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Abstract. Diesel engines are the most important equipments in the marine propulsion system. Due 

to offshore working condition, it is essential to establish remote network to monitor the health 

status of the diesel engines. Unfortunately, very limited work has been done for remote condition 

monitoring and fault diagnosis (CMFD) of marine diesel engines. To address this issue, we present 

a novel remote CMFD system to detect engine combustion fault, which appropriately introduces 

the compressive sensing technique into the remote data transmission. The instantaneous angular 

speed (IAS) signal of the engine is transferred remotely from the ship to shoreside data center. 

Combustion fault detection is achieved by time-frequency spectrum analysis on the decompressed 

IAS data. The key advantage of our proposed remote CMFD system is that the IAS data has been 

sampled in a low-speed manner by compressive sensing, thus greatly reducing the computational 

requirements in the data transmission. We have established our proposed remote CMFD system 

for a real dredger to demonstrate its efficiency in the engine combustion fault detection. 

Keywords: diesel engine, remote fault diagnosis, compressive sensing. 

1. Introduction 

Diesel engine has been served in more than 99 % of the marine propulsion systems [1]. The 

normal operation of the engine ensures the scheduled completion and safety of trips. However, 

due to harsh working environment the diesel engines are prone to damage [2]. Hence enhancing 

the engine reliability becomes a major challenge for the engineers. 

Representative failure modes of the marine diesel engines are mainly the wear and fatigue of 

piston – cylinder liner, cylinder burning, abnormal valve clearance and valve leakage, bearing pad 

burning and so forth [3]. Any faults on these engine components will significantly influence the 

combustion condition in the cylinder. Due to the complex engine structure, it is hard to directly 

determine whether a fault occurs in the mentioned components; however, one can detect the 

combustion condition to access the health status of the engine. By doing so, it can realize 

non-constructive detection of the engines. A practical way to detect engine combustion fault for 

diesel is the instantaneous angular speed (IAS) method owning to simple and reliable installation 

of the speed encoder [4]. A large amount of information is contained in the IAS signal while given 

the special working environment of the ships professional knowledge is appreciably required in 

the analysis of the IAS. It is not realistic to arrange experts in every ship; for alternative, a remote 

condition monitoring and fault diagnosis (CMFD) system may perfectly solve this issue. The key 

advantage of remote CMFD is that only one expert is employed in the shoreside data center to 

provide fault detection service for a group of ships. Moreover, remote CMFD can provide 

systematic and comprehensive fault diagnosis for ships. Hence, the particular features of remote 

CMFD system have conduced a lot of scientists in the very last years to establish such systems in 

practice. Song et al. [5] designed a remote CMFD system for a ship engine room. The work 

efficiency of the engine room has been improved by the application of the designed system. Guo 

et al. [6] developed a remote CMFD for gas turbines in warships. In our previous work [7, 8] we 
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have established a remote CMFD system for marine diesel engines in practice. However, in the 

existing remote CMFD systems the data transmission efficiency limits their performance in 

practice. This is because the Nyquist-Shannon sampling theorem has dominated the data 

transmission procedure in the past decades while the inherit characteristics of sampling theorem 

have become a major bottleneck to the further development of information processing [9, 10]. On 

the one hand, Nyquist-Shannon sampling theorem belongs to high speed sampling. It will generate 

a large amount of data sets in the data acquisition, leading to high cost but low efficacy in data 

collection [9]. On the other hand, in the data storage and transmission one need to process a large 

amount of data sets when using Nyquist–Shannon sampling theorem, which causes 

time-consumption calculation and serious resource waste; moreover, the risk of signal 

decompression and reconstruction will increase greatly if massive data being processing [9]. This 

is why a new signal acquisition technology, the Compressive Sensing (CS), has come into birth to 

enhance the efficiency of data acquisition, storage and transmission. Different to Nyquist-Shannon, 

CS adopts low-speed sampling to achieve data acquisition and compression at the same time. This 

advantage makes CS much simpler than Nyquist-Shannon in expressing the original signal. Good 

approximation of the original signal can be obtained by performing a small number of generalized 

measurements [10]. The data sampling points of CS are much less than Nyquist-Shannon. As a 

result, the Compressive Sensing technology has attracted much attentions in information theory, 

signal/image processing, medical imaging, pattern recognition, geological exploration, 

optical/radar imaging, wireless communications, and so forth [10], and is awarded as top 10 

scientific and technological progress in 2007 by United States. It is promising to incorporate CS 

into the remote CMFD system to provide a practical solution on the remote data transmission. 

