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Abstract. A series of centrifuge shaking table tests were conducted at the National University of 
Singapore to examine the seismic softening behavior of pile-raft foundation constructed in clayey soil 

site subjected to far field earthquake. The model test results show that strain softening and stiffness 
degradation feature strongly in the behavior of the clay, which was manifested as an increase in 

resonance periods of the surface response with level of shaking and with successive earthquakes. The 

softening degree is greater in near field clay around pile-raft foundation than in clay far away from 
foundation. While this was not the case for the pile-raft foundation, because resonance periods of piled 

raft and bending moment envelopes of piles almost keep unchanged during repeated earthquake 
excitations, in some sense this indicates softening extent of foundation was not significant as soft clay. 

Moreover, seismic behavior of pile-raft was hardly affected by the stiffness degradation of surrounding 

clay, its seismic behavior in a great degree decided by properties such as mass and flexural rigidity. 
Finally, the indications from centrifuge tests were back-analyzed by conducting ABAQUS simulation, 

including 2 types of constitutive soil models with and without considering seismic softening. The 

acquired results could be served as a reference for seismic design of pile foundation constructed in soft 
clay site when subjected to far field earthquake with relatively long period and duration. 

Keywords: pile foundation, centrifuge shaking table tests, ABAQUS simulation, softening effect, 

resonance period, bending moment. 

1. Introduction 

In the areas underlying soft clay, pile foundations are extensively used to achieve the bearing 

capacity required to support heavy superstructure loadings, such as those imposed by tall buildings. 

The behavior of pile or pile-raft foundations under earthquake loading is an important factor 

affecting the performance of many essential inland or offshore structures such as bridge, harbors, 

tall chimney, wharf, etc. The performance of pile foundations during past earthquakes has shown 

that piles in firm soils generally perform well, while in soft or liquefied ground may be problematic 

at times [1]. Pile distress and failure during seismic shaking, although difficult to observe in 

post-earthquake site investigations, have been well documented [2]. 

It is well known that the mechanical behavior of soil under dynamic loading, such as sea waves, 

earthquakes and traffic loading, differ significantly from those under quasi-static loading. The 

nonlinear stress-strain response associated with soft clays under cyclic loading was experimentally 

verified [3-4]. Brennan et al. (2005) examined shear modulus and damping in dynamic centrifuge 

tests, and showed that soft clay exhibited strain softening, as reflected in reduced 𝐺/𝐺𝑚𝑎𝑥 values 

with increasing strain levels [5]. The presence of piles or pile-raft foundations in soft clays 

introduces additional complexity to the problem. A typical case is the 1985 Mexico city 

earthquake disaster, although the epicenter is over 400 km far away from the city, the result was 

very serious, mainly because most of piled buildings in the city were constructed onto thick soft 

clay bed, when earthquake wave transmitted from rock bed to ground surface, it was strongly 

amplified and filtrated to a motion with relatively long period and duration, at the point which was 

very near the first-mode period of most buildings (𝑇 ≈ 0.1 N), the resulted resonance effect made 
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a serious destroy for buildings around 10 stories. The geology condition of Singapore city is very 

similar to Mexico city, who also constructed onto soft deep marine clay, and with great concern 

on encountering a far field earthquake triggered by Sumatran fault. This study will conduct some 

related studies. The acquired results would be served as a reference for cities with similar 

conditions, such as Shanghai, Bombay, Bangkok, etc. 

