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Abstract. In view of the non-stationary and time-varying characteristics of the pressure 

fluctuation signal in the draft tube of hydraulic turbine, a method combining noise reduction based 

on Singular Value Decomposition (SVD) with Cascade Correlation (CC) neural network to 

analyze the pressure fluctuation signal is developed. Firstly, the singular value decomposition 

based on an improved threshold is used to reduce the noise, and then the signal component of 

different frequency band is extracted, finally the feature vector is applied to the CC neural network 

for pattern recognition, obtaining the different patterns of pressure fluctuation in the draft tube. 

The results show that this method is effective in identifying states of pressure fluctuation in the 

draft tube. 

Keywords: pressure fluctuation, singular value decomposition, cascade correlation neural 

network. 

1. Introduction 

With the improvement of unit capacity and size of a turbine, its running stability is very 

important [1-4]. According to the actual survey showing that about 10 % of turbines produce 

vibration, 60 % of which are made up of water pressure pulsation and rotator imbalance. Pressure 

fluctuation of the draft tube brought by vortex belt is the most familiar hydraulic vibration of the 

hydraulic turbine. When spreading to each part, the pressure fluctuation may cause the vibration 

of unit, the periodic swing of big axis, and the fluctuation of power and pressure fluctuation of 

flow in the piping, even can force to stop the unit and result in huge loss to the power station. 

There are three important states in the vibration characteristics of draft tube; they are normal state, 

vortex belt with the initial stage and vortex belt with the serious period [5-7]. 

The method of SVD is a powerful tool in signal processing and data analyzing, which is 

representing signal in time-frequency domain, it has been implemented in a variety of applications 

like the multiple pattern extraction [8], the signal enhancement of seismic data [9], the feature 

extraction method of non-stationary vibration [10], owing to the characteristics of singular value, 

the method of SVD is suitable for the noise processing of signal, for example, the 

electrocardiogram signal denoising [11], the noise reduction in dual microphone [12] and being a 

denoising tool for airborne time domain electromagnetic data [13]. 

The vibration signals are non-stationary random signal, aiming at such problems, this paper 

puts forward the vibration signal analysis method [14-16] which is based on singular value 

decomposition with an improved threshold used for noise reduction and Cascade Correlation 

neural network, this method is used to identify the hydraulic pressure pulsation of the draft tube, 

thus improving the running stability of the turbine.  

2. Noise reduction based on singular value decomposition 

Singular value decomposition has a good algebraic and geometric invariance, which has been 

widely applied for regularisation, noise reduction, signal processing and so on [17]. Any 𝑚 × 𝑛 

matrix 𝐴 whose numbers of rows 𝑚 and columns 𝑛 can be written as the product of a 𝑚 × 𝑛 

column orthogonal matrix 𝑈, a 𝑚 × 𝑛 diagonal matrix 𝑆 of singular values and the transpose of 



1134. PRESSURE FLUCTUATION IDENTIFICATION OF DRAFT TUBE BASED ON SINGULAR VALUE DECOMPOSITION AND CASCADE CORRELATION 

NEURAL NETWORK. WEIGUO ZHAO, LIYING WANG, LINMING ZHAO 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEBRUARY 2014. VOLUME 16, ISSUE 1. ISSN 1392-8716 127 

an 𝑛 × 𝑛 orthogonal matrix 𝑉 are defined as follows: 

𝐴𝑚×𝑛
′ = 𝑈𝑚×𝑚𝑆𝑚×𝑛

′ 𝑉𝑛×𝑛
′ , (1) 

where we define 𝑆 as the singular matrix of 𝐴, and all of the diagonal elements of 𝑆 are the 

singular values which are as follows: 

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 𝜎𝑟+1 = ⋯ = 𝜎𝑚 = 0, (2) 

where 𝑟 is the rank of matrix 𝐴. 

The actual vibration signal with noise is one-dimensional 𝑋 = [𝑥1, 𝑥2, ⋯ 𝑥𝑙], which should be 

segmented: 

𝐴 = (

𝑥11 ⋯ 𝑥𝑛1

⋯ ⋯ ⋯
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

). (3) 

The larger singular values corresponding to 𝐴  denote actual signals, whereas the smaller 

singular values denote noise, so the smaller singular values need to be set to zero, then the adjusted 

singular value matrix be inversed by: 

𝐴𝑚×𝑛
′ = 𝑈𝑚×𝑚𝑆𝑚×𝑛

′ 𝑉𝑛×𝑛
′ , (4) 

where 𝐴𝑚×𝑛
′  is transformed into one-dimensional matrix 𝑋′, which is the real vibration signal 

without noise. For the noise reduction, the key point is how to choose a threshold from which the 

rest singular values will be set to zero. An improved method determining threshold is proposed, 

