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Abstract. The aim of this study is to propose a spectral method for assessing the fatigue lives of 

mechanical components under non-Gaussian random vibration loadings. Efforts are made to 

extend the Dirlik’s method to non-Gaussian vibration field by introducing the Gaussian mixture 

model. A symmetric non-Gaussian random vibration can be decomposed into a series of Gaussian 

components through Gaussian mixture model. Then the rainflow cycle distributions of the 

Gaussian components can be obtained using Dirlik’s method. The cycle distribution of the 

underlying non-Gaussian process is derived by compounding the distributions of Gaussian 

components together. The non-Gaussian cycle distribution, combined with Palmgren-Miner rule 

is used to predict the fatigue lives of specimens. Comparisons among the proposed method, 

Dirlik’s solution, nonlinear model in literature, and the experimental data, are carried out 

extensively. The results have confirmed good accuracy of the proposed method. 

Keywords: non-Gaussian vibration, Gaussian mixture model, power spectral density, rainflow 

cycle distribution, fatigue damage. 

1. Introduction 

For some mechanical components, the service loadings are induced by random vibrations. The 

randomness of stress-time histories makes the assessment of fatigue damage quite difficult. 

Among all the cycle counting methods, the rainflow method is regarded as the best one [1]. In the 

time domain, the rainflow method is applicable for any kind of random process, but it usually 

requires a large amount of loading records from lengthy and expensive experimental data 

acquisition programs [2]. Furthermore, we cannot get a stable distribution of rainflow cycles from 

the time domain data [3]. The frequency-domain representations of random processes, normally 

power spectral densities (PSDs), are easier to apply and more flexible in engineering applications. 

For spectral methods, the rainflow cycle distributions are usually estimated based on the PSDs. 

Based on Gaussian assumption some spectral methods have been proposed in the literature, such 

as narrow-band approximation method [4], Dirlik’s solution [5] and the methods presented in 

[6, 7]. A comparison of several spectral methods was presented in [8], where the precision of 

Dirlik’s method was validated. 

In many cases, however, the dynamic vibration loadings of mechanical components do not 

follow Gaussian distributions [9-11]. The non-Gaussian nature of the stress response results from 

non-Gaussian external excitation, nonlinearity, or both [2]. The non-Gaussian random vibration 

loadings can accelerate the fatigue-damage accumulation because of the presence of 

high-excursion loading cycles. Hence, the spectral methods applicable to Gaussian loadings are 

not useful in non-Gaussian case. The methods based on Gaussian assumption will overestimate 

the fatigue lives of mechanical components subjected to non-Gaussian random loadings, possibly 

leading to serious accidents. Hence, new method which is effective for non-Gaussian stress-time 

histories is required. 

Some spectral methods for non-Gaussian random loadings have been presented in literature. 
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A narrow-band approximation method modified by non-normality and bandwidth correction 

coefficients was presented in [12]. Some methods based on nonlinear transformations of Gaussian 

processes were proposed in [2, 10, 13]. There are many damage accumulation rules proposed in 

the past. Generally speaking, the Palmgren-Miner rule [14, 15] could provide reliable fatigue 

damage estimation for stationary random loadings [2, 6]. 

Although some spectral methods for stationary non-Gaussian loadings have been proposed, 

simpler and more efficient methods are still needed in engineering practice. The method proposed 

in this paper is based on Dirlik’s formula. On the basis of the mathematical treatment of Gaussian 

mixture models (GMMs) for non-Gaussian noise in telecommunications applications [16, 17], a 

Gaussian mixture model is proposed here which is available for symmetric non-Gaussian loadings 

whose skewness values are zero and kurtosis values are three. Using the proposed Gaussian 

mixture model, a non-Gaussian loading can be decomposed into a series of Gaussian components 

with different probability weighting factors. Then Dirlik’s formula is used to obtain the cycle 

distributions of the Gaussian components. The cycle distribution of the non-Gaussian loading is 

obtained by compounding the distributions of the components with the proposed Gaussian mixture 

model. The non-Gaussian cycle distribution, combined with Palmgren-Miner rule is used to 

predict the fatigue lives of test specimens. Comparisons among the proposed method, nonlinear 

model in [18], Dirlik’s solution, and the experimental data, are carried out extensively. The results 

have confirmed good accuracy of the proposed method. 

