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Abstract. A method is studied for determining the structure size interval of dynamic similar 

models of the isotropic sandwich plates. Firstly, a comparison between the two theories of plates, 

the Resineer theory and the Hoff theory, is conducted, including their governing equations and the 

ANSYS analytic solutions of frequency. The Resineer theory is chosen as the basic theory of this 

paper finally. Secondly, the scaling laws between the model and prototype of isotropic sandwich 

plate are established by combining the dimensional analysis and governing analysis. Both 

complete and incomplete geometric similarity conditions are discussed. Thirdly, the determination 

method of the structure size interval of the models is proposed. The nature vibration mode keeps 

the same and the nature frequency and harmonic response keep in proportion with the prototype 

of the sandwich plate. At last, the flow step of the intervals determination method is given. 

Keywords: isotropic sandwich plate, scale model, dynamic similarity, size interval. 

Nomenclature 

𝑎, 𝑏 Width and length of the plate 

𝑡ℎ Thickness of face sheets  

ℎ Thickness of the core 

𝑢, 𝑣, 𝑤  In-plane displacements of 𝑥, 𝑦 coordinate and the deflection 

𝑢±, 𝑣± 𝑥, 𝑦 coordinate in-plane displacements of top and bottom face sheets 

𝑈(𝑥), 𝑉(𝑥), 𝑊(𝑥, 𝑦) Modal function of 𝑢, 𝑣, 𝑤 

𝜔∗, 𝑓 Functions in simplified governing equation used to replace 𝑤, 𝜓𝑥, 𝜓𝑦 

𝜓𝑥, 𝜓𝑦 Rotation of 𝑥, 𝑦 coordinate 

𝛽𝑥 Shear deformation 

𝐸𝑓  Young module of face sheets 

𝐺𝑐 Shear module of core 

𝜇𝑓 Poisson’s ratio of face sheets 

𝜇 Poisson’s ratio of the core 

𝐷𝑓 Flexural stiffness of the face sheets 

𝐷 Flexural stiffness of isotropic sandwich plate 

𝐾𝐶  Shear stiffness of face sheets 

𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦 In-plane loads of the plate 

𝑞𝑖 Inertia force 

𝑞 External load of the plate 

𝜌 Mass area ratio 

𝜌𝑐 Density of the core (Rubber) 

𝜌𝑓 Density of the face sheets (Alloy) 

𝜔 Frequency 

𝜔𝑃 Frequency of the prototype 
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𝜔𝑃𝑟 Frequency of the prediction 

Ω Non-dimensional frequency 

𝑡 Time  

𝜆𝑗 Scale factors of parameter 𝑗 

𝜂 Discrepancy of the predict value 

𝐶min, 𝐶max Boundary value of the acceptable intervals 

1. Introduction 

An isotropic sandwich plate typically consists of two stiff and strong thin face sheets, which 

are made of metallic or fiber composite material and a thick but low density core, which is between 

the two face sheets and bonds them together. Such sandwich construction has been widely used 

in modern engineering, especially in aeronautical, marine and other mechanical industries for 

decades since it offers the possibility of achieving high bending stiffness with little weight penalty. 

The investigation of the dynamic characteristics has become more and more important with the 

increasing use of sandwich constructions. Significant dynamic characteristic of the sandwich 

construction must be evaluated by experiments before it is applied in practical engineering. 

However, the experimental evaluation of sandwich plate is costly and time consuming. 

Consequently, a dynamic similarity scaled down model, which is much easier to work with, is 

used to predict the behavior of the prototype. Therefore, a reduction in cost and time can be 

achieved. 

Scaling laws of sandwich plates have been studied extensively by many researchers. Morton 

[1] discussed the application of scaling laws to fiber isotropic laminates based on dimensional 

analysis, particularly emphasized the case of impact load, and it was shown that lay-up of 

laminates was important in assessing the likely validity of scale model tests. Stimitses and 

Rezaeepazhand [2-4] studied the scaling laws of incomplete geometric similarity models for 

predicting the laminate plate and shell buckling and free vibration. In their studies, scaling laws 

of different material properties, number of plies and geometric size were derived by using the 

governing equations of laminated plate and shell. Qian [5-6] used governing equations to establish 

the scaling laws of the impulse response of laminated plates, the results showed that analytical 

scaling rules could accurately describe the undamaged response to impact and when the plate 

dimensions, projectile dimensions and impact parameters all varied, the results were found to 

follow the scaling rules closely. Ungbhakorn and Singhatanadgid [7-8] established the scaling 

laws of anti-symmetric cross-ply and angle-ply isotropic laminated plates by applying the 

similitude transformation to governing equations of buckling and frequency directly, partial 

similitude was considered and the scaling laws which yield good agreement were recommended. 

Though the method which based on the direct use of the “governing equations” is more convenient 

than dimensional analysis, it is not so effective in predicting the dynamic response. In the study 

of Rosa and Franco [9], a structure similitude was proposed for the analysis of the dynamic 

response of plates or assemblies of plates. Similitude laws were defined by looking for equalities 

in the structural response, when the damping was modified, a mean response could be predicted 

in similitude. The structure responses for different fluid-structure interaction parameters were 

demonstrated for a variety of structure boundary conditions under water by Bachynski [10]. Yazdi 

[11] presented the establishment of the scaling laws for dynamic aeroelastic stability of laminated 

plates based on the direct use of governing equations. The results indicated that the models which 

had different parameters with those of the prototype could predict the flutter behavior of the 

prototype with good accuracy. 

