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Abstract. The pull-in range of phase locked loop (PLL) is a key parameter for evaluating the 

performance of the PLL circuit. It is defined as the maximum detuning frequency range where the 

loop locks. Different methods have been proposed for computing the pull-in range of phase locked 

loops in the absence of time delay. In this paper, the effect of time delay on the pull-in range of 

second-order phase locked loop as well as its dynamical behavior will be discussed. The time 

delay is modeled using first order Pade approximation. Using Pade approximation, the nonlinear 

second order delay differential equation which describes the phase error dynamic of the PLL is 

transformed into fourth order system in the state space representation. The new time-delay PLL 

model is simulated and different behavior is observed which is different than a typical PLL system 

without delay. As the gain of the loop increases, new behavior such as change of circuit stability 

and chaos are recognized which suggests that the gain of the loop cannot be arbitrary large. We 

compare the pull-in range of a time delay PLL with those without time delay. Results demonstrate 

the degradation in the pull-in range for the time delay PLL. Moreover, result shows that the pull 

in range gets narrower as time delay increases. 

Keywords: phase locked loop, pull-in range, bifurcation, time delay, nonlinear differential 

equation. 

1. Introduction 

A phase-locked loop (PLL) is a feedback system that is used to maintain the phases of an 

output signal and a reference signal in a specific relationship. Phase-locked loops (PLL's) are used 

in many applications including frequency synthesis, demodulation, clock recovery and 

synchronization [1-3]. A PLL is used in a communication receiver to extract the modulated signal 

from a radio frequency carrier. This is accomplished by a PLL where the loop makes a voltage 

controlled oscillator (VCO) phase locking to the received input signal. The loop filter output will 

then contain the extracted FM signal, and the loop filter input will contain the PM signal. In this 

case the frequency response of the FM output will be a low-pass function described by the 

closed-loop transfer function and the PM output response will be a high-pass function described 

by the error function. In digital communications (modems) it is frequently necessary to extract a 

coherent clock signal from an input data stream. A PLL is often used for this task by locking a 

VCO to the input data and the data bits will be extracted from the input data by using the VCO 

output as a clock. Figure 1 shows the block diagram of the phase-locked loop (PLL) under 

investigation. It consists of three major parts: phase detector, VCO and low pass filter. The phase 

detector consists of a nonlinear device whose output is voltage proportional to the phase difference 

of the two input sinusoidal signals. The VCO is an electronic device that produces an output signal 

whose frequency is proportional to the input voltage. In this paper, we consider a second-order 

Type I PLL with sinusoidal phase detector characteristics. The PLL is driven by a sinusoidal signal 

with constant frequency of 𝜔𝑖 rad/sec, and the phase of the voltage controlled oscillator (VCO) is 

denoted as 𝜃𝑣. The VCO’s instantaneous frequency is equal to 𝜔𝑜 + 𝐾𝑣𝑒, where 𝜔𝑜 and 𝐾𝑣 denote 

the VCO’s free running frequency and gain, respectively. The analog multiplier produces an error 

signal that is proportional to sin(𝜑), where 𝜑 ≡ 𝜃𝑖 − 𝜃𝑣 represents the closed loop phase error. 

The Loop filter is a low pass filter which processes the error signal and generates voltage 𝑒 which 

drives the VCO in an attempt to make 𝜑  small and hence control the PLL dynamics. The 

dynamical model of this PLL is developed in Section 2. The quantities 𝐺 ≡ 𝐴𝐾1𝐾𝑣  and  
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𝜔𝑜𝑠 ≡ 𝜔𝑖 − 𝜔𝑜  are a loop gain factor and the loop detuning, respectively and both of these 

parameters are assumed to be positive. 

 
Fig. 1. Second order phase locked loop 

There are key parameters that specify the operation of a PLL such as damping factor which is 

a measure of the ability of the PLL to track an input signal step. Usually it is used to indicate the 

amount of overshoot present in the output to a step perturbation in the input. Loop gain is the 

combination of all DC gains in the PLL which is usually can be expressed as the product of two 

values. The first one is the phase detector gain which is the ratio of the DC output voltage of the 

phase detector to the input phase difference and has the unit of volts/radian. The second one is the 

VCO gain which is the ratio of the VCO output frequency to the DC control input level and has 

the unit of radians/second/volt. Other key parameters in the PLL design are the capture range, 

lock-in range, pull-out range and pull-in range. These parameters specify the frequency ranges in 

which the PLL can operate. Capture range is defined as the range of input frequencies over which 

the PLL can acquire phase lock (hold range). Lock-in range is defined as the range of input 

frequencies over which the PLL will remain in phase lock once acquisition has occurred. Pull-out 

range is defined as the dynamic limit for stable operation of PLL. Pull-in range is defined as the 

range that the PLL will always be locked. When it is locked, the dynamics obey mostly linear 

theory, and it is analyzed traditionally by using the transfer function. However, when it is 

out-of-lock or when it is in the process of locking, the dynamics become nonlinear and the various 

phenomena inherent to nonlinear systems such as complex bifurcations and chaos can occur in 

phase-locked loops [4] and analysis becomes fairly difficult. 

