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Abstract. In this paper, an inverse method which formed by two parts: Kalman filter and recursive 

least-square algorithm is applied to solve an identification problem of the inertia force between a 

cantilever beam and a moving mass. Based on the basic Euler-Bernoulli beam model, the 

discretized state space model of the cantilever beam and moving mass system, which transform 

from the differential equations about the inertia force and modal responses of the cantilever beam, 

is established. Both the recursive inverse method and the traditional least square method are 

adapted to the none-noise and noise simulation deflection data which are obtained by the finite 

element method. The results show that although both two algorithms can bring good results in 

dealing with the none-noise data, the inverse method has stronger ability to estimate the inertia 

force in the strong-noise environment, where the traditional least square method fails. Finally, a 

field experiment is conducted and the identification results show that the recursive inverse method 

can be adapted to estimate the inertia force between the cantilever and moving mass successfully.  

Keywords: inertia force, cantilever, Kalman filter, recursive inverse method.  

1. Introduction 

The identification problem of the inertia force between the cantilever beam and moving mass 

is very important to many scientific and engineering fields such as structure engineering. By 

obtaining the accurate identification result, some important parameters of cantilever beam 

structure can be accessed to. However, if sensors are put between cantilever beam and moving 

mass, it will damage the structure condition and the inertia force detected in this way won’t be 

accurate. Therefore, a lot of indirect methods are applied to this identification problem. 

A lot of methods to inertia force or moving loads identification problems have been established 

by the former researchers and some of these methods are based on the classic Euler-Bernoulli 

beam model. T. H. T. Chan applies the Interpretive Method I (IMI) [1] and Interpretive Method II 

(IMII) [2] to estimate the moving loads on the bridge structure according to the modal response. 

S. S. Law adapts Frequency-Time Domain Method (FTDM) [3] and Time Domain Method (TDM) 

[4], which use the inertia force spectrums in frequency domain and modal superposition principle 

in time domain respectively, to identify the moving force between the moving objects and the 

simply supported beam structure. Minzhuo Wang [5] modified the IMII and proposed an adaptive 

method based on wavelet decomposition, making it suitable to be applied to the inertia force 

identification problem between the cantilever beam and moving mass. However, this adaptive 

method has bad performance in the strong noise environment, which makes it not practical in the 

field experiments. 

R. E. Kalman [6] proposed Kalman filtering technique in 1960. Kalman filter has a strong 

ability to estimate the system status in a strong noise-interference environment [7] and therefore, 

it has been widely used in many scientific and engineering fields. P. C. Tuan [8] proposed 

recursive inverse method, which consists of two parts: Kalman filter part and recursive least 

squares method part, to solve the input heat inverse estimation problems, which will coast much 

more resources, such as computing time and memory if finite element method is applied. The 
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identification results are accurate and stable under the interference of the noise. C. K. Ma [9] 

adapted this recursive inverse method to solve some identification problems in many different 

mechanical structures, such as the estimation of the input force of beam structure or cantilever 

plate. However, the input forces estimated in these problems are position static and therefore the 

mathematical model in these problems are not suitable in the identification problem of the inertia 

force between cantilever beam and moving mass. 

In this paper, the basic model proposed by Minzhuo Wang is modified, the discretized state 

space model of the cantilever beam and moving mass system is proposed and the recursive inverse 

method is applied to estimate the inertia force between them. The validity of combination of this 

identification model and method will be tested by the none-noise and noise simulation numerical 

data and the data obtained by the field experiments. 

2. Mathematical model of the problem 

The interaction process between beam structure and moving mass or moving loads is very 

complex and Euler-Bernoulli beam model can provide an accurate and efficient description of it 

because the computational complexity of this model is not high. Therefore, the Euler-Bernoulli 

beam model is chosen in this paper to be the basic model to build up the connection between the 

inertia force and modal displacements of the cantilever structure. The model of cantilever beam, 

whose length is 𝐿, is shown in Fig. 1 and a mass is moving on it at constant speed 𝑐. 