2. Non-Gaussian random vibration loadings 

This study focuses on symmetrical non-Gaussian random loadings. Non-Gaussian vibrations 

are widely present in real-world environments. Theoretically, the statistical parameters that can 

thoroughly represent a non-Gaussian process are higher-order statistics: higher-order moments or 

higher-order cumulants [19]. The higher-order statistics of a random process are functions of the 

sequence of time lags {𝜏𝑖}, 𝑖 = 1, 2, … , 𝑛. The estimation of higher-order statistics is a highly 

complex problem. In vibration engineering, the higher-order statistics by setting the time lags {𝜏𝑖} 
to be zero are always used as substitutions. For this reason, certain statistical properties of the 

non-Gaussian random processes are ignored. This means that most spectral methods for 

non-Gaussian loadings are empirical or semi-empirical solutions. The most commonly used 

statistics are the normalized third- and fourth-order central moments: skewness (𝛾3) and kurtosis 

(𝛾4). Denoting by 𝑋(𝑡) a non-Gaussian random loading, skewness and kurtosis are defined as 

follows: 

𝛾3 =
𝐸[(𝑋 − 𝜇𝑋)

3]

𝜎𝑋
3 =

𝑚3

𝜎𝑋
3 ,   𝛾4 =

𝐸[(𝑋 − 𝜇𝑋)
4]

𝜎𝑋
4 =

𝑚4

𝜎𝑋
4 , (1) 

where 𝐸[·] denotes mathematical expectation, 𝜇𝑋  and 𝜎𝑋  are the mean value and the standard 

deviation of 𝑋(𝑡)  and 𝑚3  and 𝑚4  are the third- and fourth-order central moments. In fact, 

skewness and kurtosis cannot represent the non-normality of a non-Gaussian process completely 

because the statistics higher than fourth-order are ignored and the properties of temporal 

correlation are neglected. It is not difficult to imagine a case that two different stationary 

non-Gaussian processes having identical variance, skewness, and kurtosis. In engineering filed, 

however, some simplifications are unavoidable. For Gaussian processes, the skewness and 

kurtosis values are zero and three respectively. 

The non-Gaussian properties of vehicular vibrations are investigated in [11, 20], where it has 

been pointed out that most of the non-Gaussian loadings encountered in engineering practice are 

non-stationary from a short-duration viewpoint, but stationary from a longer-duration viewpoint. 

In engineering practice, these kinds of loadings are always treated as stationary processes for 

simplicity. This study is also partially based on this assumption. A comparison between 
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standardized Gaussian and non-Gaussian processes is shown in Fig. 1. The discrepancy is 

prominent, and the non-Gaussian process has many higher-excursion peaks. 

 
Fig. 1. The standardized Gaussian and non-Gaussian processes: (a) Gaussian, (b) non-Gaussian (𝛾4 = 8) 

3. Gaussian mixture model (GMM) 

In the study of non-Gaussian noise models in signal processing, Middleton proposed the 

Gaussian mixture model [16]. From the viewpoint of this model, the underlying non-Gaussian 

process consists of a series of Gaussian components, with different probability weight factors and 

other parameters. The original GMM was proposed mainly for estimating the non-Gaussian noise 

probability density function (PDF) in telecommunications applications. The general form of the 

GMM is: 

𝑓NG(𝑥) =∑𝛼𝑖

𝑁

𝑖=1

𝑓𝑖(𝑥), (2) 

where 𝑓NG(𝑥) is the PDF of the non-Gaussian process; 𝑓𝑖(𝑥) is the Gaussian term, namely the 

PDF of the 𝑖th Gaussian component; 𝛼𝑖 is the probability weighting factor, 0 ≤ 𝛼𝑖 ≤ 1, ∑𝛼𝑖 = 1; 

and 𝑁 is the dimension of GMM. 