Some studies concerning the use of structure size intervals have been conducted in the past. 

Rezaeepazhand [12-13] presented to what extent similarity theory can be applied to in the design 

of a scaled down model. Since the intervals were given by experiments, the method finding the 

applicable structure size intervals was still not clear. 
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In this paper, intending to discuss the problem associated with the design of dynamic similar 

scale-down models in analyzing the dynamics characteristic of isotropic sandwich plates. A 

general determination method of the structure size interval of dynamic similar models of the 

isotropic sandwich plates was studied based on the Resineer theory of plates. The effectiveness of 

all these works is verified by numerical examples. 

2. The comparative study of the theories of plates  

The interested sandwich plate is shown in Figure 1. It consists of two face sheets with 

thicknesses 𝑡ℎ, and length and width 𝑏, 𝑎 and one core with thickness  ℎ. The faces and the core 

are all isotropic with their principal directions along 𝑥𝑦𝑧 axes. The Reissner theory of plates and 

the Hoff theory of plates are two classical theories for analyzing the isotropic sandwich plates. 

Their assumptions and applicability are listed in Table 1. 

Table 1 shows that both the Renisser theory and the Hoff theory are able to analyze the 

dynamic characteristics of the isotropic sandwich plate. In the assumptions of the Hoff theory, the 

flexural stiffness 𝐷𝑓  of the isotropic sandwich plate’s face sheets is significant. In both the 

Renisser theory and the Hoff theory, the slope of the panel along the 𝑥 axis can be written as  

∂𝑤/ ∂𝑥 = 𝜓𝑥 + 𝛽𝑥 , where 𝜓𝑥  is the rotation of cross-section originally perpendicular to the 𝑥 

axis and 𝛽𝑥 is the shear deformation (shown in Figure 2). 

Table 1. Two plates theories 

Theory Assumption Applicability 

Reissner 

(1) The face sheets are thin compared to the core and in a state of 

plane stress (σ𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0). 

(2) The in-plane stresses in the core are negligible  

(σ𝑥 = σ𝑦 = 𝜏𝑥𝑦 = 0). 

(3) The in-plane displacements in the core, 𝑢 and 𝑣, are linear in the 

thickness coordinate, 𝑧 axis. 

(4) The out-of-plane displacement 𝑤 is independent of the 𝑧 

coordinate, i.e. ε𝑧 =
𝜕𝑤

𝜕𝑧
= 0. 

Critical load and 

low-order natural 

frequency of the 
isotropic 

sandwich plates. 

Hoff 

(1) The face sheets are thin compared to the core but its flexural 
stiffness has to be considered. 

(2) The in-plane stresses in the core are negligible  

(σ𝑥 = σ𝑦 = 𝜏𝑥𝑦 = 0). 

(3) The in-plane displacements in the core, 𝑢 and 𝑣, are linear in the 

thickness coordinate, 𝑧 axis. 

(4) The out-of-plane displacement 𝑤 is independent of the 𝑧 

coordinate, i.e. 휀𝑧 =
𝜕𝑤

𝜕𝑧
= 0. 

Concentrated load 
and high-order 

natural frequency 

of the isotropic 

sandwich plates. 

 
Fig. 1. Structure of isotropic a sandwich plate 
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Fig. 2. Deformation of core element in the 𝑥-𝑧 plane 

2.1. Differences and relations of governing equations 

In this paper, the isotropic sandwich plate in Figure 1 is considered to be rectangular, and the 

dimension condition is 𝑎 > 𝑏. The parameters of the isotropic sandwich plate are listed in Table 2. 

Table 2. Parameters of the isotropic sandwich plate 

Parameter Meaning Parameter Meaning 

𝐷 Flexural stiffness of isotropic sandwich plate 𝜓𝑥 Rotation of 𝑥 coordinate 

𝜇𝑓 Poisson’s ratio of face sheets 𝜓𝑦 Rotation of 𝑦 coordinate 

𝐸𝑓 Young module of face sheets 𝑤 Deflection 

𝐾𝐶  Shear stiffness of face sheets 𝐺𝑐 Shear module of core 

𝑎 Length in 𝑥 coordinate 𝑏 Length in 𝑦 coordinate 

According to the Renisser theory, the governing equations of the isotropic sandwich plate can 

be written as [14]: 

𝐷(
𝜕2𝜓𝑥
𝜕𝑥2

+
1

2
(1 − 𝜇𝑓)

𝜕2𝜓𝑥
𝜕𝑦2

+
1

2
(1 + 𝜇𝑓)

𝜕2𝜓𝑦
𝜕𝑥𝑦

) + 𝐾𝐶 (
𝜕𝑤

𝜕𝑥
− 𝜓𝑥) = 0,  (1) 

𝐷(
1

2
(1 − 𝜇𝑓)

𝜕2𝜓𝑦
𝜕𝑥2

+
𝜕2𝜓𝑦
𝜕𝑦2

+
1

2
(1 + 𝜇𝑓)

𝜕2𝜓𝑥
𝜕𝑥𝑦

) + 𝐾𝐶 (
𝜕𝑤

𝜕𝑦
− 𝜓𝑦) = 0, (2) 

𝐾𝐶 (
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
−
𝜕𝜓𝑥
𝜕𝑥

−
𝜕𝜓𝑦
𝜕𝑦

) + 𝑁𝑥
𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
+ 𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝑦
+ 𝑞 = 0, (3) 

where, 𝐷 =
𝐸𝑓(ℎ+𝑡ℎ)

2𝑡

2(1−𝜇𝑓
2)

, 𝐾𝐶 = 𝐺𝑐(ℎ + 𝑡ℎ), 𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦 denote the in-plane loads and 𝑞 denotes the 

external load. 