However, very limited work has been done to address this issue, neither the development of CS 

in remote CMFD for marine diesel engines. 

To develop an efficient data storage and transmission technique in remote CMFD system for 

marine diesel engines, this work proposed a novel solution by incorporating the Compressive 

Sensing into the system. The application of the system in a real dredger has shown good 

performance of the new remote system. 

2. Brief introduction of compressive sensing (CS) 

Compressive sensing (CS) is a new collection of sampling and signal reconstruction 

technology. CS can well approximate an unknown signal using much less number of 

measurements than Nyquist-Shannon sampling [9]. For remote data transmission, it means that 

CS can be used to reduce the storage requirement and computation consumption. Fig. 1 compares 

the signal transmission principles of CS and Nyquist–Shannon. It can be seen in the figure that 

the procedure of CS based data transmission is much simpler than the Nyquist-Shannon method. 

Hence computational efficiency of the CS method is achieved by reducing the storage requirement 

and computation consumption. 

 
Fig. 1. Data transmission comparison of CS and Nyquist-Shannon 

CS mainly consists of the sparse decomposition, projection measurement and reconstruction 

algorithm. Let us briefly introduce the theory of compressive sensing. The details of CS theory 

can refer to [9-12]. 

(1) Sparse decomposition. Consider that the signal of interest is a vector 𝐱 ∈ 𝐑𝑁×1 and there 

is an orthonormal basis 𝛙 = [𝜓1 𝜓2 . . . 𝜓𝑁] for 𝐱: 
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𝐱 = ∑ 𝜓𝑖𝛼𝑖 =

𝑁

𝑖=1

𝛙𝛂, (1) 

where, 𝛂 is the inner product of 𝐱, i.e. 𝛂 = 𝛙∗𝑥; 𝛙𝛙∗ = 𝛙∗𝛙 = 𝐈. If and only if there are 𝐾  

(𝐾 ≤ 𝑁) nonzero coefficients 𝛼𝑖  for 𝐱 in the orthonormal basis 𝛙 ∈ 𝑪𝑁×𝑁, 𝛙 ∈ 𝑪𝑁×𝑁 becomes 

the sparse basis for 𝐱. 

(2) Projection measurement. The CS trick aims to project 𝐱 into a sensing basis Φ ∈ 𝐑𝑀×𝑁 to 

obtain the linear estimation of 𝐱, i.e.: 

𝐲 = 𝚽𝐱. (2) 

Combine (1) and (2) we derive: 

𝐲 = 𝚽𝛙𝛂 = Θ𝛂 ∈ 𝐑𝑀×1. (3) 

One can note from (3) that CS reduces 𝐱 into an estimation 𝐲 with size 𝑀 (𝑀 ≤ 𝑁). 

(3) Reconstruction. In order to accurately recover 𝐱 from 𝐲, the matrix Θ should meet the 

Restricted Isometry Property (RIP) [10]: 

1 − 𝜀 ≤
‖Θ𝛾‖2

‖𝛾‖2
≤ 1 + 𝜀, (4) 

where, 𝛾 is an arbitrary vector with strict 𝐾-sparse; 𝜀 is a small positive constant. 

Hence, (4) requests a suitable design of 𝛙 and 𝚽. Generally, the orthonormal basis 𝛙 adopts 

discrete cosine basis, wavelet basis, or FFT basis, etc. The sensing basis 𝚽 can choose random 

matrix [13, 14]. Then, the 𝐿1-minimization [10] could be used to reconstruct 𝐱 from 𝐲. 

A numerical simulation is carried out to quantitatively highlight the advantage of CS in the 

data sampling against Nyquist-Shannon method. 