Wilson (1998) and Christina et al.(1999) studied the performance of pile foundations in sandy 

soil using the large servo-hydraulic shaking table on the 9-m-radius centrifuge at UC Davis, and 

proposed design charts for engineers [1, 6]. Nikolaou (2001) presented analytical results for piles 

in homogeneous and layered soil, and deduced a dimensionless formula to estimate the maximum 

bending moment generated in pile during seismic shakings [7]. However, all these analyses were 

based on numerical methods with assumption that the soil was elastic, which cannot reflect its real 

properties. Snyder (2004) showed that the clay stiffness degraded around the single pile during 

cyclic lateral load tests in the field [8]. However, the study did not include the seismic behavior 

of pile-raft under different superstructural loadings. Finn (2005), using numerical analysis as well, 

showed that the clay around a pile undergo stiffness degradation during seismic shaking, but still 

did not consider the seismic behavior of foundation [9]. Banerjee (2007) studied seismic response 

of pile foundations using centrifuge and numerical modeling. However, in his study, only the 

acceleration of the piled raft was discussed, the bending moment of pile and softening effect for 

both near and far field clay were not included [10]. 

In this paper, the results from a series of centrifuge shaking table tests conducted at the 

National University of Singapore (NUS) are presented. The centrifuge experiments were 

performed to examine seismic behavior of pile-raft foundation in soft clay condition, with special 

focus on the softening behavior of pile-raft structure and clay (including near- and far-field clay) 

due to successive earthquake shaking. Centrifuge test contains acceleration measurement by 

accelerometers placed in raft and different position of clay bed and bending moments of the pile 

from strain gauges instrumented along the model piles. Besides centrifuge tests, ABAQUS 

simulation was also conducted to back-analyse all the test results, the used soil constitutive models 

included a developed model (Umat) with considering seismic softening effect, and another 

embedded in ABAQUS material group which doesn’t consider softening. All the results in this 

study were discussed in prototype unless otherwise stated. 

2. Experimental setup and configuration of the centrifuge models 

All the experiments were conducted at 50 g on the NUS Geotechnical Centrifuge, which has a 

radius of 2 m and compromises a balanced arm with dual swing platforms. The centrifuge has a 

capacity of 40 g-ton and a maximum acceleration of 200 g, shown in Fig. 1. Earthquake waves 

can be input to model through a closed-loop electro-hydraulic servo-control shaking table that was 

fixed on the swing platform of centrifuge. The laminar box with inner dimension of 530 mm length 

by 300 mm width by 350 mm height was mounted onto the shaking platform, which is constructed 

from aluminum alloy and comprises nine rectangular laminar rings. More details on the 

experiment set-up are available in Ma Kang et al. (2012) and Banerjee et al. (2007) regarding the 

test set-up for this study shown in Fig. 2 [10, 11]. 

The clay bed used in the centrifuge model tests was prepared using kaolin powder mixed with 

water in a ratio of 1:1.2, and operated in a deairing chamber for about 5 hours. After mixing, the 

slurry was transferred into the rubber-lined laminar box in several pours, so that the transducers 

could be placed at the desired locations and depths. 

The completed slurry mixture was then subjected to both 1 g and 50 g consolidation processes 

to develop the representative strength profile and stress history. The 1 g consolidation was firstly 

carried out to pre-compress the clay beds, so as to reduce the time required for the subsequent 

in-flight consolidation. Dead weights were applied in stages, up to a total load of about 100 kg, 

which corresponds to an effective overburden stress of about 5 kPa at the top of the clay bed. To 
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ensure a uniform pressure distribution acting on the clay bed, the weights were applied on a thick 

perspex plate resting on a geotextile layer placed over the surface of the clay slurry. The 1 g 

loading condition was maintained for 7 days (Fig. 3). After that, the dead weights and the plate 

were removed, following which the laminar box was mounted on the centrifuge together with the 

shaker and other accessories. It was then subjected to in-flight centrifuge consolidation under 50 g 

until the degree of consolidation along the entire depth was 70 % or more. According to Terzaghi’s 

1-D consolidation theory, the consolidation time was expected to take about 10 hrs. The 

geotechnical properties of the kaolin clay used in this study are given in Table 1. 