The governing equations of the isotropic sandwich plate in the Hoff theory can be represented 

by the expressions: 

𝐷(
𝜕2𝜓𝑥
𝜕𝑥2

+
1

2
(1 − 𝜇𝑓)

𝜕2𝜓𝑥
𝜕𝑦2

+
1

2
(1 + 𝜇𝑓)

𝜕2𝜓𝑦
𝜕𝑥𝑦

) + 𝐾𝐶 (
𝜕𝑤

𝜕𝑥
− 𝜓𝑥) = 0, (4) 

𝐷(
1

2
(1 − 𝜇𝑓)

𝜕2𝜓𝑦
𝜕𝑥2

+
𝜕2𝜓𝑦
𝜕𝑦2

+
1

2
(1 + 𝜇𝑓)

𝜕2𝜓𝑥
𝜕𝑥𝑦

) + 𝐾𝐶 (
𝜕𝑤

𝜕𝑦
− 𝜓𝑦) = 0, (5) 

𝐾𝐶 (
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
−
𝜕𝜓𝑥
𝜕𝑥

−
𝜕𝜓𝑦
𝜕𝑦

) − 2𝐷𝑓∇
2∇2𝑤 +𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+𝑁𝑦

𝜕2𝑤

𝜕𝑦2
+ 𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝑦
+ 𝑞 = 0, (6) 

where ∇2 is Laplace operator, ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 and 𝐷𝑓 =

𝐸𝑓𝑡ℎ
3

12(1−𝜇𝑓
2)

. 

It can be indicated obviously that Eq. (1) is the same as Eq. (4) and Eq. (2) is identical with 
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Eq. (5). While Eq. (6) has one more term: −2𝐷𝑓∇
2∇2𝑤 than Eq. (3), this is incurred by the face 

sheets’ flexural stiffness of the isotropic sandwich plate. 

In Eq. (3) and Eq. (6), 𝑤, 𝜓𝑥, 𝜓𝑦 are unknown, so Hu Haichang [14] simplified the equations 

by replacing 𝑤, 𝜓𝑥, 𝜓𝑦 with two other functions 𝜔, 𝑓 and defined the transformation as follows: 

𝜓𝑥 =
𝜕𝜔

𝜕𝑥
+
𝜕𝑓

𝜕𝑦
,   𝜓𝑦 =

𝜕𝜔

𝜕𝑦
−
𝜕𝑓

𝜕𝑥
. (7) 

After the transformation, the governing equations are simplified as follows: 

𝐷

2
(1 − 𝜇𝑓)∇

2𝑓 − 𝐾𝐶𝑓 = 0, (8) 

𝐷𝛻2𝜔 +𝐾𝐶(𝑤 − 𝜔) = 0. (9) 

According to Eq. (9), the following relationship can be achieved: 

𝑤 = 𝜔 −
𝐷

𝐾𝐶
∇2𝜔. (10) 

𝑓 ≡ 0 is defined as the boundary condition of the simply supported plate [3], substitution of 

Eq. (7) and Eq. (10) into Eq. (6) results into the simplified equation of the Hoff theory: 

(𝐷 + 2𝐷𝑓)∇
2∇2𝜔 − 2

𝐷𝐷𝑓
𝐾𝐶

∇2∇2∇2𝜔

= (𝑁𝑥
𝜕2

𝜕𝑥2
+ 𝑁𝑦

𝜕2

𝜕𝑦2
+ 𝑁𝑥𝑦

𝜕2

𝜕𝑥𝑦
) (𝜔 −

𝐷

𝐾𝐶
∇2𝜔) + 𝑞. 

(11) 

According to Ref. [14], the simplified equation of the Renisser theory is: 

𝐷∇2∇2𝜔 = (𝑁𝑥
𝜕2

𝜕𝑥2
+𝑁𝑦

𝜕2

𝜕𝑦2
+ 𝑁𝑥𝑦

𝜕2

𝜕𝑥𝑦
)(𝜔 −

𝐷

𝐾𝐶
∇2𝜔) + 𝑞. (12) 

Eq. (11) has one more term  2𝐷𝑓∇
2∇2 (𝜔 −

𝐷

𝐾𝐶
∇2𝜔) than Eq. (12). 

2.2. The comparison of analytic solution of natural frequency 

It is assumed that the simply supported isotropic sandwich plate shown in Figure 1 is free of 

any transverse loads and in-plane normal and shear loads (𝑁𝑥 = 𝑁𝑦 = 𝑁𝑥𝑦 = 0) except the inertia 

force 𝑞𝑖. The inertia force is 𝑞𝑖 = 𝜌
𝜕2𝑤

𝜕𝑡2
, where 𝜌 is the mass area ratio. In order to distinguish the 

function 𝜔, �̅� is used to denote natural frequency. 

For the simply supported plate, the boundary conditions of the Hoff theory are: 

𝑥 = 0, 𝑎: 

{
 
 

 
 
𝜔 = 0,

𝜕2𝜔

𝜕𝑥2
= 0,

𝜕𝑓

𝜕𝑥
= 0,

 
(13) 
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𝑦 = 0, 𝑏: 

{
 
 

 
 
𝜔 = 0,

𝜕2𝜔

𝜕𝑦2
= 0,

𝜕𝑓

𝜕𝑦
= 0.