Extensive work has been conducted for analyzing the pull-in range and the dynamical behavior 

of classical phase locked loops without time delay. These include harmonic balance technique, the 

phase plane method and numerical analysis [5-7]. The problem of determining the pull-in range 

of phase locked loops is solved indirectly by evaluating the limit cycles of the loop in which the 

frequency error has a constant average. Harb and Stensby [8] developed a Galerkin based 

algorithm for computing the PLL's half-plane pull-in range. Piqueira et al. [9, 10] analyzed the 

effect of the double-frequency term and phase jitter in the operation of the nonlinear second-order 

phase-locked loop (PLL). Through numerical simulations, they confirm the dependence of 

oscillation on the PLL gain. Later, Piqueira [11] determined the lock in range for a third-order 

PLL analytically by identifying saddle-node and Hopf bifurcations. The work by Harb and Harb 

[13] showed that a third-order phase-locked loop (PLL) with sinusoidal phase detector 

characteristics experienced a Hopf bifurcation point as well as chaotic behavior. Later, they 

designed a nonlinear controller based on the theory of backstepping to control the chaotic behavior 

of the PLL [14]. On the other hand, Bradley and Straub [15] used chaos to broaden the capture 

range of phase locked loop. In the work of Endo et al. [16], chaos from PLL based frequency 

modulators was reported in the condition when the carrier frequency of the FM signal was outside 
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the locked state of the PLL. 

Time delay is an unavoidable in certain applications of phase locked loops such as in the case 

of radio reception. Recently, many studies have been carried out to under-stand the causes of 

dynamic instabilities in phase locked loops. Time delay which is considered lumped in the 

predetection IF amplifier and/or a radio frequency interference rejection filter at the VCO output 

is found to be a major factor that causes dynamic instability in PLL. Analysis of nonlinear systems 

with time delays is extended from the knowledge available for standard nonlinear systems without 

delays and using some methods to approximate the delay like the Pade approximation method and 

harmonics approximation. Schanz and Pelster [17] proved the existence of a Hopf bifurcation in 

first order PLL with time delay using the method of multiple scale. Buckwalter and York [18] 

found an optimal gain that minimize the acquisition time for time-delay high frequency phase 

locked loop. Grant et al. [19] investigates the performance of optical phase-locked loops in the 

presence of non negligible loop propagation delay. 

Time delay can generate instabilities in a PLL under certain gain and frequency detuning 

conditions. Consequently, the effect of time-delay on pull-in and hold-in range is a design 

constraint. The results of [18] indicate that increasing the loop gain improves both the pull-in and 

hold-in ranges for a second order phase locked loop. However, in this paper, analysis demonstrates 

that gain cannot be arbitrarily large to guarantee the pull-in process. This paper motivation is to 

highlight fundamentally different dynamical behavior in a second-order PLL due to loop time 

delay than is typically presented and how this time delay affect the pull-in range of the PLL under 

consideration. The analysis of the PLL is based on circuit parameters such as gain, time delay, 

poles and zeros of the filter and frequency detuning. Pade approximation will be used to 

approximate the time delay component in deriving the state space representation of a second-order 

phase locked loop with sinusoidal phase detector characteristics. 

The paper is organized as follows: Section 2 illustrates the derivation and analysis of the PLL 

under consideration without time delay. Section 3 contains the dynamical model and derivation of 

state space representation of second order PLL with time delay. Simulation of the delay model 

and results will be presented in Section 4. In section 5 conclusions are drawn based on the analysis 

of the simulations. 

2. Analysis of second-order PLL without delay 

The PLL model depicted in Figure 1 has a closed loop phase error 𝜑 which satisfies: 

𝑑2𝜑

𝑑𝑡2
+ (𝑏  +  𝐺cos𝜑) 

𝑑𝜑

𝑑𝑡
+ 𝑎2𝐺sin 𝜑 = 𝑏 𝜔𝑜𝑠, (1) 

where 𝜑 is a function of time [7]. 𝐺 and 𝜔𝑜𝑠 are assumed to be positive and 𝑎1 = 1. 