𝑃 is the mutation value of singular values, which is correspondent with the maximum of 𝐹𝑖: 

𝐹𝑖 =
√∑ 𝜎𝑚×𝑖+𝑗

2𝑛
𝑗=1

√∑ 𝜎𝑗
2 𝑘⁄𝑚×𝑖

𝑗=(𝑚−𝑘)×𝑖+1 + ∑ 𝜎𝑗
2 𝑘⁄𝑚×𝑖+(𝑘+1)×𝑛

𝑗=𝑚×𝑖+𝑛+1

, (5) 

where the singular value sequences are transformed to 𝑚 × 𝑛 matrix, 𝑘 is the group number of 

singular value sequences, then the threshold may be determined by: 

𝑇 = {
𝑃, 𝑃 <

∑ 𝜎𝑖
𝑚
𝑖=1

𝑚
,

∑ 𝜎𝑖
𝑚
𝑖=1

𝑚
, 𝑃 ≥

∑ 𝜎𝑖
𝑚
𝑖=1

𝑚
.

 (6) 

3. Cascade correlation neural network and pressure fluctuation analysis 

3.1. Cascade correlation neural network 

Cascade correlation is a supervised learning algorithm for artificial neural networks which was 

developed by Fahlman and Lebiere [18]. It starts with a minimal network consisting only of an 

input and an output layer, then by minimizing the overall error of a network; it adds step by step 

new hidden units to the hidden layer to create a multi-layer structure, the method learns much 

faster than the usual learning algorithms. 

It mainly consists of two key ideas: firstly, the cascade architecture, in which hidden units are 

joined to the architecture every time and is not altered after they have been joined in. Secondly, 



1134. PRESSURE FLUCTUATION IDENTIFICATION OF DRAFT TUBE BASED ON SINGULAR VALUE DECOMPOSITION AND CASCADE CORRELATION 

NEURAL NETWORK. WEIGUO ZHAO, LIYING WANG, LINMING ZHAO 

128 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEBRUARY 2014. VOLUME 16, ISSUE 1. ISSN 1392-8716  

the learning method would generate and then install the new hidden units. We would try to 

magnify the magnitude of the cascade correlation between the output and the remainder of the 

error we are trying to evaluate. 

We start on the first cycle, a single new hidden unit is generated and a weight connection from 

each input unit is given [19, 20]. The learning should be continued only if the error value does not 

meet the specific requirement, so a candidate node hidden unit is added to the network, but its 

output is not connected to the network, at this time, the weights of the candidate node can be 

trained while all the other weights in the network are frozen. During the candidate node training 

the goal is to maximize the value of correlation 𝐶 between the output of the candidate node and 

network output error: 

𝐶 = ∑ |∑ (𝑦𝑝 − 𝑦̄)(𝑒𝑜𝑝 − 𝑒̄𝑜)
𝑝

|𝑂  , (7) 

where 𝑦𝑝 is the candidate’s output for the sample 𝑝, 𝑒𝑜𝑝 is the error at output node 𝑜 for the sample 

𝑝, 𝑦̄ and 𝑒̄𝑜 are the mean values of the outputs and output errors over the all patterns of the training 

sample, the gradient ascent algorithm is usually used to obtain the maximization. 

The second cycle gives the output of the new hidden unit a weight connection for each output 

unit. The entire set of connections to those from all input and hidden units would be trained 

through minimizing the sum squared error equation: 

𝐸 = ∑(𝑦𝑜𝑝 − 𝑡𝑜𝑝)2

𝑜,𝑝

, (8) 

where 𝑦𝑜𝑝 and 𝑡𝑜𝑝  are the network output for pattern 𝑝 and the expected output for this pattern 

respectively. 

3.2. Feature extraction 

Feature extraction is to analyze the basic data and get the characteristics of data, in this paper, 

the pressure pulsation signal is decomposed by wavelet, the appropriate frequency band signal is 

chosen, the root mean square value of each frequency band is the recognition parameter, and the 

band of the RMS value is: 

𝐸𝑖 =
√∑ 𝐴𝑗

2𝑁𝑖
𝑗=1

𝑁𝑖
, 

(9) 

where 𝐸𝑖 is the RMS value in node 𝑖, 𝐴𝑗 is the discrete amplitude of reconstruction signal, 𝑁𝑖 is 

the number of data points to reconstruct the signal. 

The flowchart of the CC neural network learning combined with singular value decomposition 

for the vibration signal of draft tube is given in Fig. 1. 