 
(14) 

Due to 𝑓 ≡ 0, we get: 

𝑥 = 0, 𝑎: 

{

𝜔 = 0,

𝜕2𝜔

𝜕𝑥2
= 0,

 
(15) 

𝑦 = 0, 𝑏: 

{

𝜔 = 0,

𝜕2𝜔

𝜕𝑦2
= 0.

 
(16) 

Replace 𝜔 by modal function 𝑊(𝑥, 𝑦) which satisfies the following boundary conditions: 

𝜔 = (𝐴 cos �̅�𝑡 + 𝐵 sin �̅�𝑡)𝑊(𝑥, 𝑦). (17) 

If only the inertia force in Eq. (11) is considered, the free vibration characteristics are governed 

by: 

(𝐷 + 2𝐷𝑓)∇
2∇2𝜔 − 2

𝐷𝐷𝑓
𝐾𝐶

∇2∇2∇2𝜔 = 𝜌
𝜕2

𝜕𝑡2
(𝜔 −

𝐷

𝐾𝐶
∇2𝜔). (18) 

Substitute Eq. (17) into Eq. (18), then: 

(𝐷 + 2𝐷𝑓)∇
2∇2𝑊(𝑥, 𝑦) − 2

𝐷𝐷𝑓
𝐾𝐶

∇2∇2∇2𝑊(𝑥, 𝑦) = 𝜌�̅�2 (𝑊(𝑥, 𝑦) −
𝐷

𝐾𝐶
∇2𝑊(𝑥, 𝑦)). (19) 

Substitute 𝑊(𝑥, 𝑦) = 𝐴𝑚𝑛 sin
𝑚𝜋𝑥

𝑎
si𝑛

𝑛𝜋𝑦

𝑏
 into Eq. (19), then: 

Ω =
(𝛽2𝑚2 + 𝑛2)2

1 + 𝛿𝑏(𝛽2𝑚2 + 𝑛2)
+ 𝑘𝑓(𝛽

2𝑚2 + 𝑛2)2

= (𝛽2𝑚2 + 𝑛2)2 [
1

1 + 𝛿𝑏(𝛽2𝑚2 + 𝑛2)
+ 𝑘𝑓], 

(20) 

where Ω =
𝑏4

𝜋4
𝜌�̅�2

𝐷𝑘
, 𝛽 =

𝑏

𝑎
, 𝛿𝑏 =

𝜋2𝐷

𝑏2𝐾𝐶
 and 𝑘𝑓 =

2𝐷𝑓

𝐷
. 

When 𝑘𝑓 is neglected, Eq. (20) becomes: 

Ω =
(𝛽2𝑚2 + 𝑛2)2

1 + 𝛿𝑏(𝛽2𝑚2 + 𝑛2)
. (21) 

Eq. (21) is the analytic solution of the natural frequency in the Renisser theory, which neglects 

the flexural stiffness of face sheets. 



1177. DETERMINATION METHOD OF THE STRUCTURE SIZE INTERVAL OF DYNAMIC SIMILAR MODELS FOR PREDICTING VIBRATION 

CHARACTERISTICS OF THE ISOTROPIC SANDWICH PLATES. ZHONG LUO, XUEYAN ZHAO, YUNPENG ZHU, JIANZHANG LI 

614 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MARCH 2014. VOLUME 16, ISSUE 2. ISSN 1392-8716  

2.3. The choice of the plate theory 

In this section, the applicable analytical method is chosen and verified by comparing the two 

theories’ analytic solutions of frequency with the ANSYS results. I SHELL91 element is applied 

in ANSYS modeling, and the model is meshed by quadrilateral meshes. Consider the following 

example: 

It is assumed that the isotropic sandwich plate is with 𝑎 = 15 m, 𝑏 = 10 m, the face sheets 

with the thickness 𝑡ℎ = 0.01 m is made of TC4 titanium alloy, the core is general rubber with 

thickness ℎ = 0.1 m. The material properties are listed in Table 3. 

The natural frequency of each order with the theory of Resineer and Hoff and ANSYS 

simulation is shown in Figure 3. 

Table 3. Material properties of isotropic sandwich plate 

The core (General rubber) The face sheets (TC4 titanium alloy) 

𝜌𝑐 – Rubber density 0.95×10
3 kg/m3 𝜌𝑓 – Alloy density 4.4×10

3
 kg/m3 

𝐸𝑏 – Bulk modulus 2 GPa 𝐸𝑓 – Young module 120 GPa 

𝜇 – Poisson’s ratio 0.49 𝜇𝑓 – Poisson’s ratio 0.34 

𝐺𝑐 – Shear module 1.38 MPa   

 
Fig. 3. Natural frequencies of Resineer theory, Hoff theory and ANSYS simulation 

Figure 3 shows that the frequencies obtained by the Resineer theory are much more 

approximated to the ANSYS result than that obtained by the Hoff theory, and the deviation 

increases when the order becomes higher. In order to make the analytical results and numerical 

simulation results consistent, the Resineer theory is chosen as the theoretical basis in the following 

analysis. 