Define the two state variables 𝑥1(𝑡), 𝑥2(𝑡) as: 

𝑥1=𝜑, 
𝑥2=𝜑̇. 

(2) 

Eq. (1) can be written in state space representation as: 

𝑥̇1 = 𝑥2, 
𝑥̇2 = −𝑏𝑥2 − 𝐺 cos(𝑥1) 𝑥2  − 𝑎2𝐺sin 𝑥1 + 𝑏𝜔𝑜𝑠. 

(3) 

The desired behavior of the second order PLL is phase locking. Mathematically, this behavior 

corresponds to solutions such that 𝑥̇1 = 0 and 𝑥̇2 = 0. Solving Eq. (3) we get the equilibrium 

points given by: 
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𝑋𝑒𝑞 = [𝜋 − sin−1 (
𝑏𝜔𝑜𝑠

𝑎2𝐺
) − 2𝜋𝑘

0

]. (4) 

The eigenvalues of the Jacobian matrix determine the local stability of the equilibrium points. 

The Jacobian matrix associated with the second order PLL is determined to be: 

𝐽 = [
0 1

𝐺sin(𝑥1) 𝑥2 − 𝑎2𝐺cos(𝑥1) −𝑏 − 𝐺cos(𝑥1)
]. (5) 

Evaluating the Jacobian matrix at the equilibrium point given by Eq. (4) yields: 

𝐽 = [
0 1

− 𝑎2𝐺cos(𝑥1) −𝑏 − 𝐺cos(𝑥1)
], (6) 

and the corresponding characteristic equation is given by: 

𝜆2 + 𝜆(𝑏 + 𝐺cos(𝑥1)) + 𝑎2𝐺cos(𝑥1) = 0. (7) 

It is was verified that for values of 0 < 𝑜𝑠 <
𝑎2

𝐺
, Eq. (7) has two eigenvalues of opposite sign 

which indicates that the equilibrium point is a saddle type and hence a separatrix cycle 

(saddle-to-saddle connection) exists. The PLL under consideration is in phase-locked when the 

phase error 𝜑 is constant, and a stable equilibrium condition exists. It is well known that phase 

lock is possible (but may not be achieved when the loop is closed) for [7, 8]: 

𝜔𝑜𝑠 < 𝜔ℎ = 𝐴𝐾1𝐾𝑣𝑎2𝑏 ≡ 𝐺
𝑎2

𝑏
. (8) 

The frequency 𝜔ℎ is known as the PLL’s hold in range. Finally, no stable equilibrium points 

exist, and phase lock is cannot happen for 𝜔𝑜𝑠 > 𝜔ℎ. Under condition (8), it is known that the 

PLL’s state vector [𝜑 
𝑑𝜑

𝑑𝑡
] must approach (as 𝑡 → ∞) a stable limit cycle with: 

𝜑(𝑡; 𝜔𝑜𝑠) = 𝜔𝑓(𝜔𝑜𝑠)𝑡 + 𝜓(𝑡; 𝜔𝑜𝑠), (9) 

where 𝜓 is periodic function with fundamental frequency of 𝜔𝑓 [8]. This limit cycle is known as 

a stable false lock state [7]. This state corresponds to a periodic solution of the nonlinear 

differential equation describing the PLL. The PLL’s pull-in range 𝜔𝑝  is one of the main 

parameters in practical applications of phase locked loops. As positive 𝜔𝑜𝑠  decreases, a point 

𝜔𝑜𝑠 = 𝜔𝑝, 𝜔ℎ > 𝜔𝑝 > 0, is reached where 𝜑(𝑡; 𝜔𝑜𝑠) bifurcates, and phase lock occurs. No false 

lock state (limit cycles) exist for 0 ≤ 𝜔𝑜𝑠 < 𝜔𝑝, and the PLL will pull in (i.e., achieve phase lock) 

regardless of the initial conditions when the loop is closed. This is based on the fact that a 

separatrix cycle terminates the PLL's stable limit cycle associated with the false lock state as 

detuning parameter 𝜔𝑜𝑠 decreases through the pull-in value 𝜔𝑝 (bifurcation point). Figure 2 is a 

typical phase plane plot which indicates the case where 𝜑(𝑡; 𝜔𝑜𝑠) bifurcates directly from an 

externally stable separatrix cycle (dark line). The plot was computed for a PLL containing a loop 

filter with 𝑎1 = 1, 𝑎2 = 100 and 𝑏 = 10. Note that 𝑥 =  and 𝑦 =
𝑑

𝑑𝑡
. 
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Fig. 2. Bifurcation of a limit cycle from a separatrix cycle (dark line) as 𝜔𝑜𝑠 decreases 

3. Derivation and analysis of the PLL with delay 

Consider Figure (3) which represents the block diagram for second-order delay phase-locked 

loop. 