For the original GMM in telecommunications applications, the weighting factor 𝛼𝑖  is 

quantified by a Poisson distribution based on thorough understanding of each Gaussian noise 

source. This is impossible for non-Gaussian random loadings in mechanical engineering. Hence, 

a modified GMM is needed which is available for non-Gaussian random loadings. 

Normally, a rather small value of 𝑁  in Eq. (2), is sufficient to provide an excellent 

approximation of the real distribution function [17]. The two-term GMM will be used here: 

𝑓NG(𝑥) = 𝛼𝑓1(𝑥) + (1 − 𝛼)𝑓2(𝑥). (3) 

For a zero-mean stationary non-Gaussian process 𝑋(𝑡), the GMM can be expressed as: 

𝑓NG(𝑥) = 𝛼
1

√2𝜋𝜎1
exp (−

𝑥2

2𝜎1
2) + (1 − 𝛼)

1

√2𝜋𝜎2
exp (−

𝑥2

2𝜎2
2), (4) 

where 𝜎1 and 𝜎2 are the standard deviations of the two Gaussian components and 𝛼 and (1 − 𝛼) 

are the probability weighting factors of the two terms. There are three unknown quantities 𝜎1, 𝜎2, 

and 𝛼, in Eq. (4). Therefore, a three-variable set of equations is needed to derive the unknown 

parameters. 

For real non-Gaussian random loadings in engineering practice, the true values of the 

higher-order moments cannot be known. The estimated values are always used as substitutes. For 

a zero-mean process, the second-, fourth-, and sixth-order moments can be calculated as follows: 
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{
 
 
 

  
 𝑚2 = 𝐸[𝑥2] = ∫ 𝑥2𝑓NG(𝑥)𝑑𝑥

∞

−∞

≅ �̂�2 =
1

𝑇
∫ 𝑥2(𝑡)
𝑇

0

𝑑𝑡,

𝑚4 = 𝐸[𝑥4] = ∫ 𝑥4𝑓NG(𝑥)𝑑𝑥
∞

−∞

≅ �̂�4 =
1

𝑇
∫ 𝑥4(𝑡)
𝑇

0

𝑑𝑡,

𝑚6 = 𝐸[𝑥6] = ∫ 𝑥6𝑓NG(𝑥)𝑑𝑥
∞

−∞

≅ �̂�4 =
1

𝑇
∫ 𝑥6(𝑡)
𝑇

0

𝑑𝑡,

 (5) 

where 𝑇 is the duration of the sample time history. When 𝑇 is long enough, these estimates will 

converge to the true values with sufficient precision [21]. 

By substituting Eq. (4) into Eq. (5), the following equations can be obtained: 

{

𝑚2 = 𝛼𝑚2
(1)
+ (1 − 𝛼)𝑚2

(2),

𝑚4 = 𝛼𝑚4
(1)
+ (1 − 𝛼)𝑚4

(2),

𝑚6 = 𝛼𝑚6
(1)
+ (1 − 𝛼)𝑚6

(2)
,

 (6) 

where 𝑚2
(1)

and 𝑚2
(2)

 are the second-order moments of the two Gaussian components, 𝑚4
(1)

 and 

𝑚4
(2)

 are the fourth-order moments, and 𝑚6
(1)

 and 𝑚6
(2)

 are the sixth-order moments. The 

second-order moments are equal to the variances, 𝜎1
2 and 𝜎2

2. 

For a zero-mean stationary Gaussian process, the following relationship exists between the 

various ordered moments: 

𝑚𝑘 = {
[1   ×   3   ×  5     ⋯    (𝑘 − 1)]𝜎𝑘, 𝑘   is   even,
0, 𝑘   is   odd,

 (7) 

where   is the standard deviation or root mean square (RMS) and 𝑘  is a positive integer,  

1 ≤ 𝑘 < ∞. Then for the two Gaussian components: 

{

𝑚2
(1)
= 𝜎1

2, 𝑚2
(2)
= 𝜎2

2,

𝑚4
(1)
= 3𝜎1

4, 𝑚4
(2)
= 3𝜎2

4,

𝑚6
(1)
= 15𝜎1

6, 𝑚6
(2)
= 15𝜎2

6.