  
Fig. 1. NUS geotecnical centrifuge Fig. 2. Laminar box-shaker assembly on 

centrifuge arm 
 

  
Fig. 3. 1 g and 50 g consolidation of kaolin clay 

Table 1. Geotechnical properties of kaolin clay 

Properties Kaolin Clay 

Bulk unit weight (kN/m3) 16 

Water content 66 % 

Liquid limit 80 % 

Plastic limit 40 % 

Coefficient of permeability (m/s) 1.36∙10-8 

Initial void ratio 1.74 

Angle of friction  25° 

The raft (10.5 m×5.6 m×0.5 m) was supported on 4 widely-spaced piles (0.5 m diameter and 

13 m long). In the centrifuge tests, model pile-raft systems were replicated by 1.0 cm in diameter 
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and 26 cm long bar, connected to a rigid steel plate (21 cm×10.1 cm×1 cm). The raft was partially 

embedded in the ground so that there also exist direct interaction between raft and soil. This is a 

commonly used foundation system for soft clays in Singapore. A pile-raft arrangement is used 

instead of a single pile because the objective is to study fixed-head piles. With a single pile, it 

would have been very difficult to realize the required rotational constraint on the pile head. The 

minimum clear spacing between the pile and the internal wall of the box is larger than 10 times 

the pile diameter. These spacing were chosen to keep the pile-to-pile and pile-wall interaction to 

a minimum within the available space. Superstructure loading on the raft was simulated using 

steel plates, which were added in stages onto the top of raft to simulate the effects of above-ground 

inertial forces. There were total 3 steel plates of about 2 kg each was placed in three stages to 

simulate the loading cases on the model (Table 2). The load on the raft was so chosen to give a 

FOS of about 2.5 against structural failure at highest loading level. The tested pile-raft foundation 

need to install in the proper position in clay bed in advance and fixed by a rigid frame before 

in-flight centrifuge consolidation, as shown in Fig. 3. 

Table 2. Different loading case of the added weight 

Loading cases Superstructure load Model mass (kg) Prototype mass (ton) 

Load 1 Raft only 2.95 368 

Load 2 Raft + 1 plate 4.84 605 

Load 3 Raft + 2 plates 6.90 863 

Each equivalent prototype load case was tested on 3 types of piles, these were a) solid stainless 

steel pile of diameter 0.5 m, b) hollow stainless steel pile of outer diameter 0.5 m and thickness 

50 mm, and c) stainless steel pile of outer diameter 0.5 m and thickness 50 mm with concrete 

in-fill. In order to make convenient for the study, the density and moduli of concrete and hollow 

piles, were reduced and normalized by solid pile, as shown in Table 3. 

Table 3. Properties of 3 types piles used for the study 

Pile type 
Length 

(m) 

Diameter 

(m) 

𝐼𝑝 

(m4) 

Flexural rigidity 

(𝐸𝐼) / KN-m2) 

Equivalent modulus 

(𝐸𝑝 / GPa) 

Equivalent 

density 

(𝜌𝑝𝑖𝑙𝑒, Kg/m3) 

Solid 

13 0.5 
π0.5

4

64
 

644271 210 7800 

Concrete 424360 138 4362 

Hollow 380377 124 2826 

The test configuration is shown in Fig. 4, the transducers were placed at the prescribed 

positions. Accelerometers A2 and A4 were placed on the clay surface at prototype distances of 

about 1.5 m and 6.5 m respectively away from raft. Thus accelerometer A2 captures ground 

surface acceleration near to the pile-raft whereas A4 captures ground surface acceleration farther 

away. These are loosely termed “near-field” and “far-field” accelerometers, respectively. 

Moreover, along pile length, five strain gauges labelled S1~S5 were installed to capture bending 

moment of pile during earthquake shaking. 