 
Fig. 1. Model of Cantilever 

2.1. Differential equations of modal responses and inertia force of cantilever 

The differential equation of the deflection of an Euler-Bernoulli beam is given as below [1]: 

𝜌
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑣(𝑥, 𝑡)

𝜕𝑥4
= 𝛿(𝑥 − 𝑐𝑡)𝑓(𝑡), (1) 

where 𝜌 is a constant of mass per unit length of cantilever, 𝑣(𝑥, 𝑡) is the beam deflection at point 

𝑥 and time 𝑡, 𝐸𝐼 is a constant of flexural stiffness of cantilever, 𝛿 is the Dirac delta function, 𝑓(𝑡) 

is the time-varying inertia force. Because the interaction surface between the cantilever and 

moving mass is very smooth and is lubricated by lubricating oil, the damping of the motion process 

can be neglected. 

Based on the modal superposition principle, the solution of Eq. (1) can be written as: 

𝑣 = ∑ 𝑠𝑖𝑛
𝑖𝜋𝑥

𝐿
𝑞𝑖(𝑡)

∞

𝑖=1

, (2) 
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where 𝑞𝑖(𝑡) (𝑖 = 1, 2, 3, … ) are the modal displacements of the beam structure. 

Substitute Eq. (2) to Eq. (1) and each side of Eq. (1) is multiply by 𝑠𝑖𝑛(𝑖𝜋𝑥/𝐿), which is the 

mode shape function. Then integrate the equation with respect to 𝑥 between 0 and 𝐿, use the 

properties of Dirac delta function 𝛿 and the boundary conditions of simple supported beam: 

𝑣(0, 𝑡) = 0, 
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
|
𝑥=0

= 0, 

𝑣(𝐿, 𝑡) = 0,
 

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
|
𝑥=𝐿

= 0,

 

𝑣(𝑥, 0) = 0, 
𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
|
𝑡=0

= 0, 

the resultant equation can be obtained as: 

𝑞
..

𝑗(𝑡) + 𝜔(𝑗)
2 𝑞𝑗(𝑡) =

2𝑓(𝑡)

𝜌𝐿
𝑠𝑖𝑛

𝑗𝜋𝑐

𝐿
𝑡,   𝑗 = 1, 2, …, (3) 

where: 

𝜔(𝑗)
2 =

𝑗4𝜋4

𝐿4

𝐸𝐼

𝜌
, 𝑗 = 1, 2, 3, …,  

are the modal frequency of the simple support beam at the 𝑗-th modal. 

However, the boundary conditions of cantilever beam are different from simple support beam 

and Eq. (3) should be modified as [5]: 

𝑞
..

𝑗(𝑡) + 𝜔(𝑗)
2 𝑞𝑗(𝑡) =

𝑓(𝑡)

𝜌𝐿
𝑠𝑖𝑛

𝑗𝜋𝑐

𝐿
𝑡, 𝑗 = 1, 2, …. (4) 

What’s more, the modal frequency 𝜔(𝑗) and vibration modal function of the cantilever beam 

can only be accessed as approximate value by numerical calculation methods because it can’t be 

obtained as any analytical form. The frequency equation of cantilever beam is given as [10]: 

𝑐𝑜𝑠𝛽𝑖𝐿 • 𝑐ℎ𝛽𝑖𝐿 = −1, (5) 

and the modal function of cantilever beam can be obtained as below: 

𝜑(𝑖, 𝑥) = 𝑐ℎ (
𝛽𝑖 • 𝑥

𝐿
) − 𝑐𝑜𝑠 (

𝛽𝑖 • 𝑥

𝐿
) −

𝑠ℎ(𝛽𝑖) − 𝑠𝑖𝑛(𝛽𝑖)

𝑐ℎ(𝛽𝑖) + 𝑐𝑜𝑠(𝛽𝑖)
· (𝑠ℎ (

𝛽𝑖 • 𝑥

𝐿
) − 𝑠𝑖𝑛 (

𝛽𝑖 • 𝑥

𝐿
)), (6) 

where 𝑥 is the distance from the sampling points to the start point. 