Given the following source signal: 

𝑥 = cos(2𝜋 × 200𝑡) + sin(2𝜋 × 150𝑡) + cos(2𝜋 × 1000𝑡)/3. (5) 

Eq. (5) presents a typical healthy vibration signal of the piston-cylinder pair in a diesel engine 

[3]. According to Nyquist-Shannon sampling theorem, choose 20 kHz sampling frequency, after 

1/8 second we get 2500 data points, as shown in Fig. 2(a). However, only 250 data points are 

sufficient for CS to describe the original signal (shown in Fig. 2(b), where the orthonormal basis 

𝛙 adopted discrete cosine basis). One can be noticed in Fig. 2 that CS could perform very small 

sampling points to accurately reconstruct the original signal. Compared with Nyquist-Shannon, 

the data storage can be numerous relieved by CS in a low-speed sampling manner. Since CS 

significantly reduces the computational complexity in the signal storage and remote transmission, 

a promising application of CS can be expected for the remote CMFD system of marine propulsion. 

Herein, we have also discussed in details about the sparse issue and different sampling 

distributions of the measurements in CS processing. Firstly we discussed how sparse can be the 

measurements in CS case. According to Eqs. (1)-(4) one can note that the sparse of the 

measurement is mainly determined by parameter 𝐾. Hence in the simulation different 𝐾 values 

were selected to inspect the influence of sparse on the CS performance. Fig. 3 shows the 

simulation results with different 𝐾 values. It can be seen in the figure that when 𝐾 is as small as 

10, the CS failed to reconstruct the original signal 𝑥; however, with the increase of the sparse the 

CS has improved its performance on the recovery of the original signal 𝑥 from a small portion of 

sample points. In order to quantitatively discuss the relationship between the sparse degree and 

the CS performance, the Pearson correlation coefficient 𝑟 [15] was adopted to investigate the 
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correlation of the original signal x and the recovery 𝑧: 

𝑟 =
∑ (𝑥𝑖 −

𝑛

𝑖=1
�̅�)(𝑧𝑖 − 𝑧̅)

√∑ (𝑥𝑖 −
𝑛

𝑖=1
�̅�)2√∑ (𝑧𝑖 − 𝑧̅)2𝑛

𝑖=1

, (6) 

where, 𝑛 is the total sample point, �̅� is the average of 𝑥, and 𝑧̅ is the average of 𝑧. 

 
a) 

   
b) 

Fig. 2. Comparison of CS and Nyquist–Shannon in signal sampling: a) Nyquist–Shannon, b) CS 

Table 1 lists the Pearson correlation coefficient 𝑟 with different 𝐾 values. It can be seen in the 

table that when the sparse of the measurement is very low, the correlation coefficient 𝑟 between 

the original signal and the recovery signal is very small; specifically, when 𝐾 = 10 (the sparse 

degree is 1/250), there is no correlation between the original signal and the recovery signal. If 

increase the sparse of the measurement, the CS can recover the original signal accurately and when 

𝐾 = 500 (the sparse degree is 1/5) the correlation coefficient 𝑟 = 0.9945. The calculation results 

in Table 1 indicate that a large 𝐾 value will generate precise recovery signal while its computation 

amount and storage request may increase. In engineering practice, the error tolerance should be 

less than 5 % [3]. When 𝐾 = 250 (the sparse degree is 1/10) the correlation coefficient 𝑟 = 0.9515, 

which may meet the engineering practice requirement with very small number of data points. 

Table 1. Pearson correlation coefficient 𝑟 with different 𝐾 values 

𝐾 values 10 50 100 150 200 250 500 

Pearson correlation coefficient 𝑟 0.002 0.5274 0.7706 0.9391 0.9403 0.9515 0.9945 

0 500 1000 1500 2000 2500
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a) 𝐾 = 10 

 
b) 𝐾 = 50 

 
c) 𝐾 = 100 

    
d) 𝐾 = 150 

 
e) 𝐾 = 200 

Fig. 3. Influence of sparse on the CS performance with different 𝐾 values 
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The different sampling distributions of the measurements in CS processing have also been 

investigated in this work. Three typical signal types that usually appear in the machine vibrations 

have been used to carry out the simulation. These signal types include the pulse signal, sawtooth 

signal, and square signal. In CS cases, the option of orthonormal basis 𝛙  may significantly 

influence the signal reconstruction. Suitable orthonormal basis may generate satisfactory CS 

recovery performance. Hence, the investigation of the discrete cosine basis, wavelet basis, and 

FFT basis has been implemented in the simulation to evaluate the CS performance. Different 𝐾 

values have been used to inspect the influence of sparse degree on the CS performance. The 

analysis results are given in Tables 2-5. In the numerical analysis, the Daubechies wavelet basis was 

adopted. 