4. Identification of pressure pulsation signal draft tube 

4.1. Test procedure and measuring point layout 

In order to get the hydraulic pressure fluctuation signal of the draft tube, the pressure pulsation 

test of the mixed flow turbine is carried on at turbine energy test stage in China institute of water 

resources and hydropower research, the main parameters of the model turbine: the wheel nominal 

diameter is 0.35 m, the blade number of the runner is 14, the height of the guide vane is 0.2 m, the 

distribution circle diameter of the guide vane is 1.18 m, the number of the fixed guide vane is 24, 
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and the spiral angle is 350°. 

Initialize  CC

architecture

Add the hidden candidate unit to 

the main net

  Termination

   is satisfied?

Termination

No

Yes

 Train the main net that until 

E is reached

Add a hidden candidate node, and 

initialize weights and learning 

constants

Train the hidden candidate node until 

the correlation is maximized

Carry on feature extraction

Acquire feature vector

Vibration singal

Noise reduction based on singular 

value decomposition

Start

  

Fig. 1. The chart of vibration signal identification Fig. 2. Measuring point layout 

4.2. Data collection  

Before the test, the pressure pulsation sensor is installed on the measuring point, the end face 

of the sensor must be flush with the port side of wall, after setting the calibration, the relationship 

between voltage and pressure is set up. In the experiment, the signals from the sensor are conveyed 

to the computer. The 69 signal data are obtained in each measuring point, the data length 𝑁 is 

25600 from the collected vibration signals, the part data are as follows in Table 1.  

Table 1. The part nodes and the corresponding amplitude 

 Sample 1 (amplitude) Sample 2 (amplitude) 

node CH0 CH1 CH2 CH0 CH1 CH2 

1 0.175 –0.952 –0.73 2.686 0.6 –0.585 

2 –0.325 –1.039 –0.87 2.213 0.357 –1.339 

3 –0.875 –1.456 –1.077 1.986 0.173 –1.767 

4 –0.844 –1.688 –1.293 2.125 0.439 –2.009 

5 –0.679 –1.559 –0.963 1.691 0.243 –2.295 

6 –0.564 –1.446 –0.51 1.452 0.218 –2.332 

7 –0.384 –1.419 –0.193 1.136 0.045 –2.756 

8 –0.08 –1.285 0.197 0.985 0.04 –2.823 

9 –0.122 –1.063 0.324 2.162 0.681 –2.8 

10 0.106 –1.236 –0.356 3.187 0.77 –2.716 

... ... ... ... ... ... ... 

4.3. Noise reduction and feature extraction 

The noise reduction based on singular value decomposition is used to deal with the data, the 

analysis results are shown in the below figures, we can see from Fig. 3 that the noise of the original 

signal obtained has the bigger degree of inhibition, which is beneficial to the follow-up feature 

extraction. The collected signals in sample 1 and 2 are decomposed by the wavelet decomposition, 

the analysis results are shown in the below Fig. 4. 

 Measuring Point 1 

Measuring Point 2 

Measuring Point 3 
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𝑡1 = [2.8076, 1.5926, 0.7937, 0.3440, 0.0865, 0.0215], 

𝑡2 = [4.5107, 1.1953, 0.5801, 0.2964, 0.0961, 0.0601]. 

 
(a) 

 
(b) 

Fig. 3. a) The original waveform of vibration signal, b) the waveform after noise reduction 

 
(a) 

 
(b) 

Fig. 4. a) Low frequency and high frequency of 1-5 layers in sample 1, b) low frequency and high 

frequency of 1-5 layers in sample 2 

The signal information in each frequency band can be seen from above figures, the standard 

deviations of each frequency band for all samples are shown in Table 2. 

Table 2. Each frequency pressure pulsation standard deviation  

statistical data of taper section up stream 

No. Ca5 Cd5 Cd4 Cd3 Cd2 Cd1 

1 2.807 1.592 0.793 0.344 0.086 0.021 

2 4.51 1.195 0.58 0.296 0.096 0.06 

3 4.584 0.495 0.312 0.225 0.095 0.077 

4 2.263 0.223 0.138 0.105 0.082 0.046 

5 1.205 0.209 0.1 0.094 0.045 0.033 

6 0.892 0.213 0.067 0.065 0.043 0.026 

7 0.806 0.051 0.051 0.043 0.034 0.02 

8 5.048 0.04 0.026 0.016 0.028 0.016 

9 1.321 0.027 0.012 0.006 0.013 0.004 

10 1.186 0.111 0.043 0.015 0.012 0.004 

… … … … … … … 

69 1.5 0.27 0.359 0.335 0.192 0.136 
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4.4. The analysis of pressure pulsation based on cascade connection network 