3. The scaling laws of the isotropic sandwich plates 

According to the equations of shear strain and rotation [15]: 

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
= 𝛽𝑥 ,   

𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
= 𝛽𝑦, (22) 

𝜓𝑥 =
𝜕𝑤

𝜕𝑥
− 𝛽𝑥 ,   𝜓𝑦 =

𝜕𝑤

𝜕𝑦
− 𝛽𝑦. (23) 

Substitution of Eq. (22) into Eq. (23) yields: 

𝜓𝑥 = −
𝜕𝑢

𝜕𝑧
,   𝜓𝑦 = −

𝜕𝑣

𝜕𝑧
. (24) 

Applying similarity theory to Eq. (22), Eq. (23) and Eq. (24) yields the following scaling laws 
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for 𝛽 and 𝜓 of the simply supported isotropic sandwich plate: 

𝜆𝛽𝑥 =
𝜆𝑤
𝜆𝑥
=
𝜆𝑢
𝜆𝑧
,   𝜆𝛽𝑦 =

𝜆𝑤
𝜆𝑦

=
𝜆𝑣
𝜆𝑧
,   𝜆𝜓𝑥 =

𝜆𝑢
𝜆𝑧
,   𝜆𝜓𝑦 =

𝜆𝑣
𝜆𝑧
. (25) 

The equations of the in-plane displacements 𝑢, 𝑣 are obtained by the assumptions (iii) and (iv) 

of the Reissner theory [15]: 

{
 

 𝑢 = ∓
ℎ + 𝑡ℎ
2

𝜓𝑥 − (𝑧 ∓
ℎ + 𝑡ℎ
2

)
𝜕𝑤

𝜕𝑥
,

𝑣 = ∓
ℎ + 𝑡ℎ
2

𝜓𝑦 − (𝑧 ∓
ℎ + 𝑡ℎ
2

)
𝜕𝑤

𝜕𝑦
.
 (26) 

Substitute the Eq. (24) into Eq. (26) yields: 

{
 

 𝑢 = ±
ℎ + 𝑡ℎ
2

𝜕𝑢

𝜕𝑧
− (𝑧 ∓

ℎ + 𝑡ℎ
2

)
𝜕𝑤

𝜕𝑥
,

𝑣 = ±
ℎ + 𝑡ℎ
2

𝜕𝑣

𝜕𝑧
− (𝑧 ∓

ℎ + 𝑡ℎ
2

)
𝜕𝑤

𝜕𝑦
.
 (27) 

From Eq. (27), the scale factors must satisfy the following conditions: 

𝜆𝑢 = 𝜆ℎ
𝜆𝑢
𝜆𝑧
= 𝜆𝑧

𝜆𝑤
𝜆𝑥
= 𝜆ℎ

𝜆𝑤
𝜆𝑥
,   𝜆𝑣 = 𝜆ℎ

𝜆𝑣
𝜆𝑧
= 𝜆𝑧

𝜆𝑤
𝜆𝑦
= 𝜆ℎ

𝜆𝑤
𝜆𝑦
. (28) 

Those yield the following scaling laws: 

𝜆ℎ = 𝜆𝑧 ,   𝜆𝑢 =
𝜆𝑧𝜆𝑤
𝜆𝑥

,   𝜆𝑣 =
𝜆𝑧𝜆𝑤
𝜆𝑦

. (29) 

3.1. Scaling laws of complete geometric similarity 

Replace 𝑢, 𝑣 by the functions 𝑈(𝑥), 𝑉(𝑦), then: 

{
𝑢 = (𝐴 cos �̅�𝑡 + 𝐵 sin �̅�𝑡)𝑈(𝑥),
𝑣 = (𝐴 cos �̅�𝑡 + 𝐵 si𝑛 �̅�𝑡)𝑉(𝑦).

 (30) 

Substitution of Eq. (30) into Eq. (27) leads to: 

{
 

 𝑈(𝑥) = ±
ℎ + 𝑡ℎ
2

𝜕𝑈(𝑥)

𝜕𝑧
− (𝑧 ∓

ℎ + 𝑡ℎ
2

)
𝜕𝑊(𝑥, 𝑦)

𝜕𝑥
,

𝑉(𝑦) = ±
ℎ + 𝑡ℎ
2

𝜕𝑉(𝑦)

𝜕𝑧
− (𝑧 ∓

ℎ + 𝑡ℎ
2

)
𝜕𝑊(𝑥, 𝑦)

𝜕𝑦
.

 (31) 

The following scaling laws can be obtained: 

𝜆ℎ = 𝜆𝑧 ,   𝜆𝑈(𝑥) =
𝜆𝑧𝜆𝑊(𝑥,𝑦)

𝜆𝑥
,   𝜆𝑉(𝑦) =

𝜆𝑧𝜆𝑊(𝑥,𝑦)

𝜆𝑦
. (32) 

Substitution of Eqs. (22), (23) and (31) into Eq. (3) yields: 
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𝐾𝐶 (
𝜕2𝑊(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝑊(𝑥, 𝑦)

𝜕𝑦2
−
𝜕𝑈(𝑥)

𝜕𝑥𝜕𝑧
−
𝜕𝑉(𝑦)

𝜕𝑦𝜕𝑧
) + 𝜌�̅�2𝑊(𝑥, 𝑦) = 0. (33) 

From Eq. (33), we obtain: 

𝜆𝐾𝐶𝜆𝑊(𝑥,𝑦)

𝜆𝑥2
=
𝜆𝐾𝐶𝜆𝑊(𝑥,𝑦)

𝜆𝑦2
=
𝜆𝐾𝐶𝜆𝑈(𝑥)

𝜆𝑥𝜆𝑧
=
𝜆𝐾𝐶𝜆𝑉(𝑦)

𝜆𝑦𝜆𝑧
= 𝜆𝜌𝜆�̅�

2 𝜆𝑊(𝑥,𝑦). (34) 

