and chaotic motion for 𝑥1 = 0.83 as shown in Fig. 9c and Fig. 10c, 

which indicates modification coefficient has significant effects on the response. 

   
a) 𝑥1 = 0.5 b) 𝑥1 = 0.761 c) 𝑥1 = 0.83 

Fig. 9. The bifurcation diagram of 𝑏 on the response of system at different 𝑥1 

   

   
a) 𝑥1 = 0.5 b) 𝑥1 = 0.761 c) 𝑥1 = 0.83 

Fig. 10. Poincaré maps and trajectories of system at different 𝑥1 

According to the above analysis, the response turns into chaotic motion from period-one 

motion gradually as backlash increases, which is in accord with the results in literature [30], the 

reasonable explanation is that single contact becomes double contacts with increasing 𝑏, and the 

system motion gets more complex. Furthermore, small variation of modification coefficient can 

result in large change of response, which can be attributed to the combined effect of stiffness and 

backlash changes caused by the variation of modification coefficient. 
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4.3. The effect of transmission error with different modification coefficient 

The actual line of action will deviate from the theoretical engagement position due to 

machining error, assembly mistakes and gear teeth deformation, which also leads to variation in 

instantaneous transmission ratio and undesirable impact between the meshing teeth [31]. 

Therefore, it is valuable to analyze the dynamic characteristics of the system with different 

modification coefficient, by using transmission error as the control parameter. 

Fig. 11 shows the bifurcation diagram of e on the response of system under different 𝑥1 at the 

interval of [0, 5.5]. It can be seen that the response is synchronous motion with period-one at  

𝑒 = 4.55 and 𝑥1 = 0.5 illustrated in Fig. 11a and Fig. 12a. However, the curves in the trajectory 

become irregular and the points of the attractor in Poincaré map gradually increase for the same 𝑒 

as 𝑥1  increases, which indicates that the system becomes quasi-periodic motion and chaotic 

motion from synchronous motion as shown in Figs. 11-12. 

   
a) 𝑥1 = 0.5 b) 𝑥1 = 0.63 c) 𝑥1 = 0.83 

Fig. 11. The bifurcation diagram of e on the response of system at different 𝑥1 

   

   
a) 𝑥1 = 0.5 b) 𝑥1 = 0.63 c) 𝑥1 = 0.83 

Fig. 12. Poincaré maps and trajectories of system at 𝑒 = 4.55 at different 𝑥1 

The above comparison demonstrates that the response of 𝑒 to the system becomes chaotic 

motion through synchronous motion and quasi-periodic motion as 𝑒 increases. Meanwhile, the 

scope of synchronous motion becomes narrower as 𝑥1  increases. All results show that 

modification coefficient makes great effect on the response of 𝑒 to the system. 

5. Conclusions 

The nonlinear dynamic model is proposed by using Lagrange principle and solved by the 
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fourth-order Runge-Kutta method. Modification coefficient, backlash and transmission error are 

used as the control parameters to investigate their effects on the system, by means of bifurcation 

diagrams, Poincaré maps, trajectories and frequency spectrums. The following conclusions can be 

summarized from the present study: 

1) Modification coefficient makes great effect on the dynamic characteristics of PDSTND. 

When the modification coefficient is small, the response is steady state with period-one and the 

vibration amplitude decreases as the modification coefficient increases. Afterwards, the system 

turns into quasi-periodic motion and alternates between period-𝑛 (𝑛 = 5, 6) and chaotic motion, 

which can be explained as that when the modification coefficient increases, the meshing stiffness 

becomes small and shock resistance becomes weak, then the system motion gets more complex. 

2) Small variation of modification coefficient can result in large change of the response of 

backlash to system from period motion to chaotic motion, which can be attributed to the combined 

effect of the stiffness and backlash change caused by the variation of modification coefficient. 

3) Modification coefficient influences the response of transmission error to the system. 

Meanwhile, the scope of synchronous motion becomes narrower with increasing modification 

coefficient. 
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