 
Fig. 3. Second order delay phase locked loop 

The equation of the second order system with feedback time delay is given by: 

𝑑2𝜑

𝑑𝑡2
+ 𝑏 

𝑑𝜑

𝑑𝑡
+ 𝐺 cos 𝜑(𝑡 − 𝜏) 

𝑑𝜑

𝑑𝑡
(𝑡 − 𝜏)+𝑎2𝐺sin𝜑(𝑡 − 𝜏) = 𝑏𝜔𝑜𝑠  . (10) 

Define the four state variables 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡) and 𝑥4(𝑡) as: 

𝑥1 = 𝜑, 
𝑥2 = 𝜑̇, 
𝑥3 = 𝑥1(𝑡 − 𝜏), 
𝑥4 = 𝑥2(𝑡 − 𝜏). 

(11) 

In order to write the above equations in state space representation, the first order Pade 

approximation will be used for the delay operator. Note that Eq. (11) can be written as: 

𝑥̇1 = 𝑥2,
𝑥̇3 = 𝑥4.

 (12) 
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Substitute these state variables in Eq. (10) to get: 

𝑥̇2= − 𝑏𝑥2 − 𝐺cos(𝑥3) 𝑥4 − 𝑎2𝐺sin(𝑥3) + 𝑏 𝜔𝑜𝑠. (13) 

By using the first order Pade approximation [20]: 

 𝑒−𝑠𝜏 =
1 −  𝑠𝜏/2

1  +  𝑠𝜏/2
 . (14) 

We obtain: 

𝑥̇3 =
2

𝜏
 (𝑥1 − 𝑥3) − 𝑥2, 

𝑥̇4 =
2

𝜏
 (𝑥2 − 𝑥4) − 𝑥̇2. 

(15) 

Substitute Eq. (13) into Eq. (15) to get: 

𝑥̇4 =
2

𝜏
 (𝑥2 − 𝑥4) + 𝑏𝑥2+𝐺cos(𝑥3) 𝑥4+𝑎2𝐺sin(𝑥3) − 𝑏 𝜔𝑜𝑠  . (16) 

It is obvious now that the time delay inherent in the PLL doubles the system order and the 

second order system becomes a fourth order system. The state space representation of the second 

order PLL with delay is given by: 

𝑥̇1 = 𝑥2, 
𝑥̇2= − 𝑏𝑥2 − 𝐺cos(𝑥3) 𝑥4 − 𝑎2𝐺sin(𝑥3) + 𝑏𝜔𝑜𝑠, 
𝑥̇3  =  𝑥4, 

𝑥̇4=
2

𝜏
( 𝑥2 − 𝑥4) + 𝑏𝑥2 + 𝐺cos(𝑥3) 𝑥4+𝑎2𝐺sin(𝑥3) − 𝑏𝜔𝑜𝑠.  

(17) 

The equilibrium point is given by setting 𝑥̇1 = 𝑥̇2 = 𝑥̇3 = 𝑥̇4 = 0 in Eq. (17). By doing so, 

one obtains: 

𝑥𝑒𝑞 =

[
 
 
 
 
 sin−1 (

𝑏𝜔𝑜𝑠

𝑎2𝐺
)

   0

sin−1 (
𝑏𝜔𝑜𝑠

𝑎2𝐺
)

0 ]
 
 
 
 
 

. (18) 

The local stability of the system can be checked based on the Jacobian matrix given by: 

𝐽 =

[
 
 
 
 
0 1 0 0
0 −𝑏 𝐽23 −𝐺cos (𝑥3)
0 0 0 1

0 𝑏 +  
2

𝜏
𝐽43 𝐽44 ]

 
 
 
 

, (19) 

where 𝐽23 = 𝐺𝑥4sin𝑥3 − 𝑎𝐺cos(𝑥3), 𝐽43 = −𝐽23, 𝐽44 = −
2

𝜏
+ 𝐺cos(𝑥3). 