Table 2. Pearson correlation coefficient 𝑟 with different 𝐾 values using different 𝛙: pulse signal case 

𝛙 
𝐾 values 

10 50 100 150 200 250 500 

FFT basis 0.004 0.4975 0.6542 0.8623 0.9218 0.9636 0.9915 

Daubechies wavelet basis 0.001 0.4663 0.5899 0.8144 0.9203 0.9611 0.9934 

Discrete cosine basis 0 0.3891 0.5674 0.7258 0.8462 0.8619 0.8922 

Table 3. Pearson correlation coefficient 𝑟 with different 𝐾 values using different 𝛙: sawtooth signal case 

𝛙 
𝐾 values 

10 50 100 150 200 250 500 

FFT basis 0 0.1469 0.2477 0.3832 0.4601 0.4761 0.5615 

Daubechies wavelet basis 0 0.3026 0.4208 0.6901 0.7852 0.8603 0.9675 

Discrete cosine basis 0 0.2467 0.2987 0.3486 0.3985 0.4043 0.6603 

Table 4. Pearson correlation coefficient 𝑟 with different 𝐾 values using different 𝛙: square signal case 

𝛙 
𝐾 values 

10 50 100 150 200 250 500 

FFT basis 0 0.2711 0.3976 0.4298 0.5607 0.6263 0.8027 

Daubechies wavelet basis 0 0.3751 0.5846 0.6942 0.7924 0.8571 0.9053 

Discrete cosine basis 0 0.4068 0.6148 0.7525 0.8308 0.9073 0.9507 

Table 5. Pearson correlation coefficient 𝑟 with different 𝐾 values using different 𝛙: signal in (5) 

𝛙 
𝐾 values 

10 50 100 150 200 250 500 

FFT basis 0 0.2373 0.4254 0.4727 0.6585 0.6439 0.7562 

Daubechies wavelet basis 0 0.3456 0.4981 0.7254 0.7839 0.8265 0.8731 

Discrete cosine basis 0.002 0.5274 0.7706 0.9391 0.9403 0.9515 0.9945 

It can be seen in Table 2 that the Daubechies wavelet basis and FFT basis produced good 

performance for pulse signal; in Table 3, the suitable 𝛙 was Daubechies wavelet basis and in 

Tables 4 and 5 the discrete cosine basis outperformed the other two 𝛙. Hence, the investigation 

results demonstrate that different orthonormal basis 𝛙 may be effective for different sampling 

distributions of the measurements in the CS processing; for this specific case of diesel engine signal, 

the discrete cosine basis and the Daubechies wavelet basis were more suitable than the FFT basis. 

3. Design of the CS based remote CMFD system 

To ensure the ship safety, a novel remote CMFD system is developed where the CS has been 

incorporated to enhance the data remote transmission efficiency. Fig. 4 shows the framework of 

the remote CMFD system. 

The system consists of an on-board signal acquisition subsystem, a shoreside remote fault 

diagnosis subsystem and a data centre. The communication between the signal acquisition 
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subsystem and the remote fault diagnosis subsystem adopted the 3G/B3G remote transmission 

technique, and the Global System for Mobile Communications (GSM) technique was employed 

for the remote connection of data centre and the ship. 

 
Fig. 4. The overall design of the remote CMFD system 

The signal acquisition subsystem is used to collect the diesel engine operation parameters. 