From the synthetic characteristic curve [21-23], we can get the pressure fluctuation value of 

corresponding samples, which are shown in Table 3. According to the pressure fluctuation value, 

the hydraulic pressure pulsation can be divided into three states including the normal state, the 

early vortex and the severe vortex. The corresponding value of the first state is between 1 % to 

3 %, indicating that the pressure pulsation is lighter; the corresponding value of the second state 

is between 4 % to 5 %, indicating that the pressure fluctuation is bigger; the corresponding value 

of the third state is between 6 % to 8 %, indicating that the pressure pulsation is serious, the 

samples distributions are shown in Table 4. 

Table 3. Tail pipe pressure pulsation classification in modeling results 

Category 1 2 3 4 5 

Pressure 

fluctuation 

𝑛 value 

1 % 2 % 3 % 4 % 5 % 

Sample 

8, 10, 11, 12, 13, 23, 

24, 25, 26, 27, 28, 37, 

38, 39, 40, 41, 42, 52, 

53, 54, 55, 56 

6, 7, 9, 14, 

15, 51, 67, 

68, 69 

4, 5, 21, 

22, 23, 35, 

36, 50, 66 

1, 2, 3, 16, 17, 18, 

20, 29, 30, 31, 33, 

34, 48, 49 

19, 32, 43, 

44, 45, 46, 

47, 64, 65 

Table 4. The category results of samples 

No. Category Sample 

1 First 
4, 5, 6, 7, 9, 10, 11, 12, 13, 21, 22, 23, 24, 25, 26, 27, 28, 35, 

36, 37, 38, 39, 40, 41, 42, 50, 51, 52, 53, 54, 56, 66, 67, 68, 69  

2 Second 
1, 2, 3, 8, 14, 15, 16, 17, 18, 19, 20, 29, 30, 31, 32, 33, 34, 43, 

47, 48, 49, 55, 64, 65 

3 Third 44, 45, 46, 57, 58, 59, 60, 61, 62, 63 

The 69 groups of feature vectors are as the input samples, the input node number of CC is six, 

and the output node number is three. After determining the number of the input and output, the 

adaptive learning based on the CC is applied to the model, the training results in 13 hidden neurons 

added to the actual network, finally the stable network model is 6-13-3 structure as shown in Fig. 5. 

Then the training the CC network is tested for accuracy and generalization using a testing set. 

 
Fig. 5. The network model based on CC 

Six pressure pulsation points are taken from the comprehensive characteristic curve of the 

turbine as validation samples, and a comparison with BP neural network is made in order to 
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evaluate the method properly. The BP network is trained using fast back-propagation method. 

Training parameters are set as follows: the learning rate is 0.02 and the momentum constant is 0.9. 

The weights and biases are initialized randomly. The BP network is trained with the same training 

samples, and the same test samples are used too in testing. The error is set as 0.001, 0.0003 and 

0.0001 respectively. The results of the comparison between the two methods are shown in Table 5. 

Table 5. Comparison between BP and CC network 

Method CC BP1 BP2 BP3 

Error (SSE) 0.0003 0.001 0.0003 0.0001 

Training time 12.6 s 26.5 s 36.5 s 57.2 s 

Test accuracy 99.71 % 97.76 % 98.15 % 96.28 % 

Compared with BP network, the result in Table 5 shows that the most evident characteristics 

of the proposed method are its robustness and less training time. If the number of hidden units of 

BP network is appropriate, it can improve its performance by reducing the error, but it can be seen 

that when the error is drop down from 0.001 to 0.0003, the error is down too. But when the error 

is small enough, due to the over-fitting, one cannot improve the result by reducing the error 

anymore. The test accuracy achieved with CC is 99.71 % using 13 hidden units, CC network has 

been shown to be capable of good generalization when it is applied to the pressure fluctuation 

identification of draft tube, the experiment with different numbers of hidden units is not necessary 

and the training time is 12.6 seconds less than that with standard BP networks with different 

hidden units, exhibiting good classification accuracy and rapid convergence speed. 

5. Conclusions 

This paper has presented a method integrating noise reduction based on singular value 

decomposition with Cascade Correlation neural network to identify the pressure fluctuation signal 

of draft tube. In particular, we have developed an improved threshold method used for adjusting 

singular values. Compared with other methods, the experimental results shows that the method is 

effective in identifying states of the pressure fluctuation in the draft tube. On the basis of further 

research, this method can be used to guide the stable operation of the turbine in the hydropower 

station. 
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