By combining Eq. (4) and Eq. (6), the differential equation of the modal response and time-

varying inertia force can be obtained as: 

[

�̈�1,𝑘

�̈�2,𝑘

⋮
�̈�𝑛,𝑘

] + [

𝜔1𝑞1,𝑘

𝜔2𝑞2,𝑘

⋮
𝜔𝑛𝑞𝑛,𝑘

] =
1

𝜌𝐿

[
 
 
 
 
𝜑(1, 𝑙(𝑘))

𝜑(2, 𝑙(𝑘))

                     ⋮
𝜑(𝑛, 𝑙(𝑘))]

 
 
 
 

𝑓(𝑡), (7) 
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where 𝑞𝑖,𝑘 is the 𝑖-th modal displacement and �̈�𝑖,𝑘 is the 𝑖-th accelerate of the modal vibration of 

the cantilever, 𝑛 is the maximum order of modal, 𝑙(𝑘) is the distance between the sampling point 

and the start point of the cantilever at 𝑘-th sampling moment. 

2.2. Discretized state function of the identification system 

Eq. (7) can be rewriten as follow: 

�̈� + 𝛚𝐪 =
1

𝜌𝐿
𝛗𝑝, (8) 

where �̈�  and 𝐪  are the 𝑛 × 1  vector of the acceleration and displacement of modal vibration 

respectively, 𝛚  is the 𝑛 × 𝑛  matrix of the modal frequency, 𝛗  is the 𝑛 × 1  matrix of modal 

function and 𝑝 is the inertia force between cantilever beam and moving mass. 

The differential equation Eq. (8) can be transform to the continuous-time state equations as 

below: 

�̇�(𝑡) = 𝐀𝐗(𝑡) + 𝐁𝑝(𝑡), (9) 

and the measurement equation can also be given as: 

𝐙(𝑡) = 𝐇𝐗(𝑡), (10) 

where 𝐀 = [
𝟎𝑛×𝑛           𝐈𝑛×𝑛

−𝛚            𝟎𝑛×𝑛
], 𝐁 =

1

𝜌𝐿
[
𝟎𝑛×1

    𝛗
], 𝐗(𝑡) = [

𝐪(𝑡)

�̇�(𝑡)
], 𝐇 = 𝐈2𝑛×2𝑛 is the measurement matrix 

and 𝐙(𝑡) is the observation vector. 

Eq. (9) can be discretized over time intervals of length 𝛥𝑡 with process noise input as follow: 

𝐗(𝑘 + 1) = 𝜙𝐗(𝑘) + 𝛤[𝑝(𝑘) + 𝑤(𝑘)], 

𝐗(𝑘) = [
𝐪(𝑘)

�̇�(𝑘)
], 

𝜙 = 𝑒𝐀𝛥𝑡 , 

𝛤 = ∫ 𝑒𝑨[(𝑘+1)𝛥𝑡−𝜏]𝐁𝑑𝜏
(𝑘+1)𝛥𝑡

𝑘𝛥𝑡

, 

(11) 

where 𝐗(𝑘) is the state vector of the system, 𝜙 is the state transition matrix, 𝛤 is the input matrix, 

𝑝(𝑘) is the inertia force between cantilever and moving mass which is going to be estimate and 

𝑤(𝑘) is the input system noise which is assumed to be zero mean and white with variance 

𝐸{𝑤(𝑘1)𝑤(𝑘2)} = 𝑄𝛿𝑘1𝑘2
, where 𝑄 is the process noise covariance and 𝛿𝑘1𝑘2

 is the Dirac delta 

function. 