Fig. 5 shows the detailed structure of the signal acquisition subsystem. The fieldbus technology 

was used to construct the subsystem. The monitoring objects include the diesel engines and their 

hydraulic systems. Various sensors were installed on the monitoring objects to record their 

operation parameters, including the temperatures, pressures, rotation speeds, vibrations, etc. Then 

the configuration software was used to display and store the recorded data. Fig. 6 shows, for 

instance, the software interface for the monitoring and display of an engine gearbox. The engineers 

can receive all the monitoring machine operation parameters in the engine rooms. Moreover, these 

recorded signals can be transmitted to the shoreside fault diagnosis subsystem via 3G/B3G 

networks, where the CS could be used to compress the data in the ship side and reconstruct the 

data in the shoreside to enhance the data transmission efficiency. 
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Fig. 5. The detailed structure of the signal acquisition subsystem 



1201. A NOVEL REMOTE CONDITION MONITORING AND FAULT DIAGNOSIS SYSTEM FOR MARINE DIESEL ENGINES BASED ON THE COMPRESSIVE 

SENSING TECHNOLOGY. ZHIXIONG LI, XINPING YAN, C. SHENG 

886 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MARCH 2014. VOLUME 16, ISSUE 2. ISSN 1392-8716  

 
Fig. 6. The detailed structure of the signal acquisition subsystem 

The remote fault diagnosis subsystem has integrated a series of signal processing functions 

based on the MATLAB software to provide signal processing services. These services include the 

vibration analysis for vibration signals in time domain or/and frequency domain, image processing 

for ferrography, and threshold setting for temperatures and pressures, etc. Important features could 

be extracted in signal processing services for the detection of incipient machine failures. Taking 

advantages of artificial intelligence, the expert system was employed to mine the hidden rules in 

the extracted features for the fault diagnosis and prognosis in the remote fault diagnosis subsystem. 

Fig. 7 shows the expert system framework of intelligent diagnosis and prognosis for marine diesel 

engines. 

The shoreside data center makes decisions on the signal analysis results and communicates 

with the ship engineers via GSM. 
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Fig. 7. The expert system of intelligent diagnosis and prognosis for marine diesel engines 
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4. Application in marine diesel engine combustion fault detection 

In this work we have investigated the CS-based data transmission performance in the proposed 

remote CMFD system for marine diesel engine combustion fault diagnosis in practice. A series of 

experiments have been implemented to detect the main engine combustion fault in a real dredger 

named “Hangjun 20”. The type of the diesel engine is Sweden Volvo Penta TAMD165C. The 

instantaneous angular speed (IAS) method [2, 16] is employed to detect the engine combustion 

faults. The engine IAS signal is transferred remotely from the ship to shore side using the CS 

technique. Fig. 8 shows the IAS signal acquisition device in “Hangjun 20” dredger and Fig. 9 

shows the CS-based IAS signal remote transmission scheme. 

 
Fig. 8. The IAS signal acquisition device in “Hangjun 20” dredger 
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Fig. 9. The CS-based IAS signal remote transmission scheme 

When faults occur in the engine combustion process, the IAS signal may be distorted due to 

the reduction of the engine power torque [2]. Thus, through the time-frequency spectrum analysis 

useful features could be extracted from the IAS signal to detect the combustion faults. 

Consider that the rotational speed of a four-stroke diesel engine is 𝑃 rev/min, the operating 

time per engine cycle is 𝑡0 = 120/𝑃 s, and hence the basic operating frequency 𝑓0 of the engine 

is: 

𝑓0 = 1/𝑡0 = 𝑃/120 (Hz). (7) 

The ignition frequency 𝑓1 of the engine is: 

𝑓1 = 𝑛𝑓0, (8) 

where, 𝑛 is the cylinder number. 