The input motions used in the centrifuge experiments were generated using response spectra 

from earthquakes measured in Singapore from Sumatran events. These typically have long periods 

and durations. Owing to the limited duration of excitation which the shaking table can generate, 

low frequency waves with prototype periods exceeding 25 s were removed from the earthquake 

spectra before generating the time histories. Three different input motions were thus generated, 

corresponding to a large, medium and small earthquake event. Figure 5 shows the three scaled 

input motions, in model unit, fed into the displacement-controlled servo-actuators. In each 

centrifuge experiment, the model was subjected to 6 earthquake events. These earthquakes were 

“fired” in 2 cycles, each comprising a small, medium and large earthquake (PGA equals to 0.022 g, 

0.052 g, and 0.13 g, respectively) that was triggered sequentially. 
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Fig. 4. Centrifuge model views and instrumentation layout in tests 

 
Fig. 5. Displacements used as the centrifuge input motion 

3. Softening of clay bed 

3.1. Acceleration response 

Fig. 6 shows typical acceleration time histories from medium earthquake within the first cycle 

for the solid pile, while Fig. 7 gives the corresponding response and amplification spectra. In this 

study, the amplification spectra were obtained by dividing the response magnitude of expected 

location (such as clay surface and raft, herein) by the corresponding magnitude at the same 

frequency at the base. As Fig. 7 shows, maximum clay surface amplification occurs at the 

near-field for a period of about 2.3 sec whereas the raft shows maximum amplification at a much 

shorter period. Furthermore, the maximum amplification at the far-field accelerometer is 
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significantly lower than that at the near-field, suggesting that there is differential acceleration 

between the pile-raft as well as the near- and far-field regions. This indicates that clay motion 

(both near- and far-field) cannot be representative of raft motion, using seismic motion of clay 

surface (always adopting free-field motion without considering interaction between soil and 

foundation) directly as base input motion in traditional seismic resistance design for structure is 

not strict. 

 
a) Base, A1 

 
b) Clay surface (near field), A2 

 
c) Top of raft, A3 

 
d) Clay surface (far field), A4 

Fig. 6. Typical acceleration time histories measured from centrifuge test 

 
a) 

 
b) 

Fig. 7. a) Response spectra, b) Amplification at clay surface (A2 and A4), and raft (A3) 

As discussed above, Fig. 8(a), (b) summarized all the periods for near- and far-field clay, 

respectively, under different load cases and PGAs. Generally speaking, for all 3 types of piles,  

both accelerometers at the near- and far-field clay surface shows an increase in period of maximum 

amplification, herein termed resonance period, with peak ground acceleration (PGA). Furthermore, 

all parameters being the same, the resonance period was also higher in the second cycle. Since the 

inertia of the soil and the pile-raft remains unchanged, this would suggest that there is some 

softening of the soil with increase in ground acceleration and with successive earthquake. This is 

not unreasonable; the first can be explained in terms of the strain softening behavior of clay (e. g. 

a) Base, A1
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Idriss, 1978, Vucetic and Dobry, 1991, Teachavorasinskun et al. 2001, etc.) and the second can 

be attributed to the remoulding of the soil by the preceding earthquakes, which is also likely to 

cause softening. Moreover, as compared between Fig. 8(a), (b), for 3 types of piles under the same 

conditions, the increase in the resonance period is generally much more pronounced for the 

near-field acceleration than the far-field acceleration. This would be consistent with the notion of 

remoulding since one would surmise that the near-field soil would be more likely to undergo a 

higher degree of remoulding than the far-field soil, as Finn 2005, shown in Fig. 9. The study herein 

gave another skillful explanation from totally different angle of period indication. 

 

               
a) (A2) 

 

               
(b) (A4) 

Fig. 8. Resonance periods of far-field clay surface 
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a) Finite element model 

 
b) Shear moduli around pile (by Finn 2005) 

Fig. 9. Finite element models 

As shown in Fig. 10, in contrast to the clay, the resonance period of raft supported by 3 types 

of pile does not change significantly over the two cycles of earthquakes. For the small and medium 

masses, the resonance period is largely independent of PGA. For the largest mass, the resonance 

period appears to lightly increase with PGA, especially more obvious for solid pile. For the same 

mass and PGA, the resonance period of the raft is always lower than that of the soil layer as shown 

in Figure 7(b). This appears to suggest that, at least for the small and medium masses, the pile-raft 

response is essentially elastic. For the largest mass, there may be some non-linearity and softening. 