The measurement noise also should be considered and therefore Eq. (10) can be discretized as 

follow: 

𝐙(𝑘) = 𝐇𝐗(𝑘) + 𝒗(𝑘), (12) 

where the observation vector is: 

𝐙(𝑘) = [𝑍1(𝑘)  𝑍2(𝑘)     ⋯    𝑍2𝑛(𝑘)]𝑇 ,  

and the measurement noise vector: 

𝐯(𝑘) = [𝑣1(𝑘)    𝑣2(𝑘)   ⋯   𝑣2𝑛(𝑘)]𝑇 ,  
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is assumed to be zero mean and white. The variance of 𝐯(𝑘) is: 

𝐸{𝐯(𝑘1)𝐯
𝑇(𝑘2)} = 𝐑𝛿𝑘1𝑘2

=

[
 
 
 
𝜎1

2 0 … 0

0 𝜎2
2 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜎2𝑛

2 ]
 
 
 
𝛿𝑘1𝑘2

,  

where the elements 𝜎𝑖 is the standard deviation of measurement noise of 𝑣𝑖(𝑘). 

2.3. Recursive algorithm of inertia force identification 

The recursive identification algorithm consists of two parts: Kalman filter part, which is 

adapted to calculate the residual innovation sequence, and recursive least-square estimation part, 

which estimates the inertia force between cantilever and moving mass. 

The Kalman filter part is given as: 

�̄�(𝑘/𝑘 − 1) = 𝜙�̄�(𝑘 − 1/𝑘 − 1), (13) 

𝐏(𝑘/𝑘 − 1) = 𝜙𝐏(𝑘 − 1/𝑘 − 1)𝜙𝑇 + 𝛤𝑄𝛤𝑇 , (14) 

𝐒(𝑘) = 𝐇𝐏(𝑘/𝑘 − 1)𝐇𝑇 + 𝐑, (15) 

𝐊(𝑘) = 𝐏(𝑘/𝑘 − 1)𝐇𝑇𝐒−1(𝑘), (16) 

𝐏(𝑘/𝑘) = [𝐈 − 𝐊(𝑘)𝐇]𝐏(𝑘/𝑘 − 1), (17) 

�̄�(𝑘) = 𝐙(𝑘) − 𝐇�̄�(𝑘/𝑘 − 1), (18) 

�̄�(𝑘/𝑘) = �̄�(𝑘/𝑘 − 1) + 𝐊(𝑘)�̄�(𝑘). (19) 

The recursive least-square estimation part is given as: 

�̄�(𝑘) = 𝐇[𝜙𝐌(𝑘 − 1) + 𝐈]𝚪, (20) 

𝐌(𝑘) = [𝐈 − 𝐊(𝑘)𝐇][𝜙𝐌(𝑘 − 1) + 𝐈], (21) 

𝐊𝑏(𝑘) = 𝛾−1𝐏𝑏(𝑘 − 1)�̄�𝑇(𝑘)[�̄�(𝑘)𝛾−1𝐏𝑏(𝑘 − 1)�̄�𝑇(𝑘) + 𝐒(𝑘)]−1, (22) 

𝐏𝑏(𝑘) = [𝐈 − 𝐊𝑏(𝑘)�̄�(𝑘)]𝛾−1𝐏𝑏(𝑘 − 1), (23) 

𝑝(𝑘) = 𝑝(𝑘 − 1) + 𝐊𝑏(𝑘)[�̄�(𝑘) − �̄�(𝑘)𝑝(𝑘 − 1)], (24) 

where �̄�(𝑘/𝑘 − 1) is the state prediction without considering the system input 𝑝(𝑘), �̄�(𝑘/𝑘) is 

the state updated estimation, 𝐏(𝑘/𝑘 − 1)  is the covariance of state prediction, 𝐏(𝑘/𝑘) is the 

updated state covariance, 𝐊(𝑘), 𝐒(𝑘), and �̄�(𝑘) are the Kalman gain, covariance and innovation, 

respectively, 𝐊𝑏(𝑘) is the gain of recursive least-square algorithm, 𝐏𝑏(𝑘) is the error covariance 

of the estimation of inertia force, �̄�(𝑘) and 𝐌(𝑘) are the sensitivity matrices. What’s more, there 

is a scalar parameter 𝛾, which is between 0 and 1, can adjust the performance of the algorithm [8]. 