 (8) 

Substituting Eq. (8) into Eq. (6) results in: 

{

𝑚2 = 𝛼𝜎1
2 + (1 − 𝛼)𝜎2

2,

𝑚4 = 3𝛼𝜎1
4 + 3(1 − 𝛼)𝜎2

4

𝑚6 = 15𝛼𝜎1
6 + 15(1 − 𝛼)𝜎2

6.

 (9) 

The unknown parameters 1, 2, and 𝛼 can be derived through Eq. (9) by substituting the 

theoretical values of 𝑚1, 𝑚2, and 𝑚3 by the estimated ones in Eq. (5). Then the two-term mixture 

PDF of a non-Gaussian process is obtained. This is a new method for estimating the PDFs of 

symmetric non-Gaussian loadings. However, to assess the fatigue cycle distribution of 

non-Gaussian random loadings based on spectral data, a further step must be taken. Hence, the 

GMM will be introduced into the frequency domain. 

4. PSD decomposition of non-Gaussian vibration loadings 

It is clear that a PSD cannot define a non-Gaussian process, unlike the Gaussian case. Based 

on the GMM, a probabilistic explanation of a non-Gaussian process has been proposed. In Eq. (4), 
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𝛼 and (1 − 𝛼) represent the probabilities of existence of the two Gaussian components in the time 

domain. Furthermore, in the frequency domain, the underlying PSD is decomposed into two 

different-valued PSDs to account for non-normality. 

For a non-Gaussian zero-mean stationary process 𝑋(𝑡), the variance can be expressed as: 

𝜎𝑋
2 = ∫ 𝑆𝑋(𝑓)

∞

0

𝑑𝑓, (10) 

where 𝑆𝑋(𝑓) is the one-sided PSD, and 𝑓 is the frequency. For the two Gaussian components: 

𝜎1
2 = ∫ 𝑆1(𝑓)

∞

0

𝑑𝑓,   𝜎2
2 = ∫ 𝑆2(𝑓)

∞

0

𝑑𝑓, (11) 

where 𝑆1(𝑓) and 𝑆2(𝑓) are the PSDs of the two components. According to Eq. (9): 

𝜎𝑋
2 = 𝛼𝜎1

2 + (1 − 𝛼)𝜎2
2. (12) 

Substituting Eq. (10) and Eq. (11) into Eq. (12), results in: 

𝑆𝑋(𝑓) = 𝛼𝑆1(𝑓) + (1 − 𝛼)𝑆2(𝑓). (13) 

To derive the PSD-based rainflow cycle distribution, the magnitudes of 𝑆1(𝑓) and 𝑆2(𝑓) must 

be determined. Here we assume that 𝑆1(𝑓)  and 𝑆2(𝑓)  are proportional to 𝑆𝑋(𝑓)  along the 

frequency axis: 

𝑆1(𝑓) = 𝜂1𝑆𝑋(𝑓),   𝑆2(𝑓) = 𝜂2𝑆𝑋(𝑓), (14) 

where 𝜂1 and 𝜂2 are the constants of proportionality, which can be derived by combining Eq. (14) 

with Eq. (10) and Eq. (11): 

𝜂1 =
𝜎1
2

𝜎𝑋
2 ,    𝜂2 =

𝜎2
2

𝜎𝑋
2. (15) 

Then, substituting Eq. (14) and Eq. (15) into Eq. (13), the PSD decomposition of symmetric 

non-Gaussian random loadings is obtained. The expression in Eq. (13) is defined as the 

probabilistic PSD (𝑝-PSD). 