However, for all masses, there appears to be little or no softening arising from previous 

earthquakes, which was observed for the soil layer. This point is fundamentally different from soil 

behavior. Moreover, raft periods of hollow pile, generally show a highest value in all types of pile, 

mainly because of its lowest flexural rigidity in three. 

 

               
Fig. 10. Resonance periods of raft (A3) 

3.2. Pile bending moment 

Fig. 11 shows a typical set of time histories of bending moment recorded by different strain 

gauges installed along the solid pile under the condition of large earthquake (0.13 g) and largest 

mass (863 ton). It is observed that, for all 5 levels, the maximum bending moments generally occur 
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around 5.1 sec, then respective maximum bending moments are chosen to plot against the pile 

depth, i.e. bending moment envelopes with 2 cycles as shown in Fig. 12. 

 
Fig. 11. Measured time histories of bending moment from centrifuge test 

 
Fig. 12. Bending moment envelopes of solid pile within 2 cycles of earthquakes 

As shown in Fig. 12, still taking solid pile for instance, under different PGAs, the maximum 

bending moments of the pile are developed near the pile head (S5), which is consistent with the 

fact that the pile head is quite rigidly connected to the bottom of the raft. It is also observed that 

the maximum bending moment near the pile head increases with the earthquake magnitude. 

Furthermore, Figure 12 also shows that the positive bending moments develop near the top of the 

pile, which progressively reduces to negative moments near the bottom of the pile. However, the 

negative bending moments are relatively insignificant compared to the positive moments. This is 

similar to the bending moment distribution curves for laterally loaded piles, and suggests that, the 

surrounding clay may able to provide lateral support for the piles. This observation is similar to 

that reported Nikolaou et al. (2001) and Wang et al. (2010), who noted that an active pile length 

exists for the head-loaded piles, especially for relatively flexible piles [7, 12]. Below this depth, 

the pile would experience bending moments no more than 5 % of maximum positive bending 

moment developed near the top of the pile. 
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As be seen from Fig. 12, the bending moments didn’t change significantly between the first 

and second cycle of earthquake loadings, including maximum bending moment and envelope 

shape. This indicates that, for a given earthquake excitation, the maximum bending moment in a 

fixed-head pile is predominantly governed by the flexural rigidity and mass imposed onto pile-raft 

system. Together with response spectra discussed above, this seems to indicate that the softening 

extent of pile-raft foundation is very low, i.e. it would not become “soft” as soil during repeated 

earthquake excitions, and in turn lose bending resistance or bearing capacity for supporting 

superstructure loading. Moreover, seismic degradation of clay doesn’t apply significant influences 

on moment response. For other 2 types of piles, i.e. concrete and hollow piles, the measured results 

also show very similar indications as shown by the solid pile. 

4. ABAQUS simulation 

In order to check the measured results as well as indications from centrifuge tests, using 

ABAQUS 6.12 to build up corresponding numerical models to back-analyse [13]. The main idea 

is to adopt 2 types of soil constitutive models, one is the developed model (Umat) called HyperMas 

by Banerjee (2010) with considering the seismic softening effect of clayey soil, and the another is 

the hypoelstic model available in ABAQUS material group without considerting softening [14]. 

Since seismic softening behavior for soft clay has been commonly and definitely documented, 

so herein the most concern is focused on the softening of pile-raft foundation, i.e., to know if any 

differences on response spectra of piled raft and bending moment of pile when using the 2 totally 

different soil constitutive models? 

Considering the symmetry of the problem, a half 3-D model of pile-raft-clay system was built 

up as shown on Fig. 13, wherein the model was discretized into a total of 7742 20-noded solid 

brick elements and 64 (32×2) 3-noded beam elements to get the bending moment. For other 2 

types of piles, concrete and hollow, the model were the same, only the density and moduli using 

equivalence value as shown in Table 3. 