When 𝛾 = 1, the algorithm becomes to be the regular sequential least-square algorithm. For  
0 < 𝛾 < 1, it can affect the ability of noise elimination and fast adaption to the signal of the 

algorithm. If 𝛾 is close to 1, it has a very strong ability to estimate the inertia force from the data 

affected by the noise, however it will lose its fast adaptive capability. If 𝛾 is close to 0, it can track 

the fast-varying signal but the identification results will strongly affected by the noise. Therefore, 

we need a compromising between the fast adaptive capability and the noise elimination capability. 

The value of 𝛾 should be decided carefully based on the noise the signals have and adaptive 

capability we need. 

The detailed derivation of this estimation algorithm can be found in Tuan’s work [8]. 

The identification procedure of inertia force between cantilever and moving mass by using the 

recursive inverse method are illustrated as bellow: 

(i) Measure the vibration data of the cantilever, transform it to the modal response and form 

the observation vector 𝐙(𝑘). 
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(ii) Obtain the innovation covariance 𝐒(𝑘), Kalman gain 𝐊(𝑘), innovation �̄�(𝑘) by using the 

Kalman filter. 

(iii) Calculate the inertia force 𝑝(𝑘) by substituting 𝐊(𝑘), 𝐒(𝑘), and �̄�(𝑘) into the recursive 

least-square algorithm. 

3. Numerical simulation results 

The viability of the recursive inverse method is tested by comparing the identification results 

to the numerical results calculated by the finite element method (FEM). The parameters of our 

cantilever model are: the length 𝐿 is 1.5 m, the constant flexural stiffness 𝐸𝐼 is 3.42∙105 Nm2 and 

the constant mass per unit length 𝜌 is 7.8∙103 kg/m3. The sampling frequency is 10 KHz. 

For evaluating the effectiveness of the algorithm, a criterion called relative percentage error 

(RPE) [2], which can express the accuracy of the algorithm across the entire identification progress 

by comparing the identification results with the numerical results, is introduced as follow: 

𝑅𝑃𝐸 =
∑|𝑓𝑡𝑢𝑟𝑒 − 𝑓𝑖𝑑𝑒𝑛𝑡|

∑|𝑓𝑡𝑢𝑟𝑒|
× 100%.  

The initial parameters of the recursive inverse method are set as zeros: 

�̄�(−1/−1) = [0   0    ⋯    0]𝑇 , 
𝑝(−1) = 0, 
𝐌(−1) = 𝟎𝑛×𝑛 . 

 

Because 𝐏(−1/−1) and 𝐏𝑏(−1) are usually unknown before the identification process start, 

they can be set as very large value as follow [8]: 

𝐏(−1/−1) = 𝑑𝑖𝑎𝑔[1010], 
𝐏𝑏(−1) = 𝑑𝑖𝑎𝑔[109], 

 

and therefore, some initial identification results should be “ignore”, which won’t make a big loss 

because the algorithm converge very fast and the value of 𝐏(−1/−1) and 𝐏𝑏(−1) will soon 

converge to the reasonable value. 

The process noise covariance 𝑄 is set as 10-4, and based on the experiment experience, the 

measurement noise is set as: 

𝐑 = 𝑑𝑖𝑎𝑔[10−3    10−5   10−6    10−6    10−2    10−4   10−5   10−5  ].  

As it mentioned above, the value of scale parameter 𝛾 is very important to the performance of 

the algorithm. Because the vibration data of the cantilever beam doesn’t vary fast and the data will 

be affected by the measurement noise, the scale parameter 𝛾 is set as 0.4. 