5. Modified Dirlik’s formula and fatigue damage estimation 

5.1. Dirlik’s formula 

Dirlik’s formula is an approximate closed-form expression of the PDF of the normalized 

amplitude of rainflow cycles. This method has been developed based on extensive numerical 

simulations with computers [5]. First, let us introduce the definition of spectral moment. For the 

PSD of a given Gaussian process 𝑋(𝑡), the spectral moment is defined as: 

𝜆𝑛 = ∫ 𝑓𝑛𝑆𝑋(𝑓)𝑑𝑓
∞

0

. (16) 

From spectral moments, it is possible to derive some important characteristics of the random 

process itself. For example, the standard deviation is 𝜎𝑋 = √𝜆0,  the expected rate of 
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zero-uncrossing is 𝑣0 = √𝜆2/𝜆0, the expected rate of peaks is 𝑣p = √𝜆4 𝜆2⁄ , the bandwidth factor 

is ℬ = 𝑣0 𝑣p⁄ , and the average frequency is 𝑓𝑚 = 𝜆1 𝜆0⁄ √𝜆2 𝜆4⁄ . 

The normalized amplitude of the loading cycle is defined as: 

𝑧 = 𝑠 𝜎𝑋⁄ , (17) 

where 𝑠 is the amplitude of the rainflow cycle. Then the distribution of the normalized rainflow 

cycle, based on Dirlik’s solutions, is [5]: 

𝑝(𝑧) = 𝑐1
1

𝜛
exp (−

𝑧

𝜛
) + 𝑐2

𝑧

𝜉2
exp (−

𝑧2

2𝜉2
) + 𝑐3𝑧exp (−

𝑧2

2
), (18) 

where 𝑐1 =
2(𝑓𝑚−ℬ

2)

1+ℬ2
,  𝑐2 =

1−ℬ−𝑐1+𝑐1
2

1−𝜉
,  𝑐3 = 1− 𝑐1 − 𝑐2,  𝜛 =

1.25(ℬ−𝑐3−𝑐2𝜉)

𝑐1
,  𝜉 =

ℬ−𝑓𝑚−𝑐1
2

1−ℬ−𝑐1+𝑐1
2 . 

Previous studies have proved that Dirlik’s empirical formula can precisely approximate the 

rainflow cycle distributions of Gaussian random loadings [8]. 

5.2. Dirlik’s formula for non-Gaussian loadings 

Equation (13) gives the 𝑝-PSD of a non-Gaussian random loading. Then the rainflow cycle 

distribution of each component can be calculated based on Dirlik’s formula through a simple 

variable change: 

𝑝1(𝑠) =
𝑝1(𝑧)

𝜎1
|
𝑧=

𝑠
𝜎1

,   𝑝2(𝑠) =
𝑝2(𝑧)

𝜎2
|
𝑧=𝑠/𝜎2

, (19) 

where 𝑝1(𝑧) and 𝑝2(𝑧) are the normalized cycle distributions of the Gaussian components, 𝑠 is 

the amplitude of the rainflow cycle, and 𝜎1 and 𝜎2 are the standard deviations of the two Gaussian 

components. The cycle distribution of the symmetric non-Gaussian random loading is defined as 

follows: 

𝑓GMM(𝑠) = 𝛼𝑝1(𝑠) + (1 − 𝛼)𝑝2(𝑠). (20) 

5.3. Fatigue damage estimation 

For a random loading, fatigue damage is caused by amplitudes and mean values of loading 

cycles. The counted cycles are random events. For zero mean non-Gaussian random loadings, the 

rainflow cycles follow the distribution expressed by Eq. 20. For nonzero mean loadings, the 

rainflow cycle distribution should be modified based on the correction models, such as Goodman 

model, Gerber model, and Soderberg model [22].The expected rate of occurrence of rainflow 

cycles is denoted with 𝑣𝑐 which is equal to the expected rate of occurrence of peak, 𝑣𝑝. It is can 

be derived from the spectral moments of PSD, as shown in subsection 5.1. 