Substitution of Eq. (32) into Eq. (34) yields: 

𝜆𝐾𝐶
𝜆𝑥2

=
𝜆𝐾𝐶
𝜆𝑦

2 = 𝜆𝜌𝜆�̅�
2 . (35) 

Because models have the same material properties as their prototype, the following scaling 

laws must be satisfied: 

𝜆𝐾𝐶 = 𝜆ℎ . (36) 

It is assumed that  𝜆𝑥 = 𝜆𝑦 = 𝜆𝑧 = 𝜆𝑎 = 𝜆𝑏 = 𝜆ℎ  and 𝜆𝜌 = 𝜆ℎ,  the complete geometric 

similarity conditions in Eq. (35) are simplified as: 

𝜆�̅�
2 =

1

𝜆𝑏
2. (37) 

3.2. Scaling laws of incomplete geometric similarity 

When models have the incomplete geometric similarity parameters: 𝜆𝑎 ≠ 𝜆𝑏, 𝜆𝑥 = 𝜆𝑎  and 

𝜆𝑦 = 𝜆𝑏  and it is supposed that 𝜆𝑎 = 𝐶𝜆𝑏 , 𝜆ℎ = 𝐴, where 𝐶 > 0 and 𝐴 is a constant, Eq. (35) 

becomes: 

𝜆𝐾𝐶
𝐶2𝜆𝑏

2 ≠
𝜆𝐾𝐶
𝜆𝑏
2 = 𝜆𝜌𝜆�̅�

2 . (38) 

There are two choices in Eq. (38): 

{
 
 

 
 𝜆𝜌𝜆�̅�

2 =
𝐴

𝐶2𝜆𝑏
2 ,

𝜆𝜌𝜆�̅�
2 =

𝐴

𝜆𝑏
2 .

 (39) 

Then, the scaling laws of natural frequency are deduced as follows: 

𝜆�̅�
2 =

1

𝐶2𝜆𝑏
2 , (40a) 

𝜆�̅�
2 =

1

𝜆𝑏
2 . (40b) 

Material properties and geometric parameters of the prototype are the same with the example 

in section 2.3, as shown Table 3. Table 4 shows 7 incomplete geometric similarity models which 

all have the same material properties with the prototype. 
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Table 4. The parameters of incomplete geometric similarity models 

Model 𝑎 (m) 𝜆𝑎 𝑏 (m) 𝜆𝑏 𝐶 ℎ (m) 𝑡ℎ (m) 𝜆ℎ = 𝜆𝑡ℎ 

M1 3 5 0.2 50 0.1 0.005 0.0005 20 

M2 0.6 25 0.2 50 0.5 0.005 0.0005 20 

M3 0.3 50 0.2 50 1 0.005 0.0005 20 

M4 0.2 75 0.2 50 1.5 0.005 0.0005 20 

M5 0.15 100 0.2 50 2 0.005 0.0005 20 

M6 0.075 200 0.2 50 4 0.005 0.0005 20 

M7 0.06 250 0.2 50 5 0.005 0.0005 20 

3.3. Scaling laws and structure size intervals of first-order natural frequency 

According to ANSYS calculation results, the first-order natural frequency is �̅�𝑃= 1.56 Hz. 

Table 5 lists the predicted frequency for models with the two scaling laws in Eq. (40) and the 

discrepancies between the predicted frequencies and the prototype frequencies. 

According to Table 5, the applicable interval possibly exists within the range of M1~M4 under 

Eq. (40b), but, Eq. (40a) is more sensitive in discrepancy. So in this case, scaling laws Eq. (40b) 

is satisfied. 

Table 5. Predicted frequency and discrepancy 

Model Predicted by Eq. (40a) (Hz) Discrepancy 𝜂 Predicted by Eq. (40b) (Hz)  Discrepancy 𝜂 

M1 0.136 91.3 % 1.358 13 % 

M2 0.715 54.2 % 1.43 8.3 % 

M3 1.63 4.8 % 1.63 4.8 % 

M4 2.893 85.5 % 1.929 23.6 % 

M5 4.554 192 % 2.277 46 % 

M6 15.615 901 % 3.904 150.2 % 

M7 23.87 1429.8 % 4.77 206 % 

When 𝐶 = 1.2, the predicted frequency is �̅�𝑃𝑟 = 1.755 and the corresponding discrepancy is 

𝜂 = 12.5 %.  So the first-order natural frequency is predicted as six discrete values  

𝐶 = [0.1, 0.4, 0.6, 0.8, 1.0, 1.2] are taken within the range of ∈ [0.1, 1.2]. Then the relationship 

between the first-order natural frequency and 𝐶  can be determined by fitting a third order 

polynomial, the result is as follows: 

�̅�𝑃𝑟 = −0.055𝐶
3 + 0.343𝐶2 − 0.008𝐶 + 1.355. (41) 

The first-order natural frequency is obtained by different methods and plotted in Figure 4. Here 

the range of 𝐶  is [0.1, 1.2], its step size is 0.02. It can be seen from Figure 4 that the values 

obtained from third order polynomial fit the curve well. 

 
Fig. 4. Curve of predicted value and its verification 
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By introducing a ±10 % discrepancy of 𝜂, the acceptable range of 𝐶 are calculated as: 

𝜂 =
|(−0.055𝐶3 + 0.343𝐶2 − 0.008𝐶 + 1.355 − 1.56)|

1.56
= 0.1. (42) 

The roots of Eq. (42) in the interval 𝐶 ∈ [0.1, 1.2] are 𝐶min = 0.40 and 𝐶max = 1.15. 