 
Fig. 13. 3-D ABAQUS model 

4.1. Clay constitutive model 

4.1.1. Hypoelastic model 

The clay was firstly behaved as a hypoelastic model embedded in ABAQUS material group. 

This model assumed that the modulus of elasticity and Poisson’s ratio are functions of the strain 

invariants. Although it doesn’t reflect the hysteretic and degradation behavior, the non-linearity 

of clay is considered. In this study, strain dependent stiffness was adopted from Vecetic and 

Dobry’s (1988) shear modulus (𝐺) versus shear strain curve (Fig. 14). 
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Fig. 14. Shear modulus reduction and damping ratios with shear strain level 

For NC (𝑂𝐶𝑅 = 1) speswhite kaolin clay, Viggiani et al. (1995) presented a useful equation 

to calculate maximum shear modulus as [15]: 

𝐺𝑚𝑎𝑥 = 1964 (𝑝′)0.653. (1) 

where: 

𝑝′ =
(1 + 2𝐾0)

3
𝜎𝜈′ ,   𝜎𝜈′ = 𝛾′𝐻. (2) 

In the equations, 𝛾′ is effective unit weight and about 6 kN/m3 for soft kaolin clay. Asusuming 

∅ = 25o, using Jaky’s relationship: 

𝐾0 = 1 − sin∅ ≈ 0.58. (3) 

The clay bed in ABAQUS model in this study comprises 14 layers, so 𝐺𝑚𝑎𝑥 at the mid-depth 

of each layer can be calculated as shown in Table 4. 

Table 4. Parameters of clay bed (from clay surface to bottom) 

Layer No. Layer thickness (m) 𝐺𝑚𝑎𝑥 (KPa) Depth of mid-layer (m) 

1 0.5 2081 0.25 

2 0.5 4265 0.75 

3 1.0 6839 1.50 

4 1.0 9707 2.50 

5 1.0 12168 3.50 

6 1.0 14406 4.50 

7 1.0 16453 5.50 

8 1.0 18382 6.50 

9 1.0 20209 7.50 

10 1.0 21952 8.50 

11 1.0 23625 9.50 

12 1.0 25237 10.50 

13 1.0 26786 11.50 

14 1.0 28298 12.50 

4.1.2. HyperMas model (Umat) 

This soil model has been developed and more details can be referred in Banerjee (2010) [14]. 

This model encompasses the concepts of small strain non-linearity [16], hysteretic stress-strain 
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behaviour [17] and cyclic degradation of backbone curve [18] for the application to dynamic 

problems such as current earthquake response. The non-linear elasticity was modelled by varying 

the shear and bulk moduli as a function of the mean effective stress, the overconsolidation ratio 

and the corresponding strain increment since the last strain reversal [15]. The hysteretic 

stress-strain behaviour for unloading and reloading is modelled using the Masing rule [19]. The 

progressive degradation of the backbone curve under repeated loading was modeled using Idriss’s 

concept of degradation index [18].  

4.2. Boundary condition 

To simulate laminar box movement, linear multi-point constrains were applied to the two 

vertical faces normal to the earthquake motion to make the nodes at opposite ends of the domain 

and at the same depth move in unson with each other. In addition, vertical displacement restraints 

were applied at all 4 vertical faces while the bottom of the model was constrained against vertical 

movement. The symmetry face was additionally applied symmetry displacement boundary. 

4.3. Earthquake excitation 

The input earthquake was prescribed at the base of the model in the form of an acceleration 

time history, which was taken from the centrifuge accelerations at the base of clay bed 

(accelerometer A1), from the small, medium, and large earthquakes. 