3.1. None-noise data simulation 

As it shown in the previous study [11], the recursive inverse method can estimate the inertia 

force between the cantilever and moving mass very accurately in the none-noise simulation 

environment. The effectiveness of the recursive inverse method has been tested in three situations 

with different velocities of moving mass: 𝑐 = 5 m/s, 10 m/s and 20 m/s. The RPE value of three 

tests is shown in Table 1 and the identification results are shown in Fig. 2-4. 

As it shown in the Table 1, even though there is a very short delay and some jitters at the 

beginning of the identification process, the algorithm can estimate the inertia force based on the 

none-noise deflection data very accurately. 
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Table 1. The RPE of the identification results (none-noise simulation) 

Velocity of moving mass (m/s) RPE 

5 0.68 

10 2.05 

20 6.23 

 

  
Fig. 2. The identification result (𝑐 = 5 m/s) Fig. 3. The identification result (𝑐 = 10 m/s) 

 
Fig. 4. The identification result (𝑐 = 20 m/s) 

3.2. Noise data simulation 

As it mentioned above, the recursive inverse method has a good performance in dealing with 

the none-noise deflection data of the cantilever beam. However, the deflection data obtained from 

the field experiment will be affected by the measurement noise and therefore, the capability of 

reducing the effect of noise is very important for the algorithm. 

In order to test the recursive inverse method’s capability of dealing with the noise data, 

Gaussian noise is added to the none-noise simulation deflection data to imitate the data obtained 

from the sensors in field experiments. Modified IMII method proposed by Minzhuo Wang [5] is 

also introduced here to provide contrast. 

The recursive inverse method is adapted in two different situations with different measurement 

noise intensity: the standard deviations of measurement noise are 𝜎1 = 10-7 and 𝜎2 = 10-6, which 

match the measurement noise of two kinds of sensors in our laboratory. 

The identification results are shown in Fig. 5-6 and RPE are listed in Table 2. 

As it shown in the Fig. 5-6, the recursive inverse method has a very strong ability to identify 

the inertia force between the cantilever and moving mass in the strong noise environment, where 

the IMII method fails. At the initial part of the identification process, the results is very unstable 

because the deflection is very small when the mass has just moved onto the cantilever and the 
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noise data will “submerge” the true deflection data. What’s more, the algorithm itself has not 

converged yet and some parameters are not stable, either. As the mass moves forward, the 

deflection of cantilever becomes more severe and the algorithm soon converge, which make the 

recursive inverse method can estimate the inertia force very accuracy. 

  
Fig. 5. The identification result 

(𝑐 = 10 m/s, 𝜎 = 10-7) 

Fig. 6. The identification result 

(𝑐 = 10 m/s, 𝜎 = 10-6) 

Table 2. The RPE of the identification results (noise simulation) 

Standard deviation of noise 
RPE 

Recursive inverse method Modified IMII method 

10-7 2.3375 20.6371 

10-6 11.7648 215.3404 

4. Field experiment 

In order to verify the feasibility of the recursive inverse method besides the simulation results, 

a field experiment is designed and conducted. 

4.1. Experiment setup 

As it shown in Fig. 7, a set of experimental apparatus consists of cantilever and moving mass, 

whose parameters are the same as mentioned in section 3, are build up. A nitrogen propulsion unit 

is designed to provide the initial impact to the moving mass. Ten laser displacement sensors 

(Keyence, LK-G400) are evenly placed under the cantilever beam that the length between each of 

two sensors is 150 mm. The measurement noise of the laser displacement sensor is tested before 

the experiment and the standard deviation of its measurement noise is approximately equal to  

10-7. Data acquisition instrument (Dewetron 1201) is used to provide the sync signals to the laser 

displacement sensors and record the deflection data of cantilever. 

