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Abstract. This paper describes the application of the local Hölder exponent which can measure 

sensitive features associated with nonstationary and nonlinearity. By investigating in detail the 

structure and the main properties of the local Hölder function, a fault diagnosis technology is 

developed on the basis of error function. The study is conducted for both engines of two 

Boeing 737 commercial aircrafts as a measure the regularity of aeroengine time series. In order to 

accurately detect the impending aeroengine faults, the Hölder exponent estimation is performed 

for comparative analysis of the aeroengine records. Using this analysis, the difference between 

left and right engine is obvious when one of the engines is fracture failure. 
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1. Introduction 

In recent years, the fractal and multifractal theory has been studied widely to measure the 

regularity of time series. The local Hölder exponent, as an important tool in multifractal analysis, 

provides information about the regularity of a signal [1-4]. But other characterizations of local 

regularity exist, such as the pointwise Hölder exponent, the oscillation exponents, the fluctuation 

exponents, Hausdorff dimensions and the degree of fractional differentiability [5, 6]. We shall 

mainly be concerned in this paper with the study of the local Hölder exponent. 

The pointwise Hölder exponent can pertain to the global regularity of a signal, which can be 

found through the use of the Fourier transform [7]. Unfortunately, the Fourier transform approach 

cannot be used to find the regularity at a particular point in time. On the other hand, Wavelets are 

well localized in time and can therefore provide an estimate of the Holder regularity both over 

time intervals and at specific time points. The formalism, by applying the wavelet transform 

representation of a signal to multifractal analysis, developed by Arneodo et al in the early nineties 

[8, 9] has been extensively used to test many natural phenomena and has contributed to substantial 

progress in each domain in which it has been applied [10-12]. 

The Hölder exponent has proven to be a useful tool for time series analysis [10, 13] and also 

have been used in some applications of health monitoring. By fitting an autoregressive moving 

average (ARMA) model to the wavelet-transformed data, analysis of the Hölder exponent based 

on wavelet transform is used to indicate the presence of fatigue cracks in gears [3]. By using the 

wavelet modulus maxima method, the Hölder exponent is used to examine shaft orbits [4]. 

In this paper, we would notice the Hölder regularity, quantifies the amount of regularity any 

given point on a signal, using known Hölder exponent [10, 13-15]. Nevertheless the pointwise 

Hölder exponent provides only global estimates of scaling, while there are cases when local 

information about scaling provides more relevant information than the global spectrum. Therefore, 

we address the problem of estimation of the local scaling exponent. Here we first investigate the 

fractal scaling characteristic of aeroengine dynamics from normal engine by applying the local 

Hölder exponent method. And then, we obtain the fractal scaling properties of signals from the 

fracture failure in engine, and compare the difference in the fractal scaling results. To this end, we 

define error function between the Hölder exponent of original data for left and right engine. The 

results indicate that the fracture failure engine data can be discovered. 

The structure of the paper is as follows. In section 2, we focus on the flight data and the Hölder 
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exponent analysis. In section 3, we introduce a technique named fractal comparative diagnostics 

analysis method enabling us to estimate the parameter characteristic for aeroengine. In particular, 

the ability to distinguish between normal and abnormal signals in engine is demonstrated by two 

aircraft. The conclusion of the paper is drawn in section 4. Based on the fractal theory and 

comparative analysis, this paper presents applications of the proposed technique to the aeroengine 

data.  

2. Methodology and algorithm 

2.1. EGT data acquisition and signal processing 

Data available from commercial 737 aircrafts are used for this paper. The 737 aircraft data 

includes operational flight data from on-board flight data recorders. These recorders are part of 

the Aircraft Condition Monitoring System (ACMS) such as Smart ACMS Recorder (SAR) and 

Quick Access Recorder (QAR). 

SAR data records specific flight parameters on preset data recording channels. But the QAR 

data is a more comprehensive that data includes an extensive list of flight parameters recorded at 

specific sampling intervals which are set by the manufacturer. Moreover, the set of data includes 

engine reports which are generated when selected parameters meet certain predefined conditions 

during a particular flight phase. Furthermore, the data also includes baseline values for a subset of 

flight parameters and the respective threshold operating values for these parameters. In addition 

the series information can come in handy to decide at what stage during a flight, the parameters 

corresponding to a system or sub-system reach abnormal operating conditions. Therefore, the 

QAR data is applied in this paper. 