Substitute 𝑥1 = 𝑥3 = sin−1(𝑏𝑜𝑠/𝑎2𝐺)  and 𝑥2 = 𝑥4 = 0  to evaluate the Jacobian matrix 

around the equilibrium point to get: 
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𝐽 =

[
 
 
 
 
0 1 0 0
0 −𝑏 𝐽23 −𝐺cos (𝑥3)
0 0 0 1

0 𝑏 +  
2

𝜏
𝐽43 𝐽44 ]

 
 
 
 

. (20) 

Define the constant: 

𝛽 = cos (sin−1(𝑥)) = √1 − 𝑥2 = √1 − (
𝑏𝑜𝑠

𝑎𝐺
)

2

. (21) 

Solve det (𝐽 − 𝜆𝐼) = 0 to get the following characteristics equation: 

𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0, (22) 

where 𝐴 = 2/𝜏 + 𝑏 − 𝛽𝐺, 𝐵 =
2𝑏 + 2𝐺𝛽

𝜏
− 𝑎2𝐺𝛽, 𝐶 = 2𝑎2𝛽𝐺/𝜏. 

4. Simulation of the delay model 

The system given by Eq. (17) is simulated using MATLAB fixed value of time delay  

(𝜏 = 0.002) and different values of gain. The values of 𝑎1 = 1, 𝑎2 = 100 and 𝑏 = 10 are fixed 

throughout the simulation. Figure (4) shows that the system is in phase lock state for 𝐺 = 100 K. 

Increasing in 𝐺, the system exhibits a chaotic behavior as shown in Figure (5). This behavior starts 

at 𝐺 = 20 K and the system remains in this regime up to 𝐺 = 60 K. This range is wider than that 

in the first order PLL [17] which makes it more efficient to be used as chaos generator. 

 
(a) 

 
(b) 

Fig. 4. (a) Phase plane trajectory (equilibrium solution) for 𝐺 = 100 K and  = 0.002 sec;  

(b) time domain history for 𝐺 = 100 K and  = 0.002 sec 

 
(a) 

 
(b) 

Fig. 5. (a) Phase plane diagram (chaotic behavior) for 𝐺 = 60 K and  = 0.002 sec;  

(b) time domain history for 𝐺 = 60 K and  = 0.002 sec 
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In order to study the effect of time delay on the pull-in range, Eq. (17) is simulated for different 

values of delay and gain. For a fixed values of delay (𝜏) and gain (𝐺), the pull-in range is 

determined by finding the value of 𝜔𝑜𝑠 – where the system given by Eq. (17) changes its stability 

from equilibrium state (phase-lock state) to a periodic solution (out-of-lock) state as 𝜔𝑜𝑠 changes. 

These results are summarized in Table (1) below. Figure (6) shows the pull-in range of a 

second-order phase locked loop without delay and with delays of 0.003 sec and 0.012 sec. The 

figure shows clearly the degradation in the pull-in range due to time delay. Furthermore, it 

demonstrates that as the time delay increased, the pull-in range gets narrower. For these plots, the 

values of 𝑎1 = 1, 𝑎2 = 100 and 𝑏 = 10 are used. 

Table 1. Gain versus the pull in range for different values of delay 

Pull in range 

(𝜏 = 0.012 sec) 

Pull in range 

(𝜏 = 0.003 sec) 

Pull in range 

No delay 
𝐺 )Gain) 

32 32 32 5 

23 28 89 32 

932 922 921 22 

952 918 92285 22 

982 33585 329 52 

338 313 318 02 

302 298 232 12 

222 367 377 22 

205 200 212 922 

235 505 512 932 

202 090 032 922 

 
Fig. 6. Pull-in range vs. gain for second order phase locked loop 

5. Conclusions 

New results concerning the pull-in range of delay phase locked loop are reported. The effect 

of time delay on the pull-in range of second-order phase locked loop as well as its dynamical 

behavior are presented. First order Pade approximation is used to model the time delay element 

which is presented in the loop. By using Pade approximation, the nonlinear second order delay 

differential equation which describes the phase error dynamic of the PLL is transformed into 

fourth order system in the state space representation. This time-delay PLL model is simulated and 

different behavior is observed which is different than a typical PLL system without delay. As the 

gain of the loop increases, new behavior such as change of circuit stability and chaos are 

recognized which suggests that the gain of the loop cannot be arbitrary large. The pull-in range of 

a time delay PLL is compared with those without time delay. Results showed that the pull-in range 

for the time delay PLL is narrower than PLL without delay. Moreover, result shows that the pull 

in range gets narrower as time delay increases. Also, it is found that for delay phase locked loop 
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the degradation of the pull-in range becomes more noticeable as the closed loop gain increased 

and this needs to be investigated in future work. 
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