The contact surfaces between the cantilever beam and moving mass are manufactured very 

smooth and the lubricating oil is added between the surfaces, therefore, the moving damp can be 

neglected and the velocity of the moving mass can be assumed to be constant. In fact, in the prep 

experiments, a high speed camera (IDT-Y3) is set up to record the motion process of the mass and 

a motion analysis software (ProAnalyst) is used to calculate the speed of the moving mass. The 

results show that the decrease amount of the speed is very small and therefore the model 

assumption that the damp can be neglected is appropriate. 

As soon as the mass moves on the cantilever, the laser displacement sensors begin to record 

the displacement of the cantilever and a high speed camera (not be shown in Fig. 8), which is 

synchronous with the data acquisition device, is set at the fixed end of the cantilever to record the 

exact moment the mass move out the fixed end of the cantilever beam which can be seen as the 
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start signal of the data recording. 

 
Fig. 7. The experiment schematic diagram 

4.2. Experiment results 

Three experiments with different mass velocity, 𝑐 = 10 m/s, 15 m/s and 20 m/s, are conducted 

and the identification result of the inertia force of each experiment is shown in Fig. 8-10. 

  
Fig. 8. The experiment identification result 

(𝑐 = 10 m/s) 

Fig. 9. The experiment identification result 

(𝑐 = 15 m/s) 

 
Fig. 10. The experiment identification result (𝑐 = 20 m/s) 
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Table 3. The RPE of the experiment identification results 

Velocity of moving mass (m/s) RPE 

10 1.145 

15 1.247 

20 1.739 

As it can be seen in the Fig. 8-10, the initial part of the identification process is very unstable, 

even much more unstable than the noise-data simulation results and it is obvious not caused by 

the signal noise or instability of the algorithm. After checking the deflection data, it is found that 

when mass has just moved on the cantilever, it will bring an impact to the structure and even when 

it pass the fixed end, the impact wave can’t vanish in such short time and it will interfere the 

deflection of cantilever beam. After the impact wave vanish in a short period, the recursive inverse 

method can identify the inertia force between cantilever and moving mass very accurately. The 

RPE of the stable part of each identification result is listed in Table 3. 

5. Discussion 

In the field experiments, the initial part of the identification process is very unstable because 

when the mass has just moved on the fixed part of cantilever, the impact wave can’t be vanished 

before it moves out the fixed end of the cantilever. If the fixed part can be extended, moving mass 

will be able to stay in the fixed part of the cantilever for a longer time and the impact wave can be 

vanished which will be helpful to the identification. 

The whole identification model is based on the assumption that the velocity of the moving 

mass is stable and as mentioned in section 4.1, it has been proved by the prep experiment result 

that our experiment apparatus meet this assumption. However, if the length of the cantilever beam 

is much longer or contact surface are not smooth, this assumption can’t be correct because the 

mass will lose some energy in the process of moving and the identification model should be 

modified in that case. 

As it mentioned above, a compromise between the fast adaptive capability and strong noise 

elimination capability of the recursive inverse method is needed when choose the value of scale 

parameter 𝛾. In the case of this paper, the noise elimination capability is considered to be more 

important than the fast adaptive capability because the inertia force doesn’t change dramatically 

and signals from the sensors could have a lot of noise. If the identification parameter changes a 

lot during the process, the noise elimination capability should be weakened by adjusting the scale 

parameter 𝛾 in order to improve the fast adaptive capability. 

In order to obtain the deflection data of the cantilever beam, the sensors should be chosen very 

carefully. The sensors should have a high resolution because the deflection of the cantilever beam 

is very small. What’s more, the sensors should be very stable and the measurement noise of the 

signal can’t be very severe. 

6. Conclusion 

In this paper, the recursive inverse method is adapted to identify the inertia force between the 

cantilever beam and moving mass. A new identification model is formed and an experiment is set 

up to obtained the deflection data of the cantilever. The feasibility of the identification model and 

method is verified by the numerical simulation results (none-noise data and noise data) and the 

field experiment results.  

Future work will focus on the improving of the experiment setup and the identification method 

itself. 
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