By applying flight condition data and situational parameters, diagnostic and prognostic 

schemes can be developed which contribute to determining engine behavior during a specific 

flight and predict engine performance by estimating the flight parameter conditions of future 

flights. Various flight parameters such as Exhaust Gas Temperature (EGT), Fuel Flow (FF), 

Engine Fan Speeds (N1 and N2) are usually used to estimate the engine health and 

performance [16]. 

2.2. Analytical method 

The aeroengine dynamics have to be considered as nonstationary. Therefore, most of the 

widely used signal processing techniques based on the assumption of stationarity and globally 

characterise signals are not fully suitable for detecting short-duration dynamic phenomena [17]. 

Thus, we address the problem of estimation of the local scaling exponent. 

For convenience, we describe briefly the Hölder exponent firstly. Given a function 𝑓(𝑡) with 

a singularity at time 𝑡0, the Hölder exponent ℎ(𝑡0) defined as the supremum exponent such that 

there exists polynomial 𝑃𝑛(𝑡 − 𝑡0) of order 𝑛 < ℎ(𝑡0) satisfying [8-11]: 

|𝑓(𝑡) − 𝑃𝑛(𝑡 − 𝑡0)| ≤ 𝐶|𝑡 − 𝑡0|ℎ(𝑡0), (1) 

where 𝑡 in the neighborhood of 𝑡0, and 𝐶 is a constant. 𝑃𝑛(𝑡) is often associated with the Taylor 

expansion of 𝑓(𝑡) around 𝑡0, but Eq. (1) is valid even if such expansion does not exist [18]. The 

Hölder exponent is therefore a function defined for each point of 𝑓, and it describes the local 

regularity of the function 𝑓. By selecting properly a wavelet kernel 𝜓(𝑡) that is orthogonal to 

polynomials up to degree 𝑛, the continuous wavelet transform (WT) of 𝑓(𝑡) at 𝑡 = 𝑡0 is expressed 

as: 

𝑊𝑇[𝑓](𝑡0, 𝑎) =
1

𝑎
∫ 𝑓(𝑡)𝜓 (

𝑡 − 𝑡0

𝑎
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑𝑡. (2) 
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Further, 

𝑊𝑇[𝑓](𝑡0, 𝑎) ∝ |𝑎|ℎ(𝑡0),   𝑎 → 0. (3) 

The local Hölder exponent ℎ(𝑡0) of strength of singularity can be evaluated as the scaling 

power of the wavelet coefficient at 𝑡 = 𝑡0 for 𝑎 → 0 [19]. 

3. Engine health analysis 

The effectiveness of the proposed technique in perceiving the fracture failure will be discussed 

in this section. The exhaust gas temperature (EGT), offered by a Commercial Company in Beijing, 

are applied. Specifically, we consider time series of two plane, aircraft A and aircraft B, in this 

paper. Fig. 1 shows a section of the normal EGT data from aircraft A. 

 
Fig. 1. The EGT data for normal engine of left and right in aircraft A 

3.1. Example 1: Aircraft A 

In order to test the robustness of the proposed fractal comparative diagnostics method, cruise 

mode time series of aircraft A are used in this section. 

 
Fig. 2. The Hölder exponents of (a) left engine and (b) right engine 

Here, we apply the Hölder exponent analysis method to signal of left and right engine for 

aircraft A, see Fig. 2, where one of the engine is fracture failure. We observe that there are different 

scaling phenomena in the plot. And then, we can study the difference between the Hölder 

exponents of left and right engine by using error function. The error function is defined as: 

Δ(𝑡) = |ℎ𝑙𝑒𝑓𝑡(𝑡) − ℎ𝑟𝑖𝑔ℎ𝑡(𝑡)|, (4) 
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where ℎ𝑙𝑒𝑓𝑡(𝑡) are these Hölder exponents of left engine, ℎ𝑟𝑖𝑔ℎ𝑡(𝑡) are Hölder exponents of right 

engine respectively. 

Fig. 3 shows the nontrivial difference Δ𝑓(𝑡) = |ℎ𝑙𝑒𝑓𝑡(𝑡) − ℎ𝑟𝑖𝑔ℎ𝑡(𝑡)|  between the Hölder 

exponents of left and right engine where one of the two engines is fracture failure. And then, we 

calculate the Hölder exponents for are normal engine as shown in Fig. 4. 