4.4. ABAQUS results analysis 

4.4.1. Acceleration time histories and resonance periods 

Corresponding to Fig. 6, Fig. 15 gives the computed acceleration time histories of near-field 

clay (A2) and raft (A3) by using 2 different soil models, together with measured results from 

centrifuge tests. As can be seen in Fig. 15, for 2 soil models, Despite some discrepancies, the 

computed response could both provides a generally good fit to the measured accelerations at 

different locations. The agreement seems to be a little more reasonable in case with Umat model. 

 
a) Soil model using Hypoelastic 

 
b) Soil model using HyperMas (Umat) 

Fig. 15. Comparison of acceleration time histories between ABAQUS simulation and centrifuge test 
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Figure 16 shows the computed vs measured response spectra for the time histories of Figure 15. 

Again, generally, for both soil models, the agreement between ABAQUS and the measured 

responses appears to be reasonable. In particular, the resonance periods of maximum amplification 

in both the clay and the structure are reasonablely replicated. 

Figure 17 summarizes the computed resonance periods at the solid piled raft under different 

inertial loadings and PGAs. In spite of totally different consideration of softening effect in 2 soil 

models, the results of two are very close and both reflect the experimental trend reasonably well. 

This appears to indicate that, the softening effect of soil has little influence on the foundation 

seismic behavior as tests revealed above. The pile-raft response in a great degree was decided by 

its own properties other than surrounding soils. The computed results for other 2 types of piles 

also give similar conclusions as solid one. 

  
a) Comparison of response spectra 

 
b) Comparison of amplification 

Fig. 16. Comparisons between ABAQUS simulation and centrifuge test 

 

 
Fig. 17. Comparison of raft periods between ABAQUS simulation and centrifuge test 
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4.4.2. Bending moment 

Similar to Fig. 11, time histories of bending moment at those five levels where strain gauges 

are mounted on the pile can be also computed by ABAQUS using 2 types of soil models. With 

the same operation, as shown in Fig. 18, peak moments at all 65 integration points of 32 beam 

elements picked out from computed time histories of moments, are plotted against the pile depth 

along with the centrifuge results at five levels. As can be seen in the figure, the experimental 

values fall very close to the computed profile, and 2 numerical models results were generally very 

close, and both predicted experimental trends and maxmum moments value reasonably well. 

Although non-linear hypoelastic soil model has some limitation in modeling softening behaviour 

of clay, but it can generally agree with the bending moment envelopes as Umat model quite well. 

Hence, again, this indicates that the seismic behavior of pile-raft was hardly affect by the softening 

of surrounding clay as stated above. The same indication can also be seen in all 3 types of tested 

pile. 

Fig. 18. Envelopes of pile bending moment by ABAQUS simulation and centrifuge test 

5. Conclusions 

By conducting a series of centrifuge shaking table tests and ABAQUS simulations on 3 types 

of piles under different cases (different superstructure masses and PGAs) constructed in soft clay, 

and based on the acquired resonance periods of clay and raft as well as bending momet of piles, 

some interesting indications can be drawn as following: 

(1) Soft clay for both far-field (or free field) and near-field around existing pile-raft foundation 

shows a softening seismic behavior which was manifested as an increase in resonance periods of 

the surface response with level of shaking and with successive earthquakes. And moreover, 

remoulding effect arising from kinetic interaction between pile-raft foundation and clay may 

deepen softening of near field clay in some degree. 

(2) For pile-raft foundation, since measured resonance periods of piled raft and bending 

moment envelopes of pile were almost unchanged during successive seismic shakings, this 

indicated softening of pile-raft foundation installed in soft clay was not as significant as clay, its 

dynamic behavior in a great degree was decided by its own properties such as system mass, 

flexural rigidity, and PGAs, etc. 

This paper studied softening effect of pile-raft foundation constructed in clayey soil condition. 

The acquired conclusions were mainly applicable to far-field earthquakes with relatively long 

duration and low PGA, and more studies are needed on other relatively strong earthquakes in the 
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further studies. 
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