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Abstract. The paper presents the geometric models of flexsplines and wave generators developed 

based on the actual construction and geometric dimensions of manufactured harmonic drives (type 

CSD, CSG, HFUS and HFUC). In order to enhance the data preparation process, the model 

geometry was recorded in a parametrical form. By altering the individual properties of the models, 

it is possible to automatically generate finite element grids for flexsplines and wave generators of 

various geometrical and structural properties. The calculations prepared for the sake of the study 

by application of the finite element method (FEM) were conducted using the Femap/NX Nastran 

software. A preliminary numerical modal analysis of the structural solutions for the harmonic 

driver flexsplines and wave generators assumed to be applied was conducted. 
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1. Introduction 

Recent technical developments have caused the emergence of new and improvement of old 

torque transformation methods. For large ratios, the classical multi gear transmissions are being 

replaced by planetary gears, and those by a more efficient harmonic drives [1-3]. Gear, which was 

first to use elastic deformation of the toothed ring gear in order to transform the torque, was 

patented in 1959 by W. Musser. Since then, especially during the last twenty years, various types 

of harmonic drive were developed and patented. Compared to classical toothed gears, harmonic 

drives have numerous advantages, but there are some disadvantages as well. Their main 

advantages include: high torque capacity, excellent positioning accuracy and repeatability, 

compact design, zero backlash, high single stage reduction ratios and high torsional stiffness. On 

the other hand, their drawbacks are: high elasticity and nonlinear stiffness and damping. The 

application of toothed harmonic drives in various fields of life is more and more wide. They are 

currently used by the automotive and space industry, in aviation, medicine, automatics and 

robotics, while most of them are two-wave harmonic drives with mechanical wave generators. 

When considering transmissions used in automatic control systems, issues connected with their 

high kinematic precision, smoothness of torque transmission and dynamic characteristics 

(stiffness, damping, moments of inertia and natural frequencies) gain utmost importance.  

A harmonic drive (Fig. 1) consists of a toothed mechanism, which is composed of three main 

elements. The circular spline (mark 1 in Fig. 1) is a solid steel ring with internal teeth. The 

flexspline (mark 2 in Fig. 1) is a flexible steel cylinder with external teeth. The drive is executed 

by the wave generator (mark 3 in Fig. 1), a thin-race ball bearing that is fitted onto an elliptical 

plug. Generator produces the elastic deformation waves of the flexspline. Depending on the 

number of waves distortion we distinguish one-wave and two wave harmonic drives. The 

flexspline is the main component of a harmonic drive, which can generate a repeated vibration by 

the wave generator. From this reason, the flexspline should have flexibility and good vibration 

characteristics.  

While choosing the flexspline material [3, 5-8], one must consider the deformations and 

stresses occurring in the flexspline operating in the driver, both unloaded and loaded by the 

torsional moment. The heat treatment method to be applied to a spline must be determined 

entailing the criterion of ensuring its elastic properties as well as the service life assumed.  

Modal analysis is the study of the dynamic character of a system which is defined 

independently from the loads applied to the system and the response of the system [9-12]. 
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Analytical models are developed to describe the system mass and stiffness characteristics of a 

component. The model is decomposed to express the part in terms of its modal characteristics 

(frequency, damping and shapes). The dynamic characteristics help better understand how the 

structure will behave and how to adjust or improve the component design. Using the finite element 

method and modal analysis in the analysis of flexspline by different authors can be found in the 

works [13-18]. 

On the basis of the actual construction and geometric dimensions of mass-produced harmonic 

drives (type CSD, CSG, HFUS and HFUC [4]) the geometric models were developed. Figure 2 

shows the actual HFUC type gear and the CAD-developed geometric model. 

 
Fig. 1. The main components of a harmonic drive: 1 – circular spline, 2 – flexspline, 3 – wave generator [4] 

 
a) 

   

b) 

Fig. 2. Harmonic drive: a) type HDUC [4], b) geometric model 

2. Numerical modal analysis of flexsplines 

The flexspline [2, 3] in a harmonic drive has elastic properties and, depending on the generator, 

it may take on specific shapes. In a single-stage harmonic drive, the flexspline may be either a 

stationary or a moving part. In the first case, it is connected directly or through a toothed clutch to 

the gearbox housing, whereas in the second case, it is connected directly or through a clutch to an 

output shaft. 

Nowadays, steel flexsplines in toothed harmonic drives are most often manufactured as [4]: 

short cup-type (Fig. 3a), cup-type (Fig. 3b and 3c) or with an outer flange (Fig. 3d). 

The study developed eight three-dimensional models that represent the four flexspline design 

solutions adopted for the analysis. For each design solution two models with different dimension 

sets were assumed. During the conducted calculations the forms of natural frequencies for the 
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developed flexspline models were determined using the FEM. Sample three-dimensional 

numerical models of the flexsplines with the finite element mesh are shown in Figure 3. As a 

material flexspline adopted steel with the characteristics given in Table 1. Figure 4 summarizes 

the natural frequencies values for all of the analyzed flexspline design solutions. Table 2 shows 

vibration form examples for CSD, HFUC and HFUS type. 