So Eq. (40b) is chosen as scaling laws within the interval 𝐶 ∈ [0.40, 1.15]. If 𝜆𝑏 and 𝜆ℎ are 

close enough, the intervals 𝐶 will be wider. 

3.4. Scaling laws and structure size intervals of high-order natural frequencies 

According to the scaling law Eq. (40b), there are the same mode shapes between similar model 

and prototype, the predicted values of high-order natural frequencies and the discrepancies are 

shown in Table 6. 

Table 6. Predicted values and the discrepancies of the revised applicable intervals 

Order 
Mode shape 

(𝑚, 𝑛) 

𝐶 = 0.40  
Mode shape 

(𝑚, 𝑛) 

𝐶 = 1.15  
Mode shape 

(𝑚, 𝑛) 

Revised 

applicable 

intervals 

Predicted 

values 
Discrepancy 𝜂 

1 (1, 1) (1, 1) (1, 1) – – – 

2 (2, 1) (2, 1) (2, 1) [0.82, 1.1] (2.02, 2.43) (9.1 %, 9.3 %) 

3 (1, 2) (3, 1) (1, 2) [0.92, 1.1] (2.86, 2.92) (0.8 %, 2.6 %) 

4 (3, 1) (4, 1) (3, 1) [0.92, 1.1] (2.87, 3.31) (5.1 %, 9.6 %) 

5 (2, 2) (5, 1) (2, 2) [0.92, 1.1] (3.21, 3.4) (1.1 %, 4.6 %) 

6 (3, 2) (6, 1) (3, 2) [1, 1.1] (3.88, 4.08) (0.97 %, 6.2 %) 

7 (4, 1) (1, 2) (4, 1) [1, 1.1] (3.9, 4.23) (0.89 %, 9.4 %) 

Table 6 demonstrates that when the order gets higher and the mode shape changes, the 

applicable structure size intervals become narrow and closer to the complete geometric similarity 

conditions, but it is still incomplete geometric similarity model because of 𝜆ℎ ≠ 𝜆𝑏. 

4. The scaling laws and structure size intervals of harmonic response 

When the isotropic sandwich plate in Figure 1 is subjected to the harmonic excitation  

𝑞(𝑡) = 𝑞 sin(�̅�𝑞𝑡) on the geometric center, where 𝑞 is the amplitude of pressure, the force applied 

to the plate is 𝐹(𝑡) = 𝑞 𝑑𝑥 𝑑𝑦 sin(�̅�𝑞𝑡), where 𝑑𝑥, 𝑑𝑦 are the length and width of the excited 

element respectively. 

In this section, the scaling laws and applicable intervals of the response will be determined 

when the isotropic sandwich plate is suffering the harmonic excitation. After this, the 

amplitude-versus-frequency curve of prototype is predicted by the model experiments. 

4.1. Scaling laws of complete geometric similarity 

The dimensional analysis method [16] is applied to calculate the 𝜋 term and determine two 

scaling laws: 

𝜆�̅� =
1

𝜆𝑡
,   𝜆�̅�𝑞 =

1

𝜆𝑡
. (43) 

Substitution of Eq. (43) into Eq. (3) yields: 

𝜆𝐾𝐶𝜆𝑤

𝜆𝑥2
=
𝜆𝐾𝐶𝜆𝑤

𝜆𝑦2
=
𝜆𝐾𝐶𝜆𝑢

𝜆𝑥𝜆𝑧
=
𝜆𝐾𝐶𝜆𝑣

𝜆𝑦𝜆𝑧
= 𝜆𝜌𝜆�̅�

2 𝜆𝑤 = 𝜆𝑞. (44) 

app:ds:prototype
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According to Eq. (36), Eq. (44) and the condition of complete geometric similarity  

𝜆𝑢 = 𝜆𝑣 = 𝜆𝑥 = 𝜆𝑦 = 𝜆𝑧 = 𝜆𝑎 = 𝜆𝑏 = 𝜆ℎ = 𝜆𝜌,  and 𝜆�̅� = 𝜆�̅�𝑞,  the scaling laws of complete 

geometric similarity are: 

𝜆𝑞 = 𝜆𝑏𝜆�̅�
2 𝜆𝑤 =

𝜆𝑤
𝜆𝑏
. (45) 

When the frequency’s scaling law of complete geometric similarity 𝜆�̅�
2 = 1/𝜆𝑏

2 is considered, 

Eq. (45) can be simplified as: 

𝜆𝑤 =
𝜆𝑞

𝜆𝑏𝜆�̅�
2 = 𝜆𝑞𝜆𝑏. (46) 

And the complete scaling laws of harmonic excitation response are: 

{
𝜆�̅�
2 =

1

𝜆𝑏
2 ,

𝜆𝑤 = 𝜆𝑞𝜆𝑏.
 (47) 

Eq. (47) gives the same results with Ref. [6]. It is worthy of note that according to Ref. [6], 

Eq. (47) can be applied not only to the harmonic response, but also to other responses of random 

excitation 𝑞(𝑥, 𝑦, 𝑡). 