In the experimental tests, the engine was operated in normal and 3rd cylinder oil leakage 

conditions for 30 minutes, respectively. The engine speed was 1500 rev/min. The cylinder number 

was 6. Hence the basic operation frequency 𝑓0  was 12.5 Hz, and the firing frequency 𝑓1  was  

75 Hz. In order to detect the engine combustion fault, the CS was firstly adopted to transfer the 

IAS data from the ship to the shoreside fault diagnosis subsystem. Then the IAS signal was 
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recovered in the shore side by 𝐿1 -minimization [10] algorithm. Fig. 10 shows the IAS 

reconstruction results. Compared with the traditional data transmission technique, the CS only 

costs as small as 1/4 of the Nyquist–Shannon data amount to precisely present the original IAS 

signal with a mean square error (MSE) of 5.013×10-5. This means that by the compressive sensing 

the data usage efficiency has been increased by at least 3/4 against the traditional Nyquist–

Shannon method and the calculation consumption in the data remote transmission has hence been 

significantly improved. Herein, we have also discussed the sparse issue in CS processing. Table 6 

compares the CS reconstruction performance of different orthonormal basis 𝛙 under different 

sparse degrees in the CS processing. 

 
Fig. 10. IAS reconstruction by CS after the remote data transmission 

Table 6. Pearson correlation coefficient 𝑟 with different 𝐾 values using different 𝛙: IAS signal 

𝛙 
Sparse degree 

1/100 1/20 1/10 1/6 1/5 1/4 1/2 

FFT basis 0 0.1893 0.2359 0.3782 0.4072 0.5748 0.6046 

Daubechies wavelet basis 0 0.2651 0.4755 0.6434 0.7151 0.8395 0.9651 

Discrete cosine basis 0 0.2767 0.4732 0.6956 0.8746 0.9545 0.9702 

It can be seen in Table 6 that the IAS recovery using the FFT basis was not accepted; the 

highest correlation coefficient was 0.6046 for FFT basis. Hence, the FFT basis is not suitable for 

the case of IAS processing. This result agrees well with the simulation result in Table 5. The 

reason for the inefficiency of the FFT basis in the IAS signal reconstruction may be the occurrence 

of frequency mixing in the IAS frequency band. One can note that both the Daubechies wavelet 

basis and discrete cosine basis are effective for the IAS reconstruction; however, when the sparse 

degree is 1/4 the discrete cosine basis is superior to the Daubechies wavelet basis. Hence, in this 

work we adopted the discrete cosine basis with 1/4 sparse degree in the IAS data remote 

transmission processing. Fig. 11 shows the reconstruction IAS signals under normal and faulty 

conditions. The bispectrum [17] was employed as a time-frequency analysis tool in the MATLAB 

software to analyze the reconstruction IAS signals. Fig. 12 shows the fault diagnosis using 

time-frequency spectrum analysis. 

Theoretically, when faults occur, large impact energy will emerge at the basic operation 

frequency 𝑓0 [2, 16, 17]. One can observe in Fig. 12 that in normal condition the energy crests are 

mainly concentrated at (𝑓1 − 3.5𝑓0) and (𝑓1 − 4.5𝑓0); however, when failure occurs the energy 

crest located at the fault frequency 𝑓0  and its harmonics. Moreover, cyclical impacts arise at 

unknown frequency caused by complex coupling movements of the engine components. These 

observations agree well with the theoretic analysis and they could indicate the appearance of the 

engine. In addition, it can be seen in Fig. 12(b) that the largest energy crest arises around 400 deg 

in the 𝑋-axis when the 3rd cylinder experiences its exhaust stroke. Hence, it can infer that the 

failure happened in the 3rd cylinder. 
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Fig. 11. Reconstruction IAS signals after CS data remote transmission 

 
a) Normal condition 

 
b) Oil leakage in 3rd cylinder 

Fig. 12. Fault recognition: a) normal and b) oil leakage 

5. Conclusions 

Efficient data remote transmission may greatly improve the performance of the remote CMFD 

system. Compressive sensing (CS) can break the bottleneck of the Nyquist-Shannon sampling 

theorem to provide efficient data remote transmission. However, little work has been done to 

address this issue. This work appropriately incorporates the CS into the remote CMFD system to 

provide practical solution for the fault diagnosis of marine diesel engines. This novel remote 

system has been established in real ships and has been proven to be promising for the remote 

transmission of engine operation signals. Experimental tests have been carried out in this work to 
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demonstrate and evaluate the performance of the new system. The analysis results show that the 

computational efficiency is achieved by using the CS technology and the remote non-disassembly 

fault detection of marine engine combustion faults can be realized. Thus the new system has 

practice importance. 
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