Table 1. Properties of the steel 42CrMo4 

Tensile modulus (GPa) 210 

Shear modulus (GPa) 80 

Poisson’s ratio 0.3 

Density (kg/m3) 7850 

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3. The FEM models of flexsplines: a) short cup-type CSD, b) a cup-type CSG,  

c) a cup-type HFUC, d) with an outer flange HFUS 

 
Fig. 4. Chart summary of the analyzed flexsplines natural frequencies 

3. Numerical modal analysis of wave generators 

The wave generator [2, 3] in a harmonic drive is a structural element which serves to deform 

the toothed ring of the flexspline. The principal task of the generator is to ensure a required number 

of deformation waves of the flexspline. In terms of the number of generated waves, generators 

may be divided into: single, double and triple wave ones. The generator may be mechanical, 

hydraulic or electric. Most frequently, mechanical generators are used in harmonic drives. With 

regard to their design features, mechanical wave generators can be divided into roller, cam and 

disc types. The application of a specific generator type depends on the purpose of the drive and 

its utilization. 
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Table 2. Analyzed flexspline vibration shape 
Shape  

vibration 

Flexspline  

CSD 32-100 

Flexspline  

HFUC 32-100 

Flexspline  

HFUS 32-100 

1 

   

3 

   

5 

   

A cam generator [2, 3], unlike roller or disc generators, has an elastic bearing fixed onto the 

generator case, which generator most often is a cam of an elliptical profile. Generators of this type 

allow both the elastic bearing and a neutral layer the flexspline to be deformed to any form 

described by the shape of the generator cam. 

Figure 5 presents a cam generator and its position against the toothed ring of the flexspline. 

The generator cam profile should guarantee obtaining a required form of deformation of the 

neutral layer of the flexspline. Elastic bearings used in cam generators have thinner outer and inner 

rings compared to typical bearings, which allows them to be deformed during the mounting of the 

bearing on the generator cam. 

As part of the study, geometrical and numerical models were developed of cams of a 

mechanical wave generator used in drives of the CSD, CSG, HFUC and HFUS types [4]. Figure 

6 shows an example of the analyzed generator cam for the HFUC drive. Generator cams used in 

drives of the CSD, CSG, HFUC and HFUS types have a shape of a disc (Fig. 6). The only 

differences between them result from a different width of the generator cam and additional thread 

relief. Generator cams of the CSG and HFUC drives have a larger width, with the same outer 

diameter, than the cams of drives CSD and HFUS. 

For the developed numerical models of wave generator cams of various harmonic drives, an 

analysis was carried out regarding the impact of two selected design features, the outer diameter 

and the cam width, on the form and values of natural frequency. Examples of the first, fourth, 

ninth and tenth form of vibration obtained for a HFUC drive, are shown in Figure 7. Examples of 

the calculation results are presented in Figures from 8 to 10. By analyzing the results obtained it 

can be confirmed that an increase of the outer diameter of a generator cam results in a reduction 

of the value of natural frequency (Fig. 8 and 9), whereas an increase of the cam width causes a 

slight increase of the natural frequency value (Fig. 10). The obtained forms of vibration for the 

analyzed cases were the same. 
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Fig. 5. Cam generator: 1 – elastic bearing, 2 – wave generator cam, 3 – washer 

 
a) 

 
b) 

Fig. 6. Cam generator: a) geometrical model, b) numerical model  

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 7. Forms of vibration of the wave generator cam: a) first, b) fourth, c) ninth, d) tenth 
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Fig. 8. The influence of the outer diameter of a generator cam on the natural frequency (HFUC) 

 
Fig. 9. The influence of the outer diameter of a generator cam on the natural frequency (HFUS) 

 
Fig. 10. The influence of the generator cam width on the values of natural frequency  

for the outer diameter of a cam of 105 mm 
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4. Conclusions 

The calculations performed using the FEM determined characters and natural frequencies for 

the developed flexspline models. Analyzed the CSD CSG, HFUC and HFUS flexsplines with 

varying features. The influence of the flexspline size on the results is important. Increasing the 

geometric dimensions for the same circular shape flexspline leads to a reduction in the vibration 

frequency (Fig. 4). The natural frequencies values are affected by the adopted flexspline design 

solution. The highest frequency values are observed for the CSD flexspline, and the lowest for the 

HFUS flexspline. Also, an analysis was conducted regarding the influence of selected structural 

features of wave generator cams on the forms and values of natural frequency. By analyzing the 

results of numerical calculations, it can be confirmed that an increase of the outer diameter of a 

generator cam results in a reduction of the value of natural frequency (Fig. 8 and 9), while an 

increase of the cam width causes a slight increase of the natural frequency value (Fig. 10). 
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