4.2. Scaling laws of incomplete geometric similarity 

If the model cannot satisfy the complete conditions, there are 𝜆𝑥 = 𝜆𝑎, 𝜆𝑦 = 𝜆𝑏, 𝜆𝑎 ≠ 𝜆𝑏 , it is 

supposed 𝜆𝑎 = 𝐶𝜆𝑏  and 𝜆ℎ = 𝐴  where 𝐴  is constant, substitution of these laws into Eq. (44) 

yields: 

𝜆𝐾𝐶𝜆𝑤

𝐶2𝜆𝑏
2 ≠

𝜆𝐾𝐶𝜆𝑤

𝜆𝑏
2 ≠

𝜆𝐾𝐶𝜆𝑢

𝐶𝜆𝑏𝜆𝑧
≠
𝜆𝐾𝐶𝜆𝑣

𝜆𝑏𝜆𝑧
= 𝜆𝜌𝜆�̅�

2 𝜆𝑤 = 𝜆𝑞. (48) 

Substitution of Eqs. (28) and (36) into Eq. (48) yields: 

𝐴𝜆𝑤
𝐶2𝜆𝑏

2 ≠
𝐴𝜆𝑤
𝜆𝑏
2 ≠

𝐴3𝜆𝑤
𝐶4𝜆𝑏

4 ≠
𝐴3𝜆𝑤
𝐶2𝜆𝑏

4 ≠
𝐴3𝜆𝑤
𝜆𝑏
4 = 𝐴𝜆�̅�

2 𝜆𝑤 = 𝜆𝑞. (49) 

So the scaling laws of the amplitude are as follows: 

𝜆𝑤 =
𝜆𝑞

𝐴𝜆�̅�
2 =

𝜆𝑏
2𝜆𝑞
𝐴
. (50) 

In allusion to Eq. (50), the following matters should be consideres. 

(1) Eq. (50) should satisfy the interval requirement 𝐶 ∈ [0.40, 1.15]. 
(2) Though the harmonic excitation is a concentrated load, it has the infinitesimal area  

𝑆 = 𝑑𝑥 𝑑𝑦 which is subjected to the pressure 𝑞, so there are the scaling laws of area 𝑆: 𝜆𝑆 = 𝐶𝜆𝑏
2 , 

and the force 𝜆𝐹 = 𝐶𝜆𝑏
2𝜆𝑞. Eq. (49) can be simplified as: 

𝜆𝑤 =
𝜆𝐹
𝐶𝐴
, (51) 
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where the subscript 𝐹 represents the force amplitude. 

(3) 𝜆�̅�𝑞 = 𝜆�̅� should be hold, which is the same as that in complete geometric similarity. 

4.3. Verify the scaling laws and the applicable intervals 

In order to verify the scaling laws and the applicable intervals, the same isotropic sandwich 

plate as that in section 2.3 is considered. When the excitation is with 𝜆𝐹 = 10, the excitation of 

prototype is 𝐹 = 100sin(�̅�𝑞𝑡), the first-order amplitude-versus-frequency curve in the interval 

𝐶 ∈ [0.40, 1.15] is predicted in this section. 

The distorted scaling laws may cause the extreme difference between the discrepancy and 

natural frequency of prototype and those of the predicted value, so the amplitude discrepancy near 

the resonance point will be amplified. When the frequency is away from the resonance zone, the 

predicted amplitudes in different 𝐶 are displayed in Figure 5. 

Figure 5 indicates that Eq. (51) is not applicable in 𝐶 ∈ [0.40, 1.15], so a revised scaling law 

is needed. Eq. (51) is multiplied by a correction factor 𝐶, where 𝐶 = 𝜆𝑎 𝜆𝑏⁄ , then: 

𝜆𝑤 =
𝜆𝐹
𝐴
. (52) 

 
Fig. 5. Predicted amplitudes in different discrete values of 𝐶 by Eq. (51) 

The new predicted curves are shown in Figure 6. 

Figure 6 shows that Eq. (52) is an applicable scaling law of the amplitude. The discrepancies 

increase as the frequency rises because of the discrepancy of natural frequency, which was 

mentioned in previous section, and the applicable structure size intervals is uniform,  

𝐶 ∈ [0.40, 1.15]. 

 
Fig. 6. Predicted amplitudes in different discrete values of 𝐶 by Eq. (52) 
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5. Flow steps of the intervals determination method 

The applicable structure size intervals have been investigated above. The flow of the intervals 

determination method is summarized in Figure 7. 

 
Fig. 7. Flow steps of the intervals determination method 

6. Conclusion 

The Resineer theory of plates was chosen as the basic theory of this paper by comparing with 

the Hoff theory of plates. The scaling laws of both complete and incomplete geometric similarity 

model of the isotropic sandwich plates were obtained. The determination method of the structure 

size interval of the models was studied in the end. Some specific conclusions are listed as follows: 

(1) The governing equation and the analytic solution of Hoff theory have the extra terms 𝐷𝑓 

and 𝑘𝑓, which indicate the influence of the face sheets’ flexural stiffness of the sandwich plate. 

(2) It is verified that analytic result from Reissner theory is more approximated the result from 

ANSYS, so the modeling of ANSYS sandwich plate element uses the Reissner theory. 

(3) Establishing the scaling laws of frequency and dynamic response 𝜆�̅�
2 = 1 𝜆𝑏

2⁄ ,  

𝜆𝑤 = 𝜆𝐹 𝐶𝐴⁄ . A correction factor 𝐶 is used to revise the scaling laws of amplitude: 𝜆𝑤 = 𝜆𝐹 𝐴⁄ . 

(4) Obtaining the predicted curves by using the polynomial of third order, and finding the 

applicable structure size intervals of each order natural frequency which satisfy the discrepancy 

𝜂 < 10 %. 
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