Furthermore, a damage accumulation rule must be selected to collect the fatigue damage 

caused by each cycle together in a specified manner. There are many damage accumulation rules 

reviewed in [23]. The linear damage accumulation rule, namely Palmgren-Miner rule can give 

reasonable results for stationary random loadings according to [24]. We will adopt 

Palmgren-Miner rule in this study. Normally, the stress life curve, namely S-N curve is defined in 

the form of power-low model: 

𝑁𝑆𝑏 = 𝐴, (21) 



1176. A SPECTRAL METHOD TO ESTIMATE FATIGUE LIFE UNDER BROADBAND NON-GAUSSIAN RANDOM VIBRATION LOADING.  

HONGWEI CHENG, JUNYONG TAO, XUN CHEN, YU JIANG 

602 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MARCH 2014. VOLUME 16, ISSUE 2. ISSN 1392-8716  

where, 𝑁 is the number of cycles to failure at amplitude 𝑆, 𝑏 and 𝐴 are the fatigue parameters of 

material or structure. Then the expected fatigue damage can be expressed as follows: 

𝐸[𝐷𝑁𝐺] =
𝑣𝑐𝑇

𝐴
∫ 𝑠𝑏𝑓GMM(𝑠)
∞

0

𝑑𝑠, (22) 

where 𝑇 is the time duration of the non-Gaussian random loading, 𝑓GMM(𝑠) is the non-Gaussian 

rainflow cycle distribution defined in Eq. (20). 

6. Examples 

The fatigue data used in the examples is from Kihl [18]. This fatigue data and the simulated 

non-Gaussian random loadings are used to validate the capability of the proposed method. The 

proposed method is used to predict the fatigue lives of the fatigue test specimens (Fig. 2). 

Comparisons among experimental data, results from the proposed method, nonlinear 

transformation model, and Gaussian assumption are carried out extensively. In addition, a rainflow 

counting procedure based on the time history is carried out to evaluate the empirical distribution 

of rainflow cycles. The rainflow counting procedure is based mainly on the WAFO toolbox [25]. 

 
Fig. 2. Fatigue test specimen [18] (Dimensions are in millimeters) 

The cruciform joint shown in Fig. 2 was extensively tested under non-Gaussian random 

loadings. The welds in the specimens are common locations for initiation and propagation of 

fatigue cracks in actual structures. The configuration and dimensions of the test specimens are 

shown in Fig. 2. The yield stress and ultimate stress of the steel palate are 638 and 683 MPa, 

respectively. During the fatigue tests, the cruciforms were loaded axially in the vertical direction 

with loads applied to the ends of the vertical legs by means of hydraulic grips. Owing to the 

presence of stress concentrations and residual stresses at the weld toe, the fatigue cracks normally 

began at the toe of the welds, as shown in Fig. 2. The S-N curve of the structural detail is: 

𝑁𝑆3.210 = 1.7811 × 1012. (23) 

The expression in Eq. (23) was fitted based on the results of constant-amplitude fatigue tests 

in four different stress levels where the lowest and highest levels are 83 and 310 MPa, respectively. 

The non-Gaussian random loadings are generated using the standard Gaussian simulation 

technique [26] combined with nonlinear transformation [18]. The kurtosis value of the 

non-Gaussian loadings is five. The three RMS stress levels used in the experiments are 52, 69 and 

103 MPa. The sample time histories and the PSDs of the broadband non-Gaussian random 

loadings in different RMS stress levels are shown in Fig. 3. 
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Fig. 3. Sample time histories and the PSDs of the three broadband non-Gaussian random loadings in 

different RMS stress levels: (a) 52 MPa, (b) 69 MPa, (c) 103 MPa and (d) PSDs 

Each simulated load was used as input in the fatigue test and, treated as a loading block, was 

repeated many times until failure [18]. Four specimens were tested for each loading process. The 

broadband non-Gaussian fatigue test results are shown in Table 1. Also presented in this table are 

the mean values of fatigue lives, in applied cycles, for each stress level. 