Fig. 5 indicates the error function for Hölder exponents in normal engine  

Δ𝑛(𝑡) = |ℎ𝑙𝑒𝑓𝑡
𝑛𝑜𝑟𝑚𝑎𝑙(𝑡) − ℎ𝑟𝑖𝑔ℎ𝑡

𝑛𝑜𝑟𝑚𝑎𝑙(𝑡)|, where ℎ𝑙𝑒𝑓𝑡
𝑛𝑜𝑟𝑚𝑎𝑙(𝑡), and ℎ𝑟𝑖𝑔ℎ𝑡

𝑛𝑜𝑟𝑚𝑎𝑙(𝑡) are the Hölder exponent 

of normal left and right engine. Approximate to 0, compare to the nontrivial difference in Fig. 3. 

 
Fig. 3. The error function Δ𝑓(𝑡) for one of the two engines is fracture failure in aircraft A 

 
Fig. 4. The Hölder exponents of normal engine (a) left and (b) right for aircraft A 

 
Fig. 5. The error function Δ𝑛(𝑡) of normal left and right engine for aircraft A.  

Δ𝑓(𝑡) >> Δ𝑛(𝑡) indicate the Hölder exponent method to diagnose engine fault is available 
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3.2. Example 2: Aircraft B 

To examine the availability of fractal comparative diagnostics method using data in aircraft B, 

we apply the Hölder exponent analysis method again.  

Here, the Hölder exponent are calculated for aircraft B, as show in Fig. 6, where one of the 

engine is fracture failure. Obviously, there are different scaling phenomena between the Hölder 

exponents of left and right engine. For analysing the dissimilarity, the error function defined by 

Eq. (4) is employed once again. 

 
Fig. 6. The Hölder exponents of (a) left engine and (b) right engine for aircraft B  

where one of the engine is fracture failure 

 
Fig. 7. The error function Δ𝑓(𝑡) for one of the two engines is fracture failure in aircraft B 

 
Fig. 8. The Hölder exponents of (a) left engine and (b) right engine for aircraft B for normal engine 
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We represent the error function Δ𝑓(𝑡) = |ℎ𝑙𝑒𝑓𝑡(𝑡) − ℎ𝑟𝑖𝑔ℎ𝑡(𝑡)| between the Hölder exponents 

of left and right engine in Fig. 7. For comparison, we calculate the Hölder exponents for are normal 

engine as shown in Fig. 8. 

In Fig. 7, we observe that the nontrivial values of error function Δ𝑓(𝑡), where one of the 

engines is fracture failure. For comparison, the error function: 

Δ𝑛(𝑡) = |ℎ𝑙𝑒𝑓𝑡
𝑛𝑜𝑟𝑚𝑎𝑙(𝑡) − ℎ𝑟𝑖𝑔ℎ𝑡

𝑛𝑜𝑟𝑚𝑎𝑙(𝑡)|,  

for normal engine are shown in Fig. 9. As expected the error function Δ𝑛(𝑡) is less than the error 

function Δ𝑓(𝑡) distinctly. We show the negligible difference between the Hölder exponents of left 

and right engine in Fig. 9, where both the left and right engine are normal. 

 
Fig. 9. The error function Δ𝑛(𝑡) of normal left and right engine for aircraft B. The error function  

Δ𝑓(𝑡) >> Δ𝑛(𝑡) indicate the Hölder exponent method is available for diagnosing engine fault 

4. Conclusions 

We present a method of estimating the engine health and performance. The method is 

motivated by the local Hölder exponent theory, and implemented on the comparative analysis. 

Contrary to the intrinsically time-frequency analysis, this estimate is robust by providing stable, 

effective Hölder exponents, local in scale and position. 

In this paper, we consider the effectiveness of the proposed method by applying it to time 

series collected at different aircraft. The conclusions indicate that the difference between left and 

right engine is obvious when one of the engines is fracture failure. On the other hand, the 

difference between the local Hölder exponents of left and right engine is trivial while two engines 

are normal. Therefore, we do believe that our monitoring algorithm may provide some help to 

analyze the aeroengine health and performance. 
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