Table 1. Broadband non-Gaussian fatigue test results 

RMS stress  

level (MPa) 

Cycle to failure, 𝑁𝑒𝑥𝑝 

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Mean value, �̅�exp 

52 951800 742900 1067900 703000 866400 

69 373800 326300 273000 301000 318525 

103 47900 45100 39500 44200 44175 

The critical fatigue damage is assumed to be 𝐷𝑐𝑟 = 1, and then the predicted number of cycles 

to failure based on the proposed method (Eq. (22)) is: 

𝑁𝐺𝑀𝑀 = 𝑣𝑐𝑇 =
𝐴

∫ 𝑠𝑏𝑓GMM(𝑠)𝑑𝑠
∞

0

. (24) 

In this example, 𝐴 = 1.7811×1012, 𝑏 = 3.210. The rainflow cycle distribution 𝑓𝐺𝑀𝑀(𝑠)  is 

derived based on the proposed method. For simplicity, we shall just demonstrate the application 

of the proposed method to the case that the RMS stress level is 52 MPa. The procedures for other 

cases are similar, and we will just list the results. 

Based on Eq. 5, we get the estimations of the second-, fourth-, and sixth-order moments of the 

non-Gaussian random loading shown in Fig. 3(a), �̂�2 = 2704, �̂�4 = 3.8564×107, and  

�̂�6 = 1.2044×1012. By substituting these values into Eq. (9), we get the parameters of GMM are,  

𝛼 = 0.7560, 𝜎1 = 36.9662, and 𝜎2 =  82.7539. And then according to Eq. (15), the two 

parameters for 𝑝-PSD are: 
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𝜂1 =
𝜎1
2

𝜎𝑋
2 = (

36.9662

52
)
2

= 0.5054,   𝜂2 =
𝜎2
2

𝜎𝑋
2 = (

82.7539

52
)

2

= 2.5326. (25) 

Based on these two parameters and Eq. (13), the 𝑝 -PSD of the non-Gaussian loading is 

obtained, as shown in Fig. 4. 

 
Fig. 4. 𝑝-PSD of the non-Gaussian random loading with RMS stress level 52 MPa 

By substituting 𝑆1(𝑓) and 𝑆2(𝑓) into the Dirlik formula (Eq. 18 and Eq. 19), we can get two 

Gaussian rainflow cycle distributions, 𝑝1(𝑠) and 𝑝2(𝑠). And then we can get the non-Gaussian 

rainflow cycle distribution according to Eq. (20), as shown in Fig. 5. Also illustrated in this figure 

are the empirical distribution and Gaussian rainflow cycle distribution. The empirical distribution 

is estimated based on rainflow cycles counted from the sample time history with time duration 

𝑇 = 4000 s. There are 1425 rainflow cycles in the sample time history. The comparison shows the 

accuracy of the proposed in describing the rainflow cycle distribution of broadband non-Gaussian 

random loading. The full range comparisons are presented in Fig. 5(a) and Fig. 5(b) in the linear 

and semi-log coordinates, respectively. And we can see that the proposed methodology can give 

a reasonable description of the non-Gaussian rainflow cycle distribution, especially in the larger 

range of the rainflow cycles. Normally, the larger cycles will dominate the fatigue damage process 

of mechanical component, so we have given a close up view of the distribution curves when cycle 

amplitude is above 83 MPa in both linear and semi-log scales in Fig. 5(c) and Fig. 5(d), 

respectively. Furthermore, we can see that the empirical distribution curve fluctuates severely 

when the PDF value is close to or below 0.1 % in semi-log scale. The reason for this phenomenon 

is that the sample size of the rainflow cycles is 1425, which is too small to give a stable prediction 

in that order of magnitude. But the proposed method can give a stable prediction, as shown in 

Fig. 5(b) and (d). 

The predicted fatigue life of the specimen is derived by substituting the non-Gaussian rainflow 

cycle distribution into Eq. (24). The mean values of the test fatigue data together with the predicted 

results based on the proposed method (Eq. (24)), the nonlinear transformation model in [18], and 

Dirlik formula, in three RMS stress levels are shown in Table 2, where: 

�̅�exp indicates the mean values of fatigue data in Table 1, 

𝑁𝐺𝑀𝑀 indicates the results from the proposed method, 

𝑁𝐾𝑖ℎ𝑙 indicates the results from the nonlinear transformation model [18], 

𝑁G indicates the results based on Gaussian assumption, namely Dirlik solution. 

Table 2. Comparison of fatigue lives for broadband non-Gaussian loadings (𝛾4 = 5) 

RMS stress 
level (MPa) 

Cycles to failure 

�̅�𝑒𝑥𝑝 𝑁𝐺𝑀𝑀 𝑁𝐾𝑖ℎ𝑙  𝑁𝐺  

52 866400 891600 (2.91 %) 1085800 (25.32 %) 1580338 (82.40 %) 

69 318525 359833 (12.97 %) 431200 (35.37 %) 743634 (133.46 %) 

103 44175 91388 (106.88 %) 117300 (165.53 %) 216792 (390.75 %) 



1176. A SPECTRAL METHOD TO ESTIMATE FATIGUE LIFE UNDER BROADBAND NON-GAUSSIAN RANDOM VIBRATION LOADING.  

HONGWEI CHENG, JUNYONG TAO, XUN CHEN, YU JIANG 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MARCH 2014. VOLUME 16, ISSUE 2. ISSN 1392-8716 605 

 
Fig. 5. Comparison of rainflow cycle distributions based on Gaussian assumption and GMM  

with empirical distribution: (a) linear scale, (b) semi-log scale, (c) close up view of large cycle  

amplitude in linear scale, (d) close up view of large cycle amplitude in semi-log scale 

The predicted results of the proposed method seem to agree very well with the mean values of 

the experimental fatigue data for broadband non-Gaussian random loadings except the condition 

that the RMS stress level is 103 MPa. Compared to the mean values of the experimental fatigue 

data in the second column of Table 2, the relative deviations of results of the proposed methods 

are 2.91 %, 12.97 %, and 106.88 % for RMS stress levels, 52, 69 and 103 MPa, respectively. 

While the relative deviations of the results based on nonlinear transformation model are 25.32 %, 

35.37 %, and 165.53 %. The relative deviations for Gaussian assumption (Dirlik solution) based 

results are 82 %, 133.46 %, and 390.75 %. 

Large deviations between the experimental results and the predicted ones present for all the 

methods when RMS stress level is 103 MPa. There are two reasons for this phenomenon. First, 

the S-N curve of the structure is fitted based on constant-amplitude tests where the lowest and 

highest stress levels are 83 and 310 MPa, respectively. But in the non-Gaussian random loading, 

some extrema are much greater than 310 MPa, as shown in Fig. 3(c). Second, some extrema in the 

loading process have approached the yield stress (638 MPa) of the material of the specimen, as 

shown in Fig. 3(c). These higher extrema cause significant fatigue damage in the structures 

changing the fatigue mechanism, and the linear damage summation rule is not applicable herein. 

Maybe one can refer to the strain-life methodology [27] in this condition. 

7. Conclusions 

This study has focused on the rainflow cycle distribution and fatigue life estimation of 

broadband non-Gaussian random loading. A two-term Gaussian mixture model has been proposed 

to decompose the underlying non-Gaussian loadings into Gaussian components with different 

variances. 

Then the Gaussian mixture model was transferred from the time domain to the frequency 

domain. Based on the assumption that the PSDs of the Gaussian components are proportional to 

the PSD of the underlying non-Gaussian process, a definition of probabilistic PSD for 
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non-Gaussian loading has been proposed. 

Dirlik’s empirical method was then used on the PSDs of the Gaussian components to obtain 

their loading-cycle distributions. By substituting the cycle distributions of the Gaussian 

components into the Gaussian mixture model, the cycle distribution of the non-Gaussian loading 

was obtained. Fatigue life was predicted based on the proposed method combining with 

Palmgren-Miner rule. Comparison between the results of the proposed method with the 

experimental results shows good agreement, indicating the capability and reasonable accuracy of 

the proposed method. During the error analysis, the proposed method has resulted in smaller 

relative deviations. This verified the advantage of the proposed method to deal with broadband 

non-Gaussian random vibration loadings. 
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