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Abstract. Shaft orbit is a significant diagnosis criterion, and its identification plays an important 

role in the fault diagnosis of large rotating machinery. The main difficulty of shaft orbit 

identification is how to extract the shape features automatically and effectively. Therefore, in this 

paper, a novel method named statistical fuzzy vector chain code (SFVCC) is proposed for the 

feature extraction of shaft orbit, which has such advantages as invariance, simple calculation and 

high separability. Furthermore, taking the extracted feature vectors as input, support vector 

machine (SVM) is utilized to identify various kinds of shaft orbits for rotating machinery. 

Comparative experiments are implemented, the results reveal that, compared with previous 

methods, the proposed method can identify the shaft orbit more effectively and efficiently with 

satisfactory accuracy. 

Keywords: statistical fuzzy vector chain code, support vector machine, shaft orbit, fault diagnosis, 

rotating machinery. 

1. Introduction 

Large rotating machinery is the essential part of many industrial applications, and its health 

condition is directly related to the safety and efficiency of industrial production. Hence, the 

corresponding fault diagnosis has crucial significance, which needs to detect the fault type and 

assess the fault level as early as possible. As the main part of fault diagnosis, vibration fault 

diagnosis has been the subject of extensive researches [1-4]. During the last decades, shaft orbit 

has been used as an important criterion to identify different faults, since it contains abundant 

information revealing the running state and fault condition of the rotating machinery [3, 4]. 

Especially, the shape of shaft orbit reflects various fault information, such as misalignment, 

unbalance, and oil whip, and it is a crucial basis for fault diagnosis to identify the shaft orbit by 

its shape feature. 

Although the shape of shaft orbit can be easily identified by human’s brain, it is still difficult 

to carry out the identification automatically by computer with satisfactory accuracy. The most 

essential problem of the shaft orbit identification is feature extraction, and the separability of the 

extracted shape feature determines the identification accuracy. In recent years, plenty of studies 

have been fully developed for shape feature extraction [5-17], such as geometric characteristics, 

FFT, Wavelet Transform (WT), invariant moments, Fourier descriptor (FD), Walsh descriptor 

(WD) and chain code. All of them can represent the shaft orbit to some extent. 

The geometric characteristics including rectangularity, circularity, eccentricity and shape 

parameter, can extract the schematic shape feature of shaft orbit simply, but more detailed 

information is abandoned by only using these characteristics. Therefore, they are usually 

combined with other features to represent the shape with higher separability. FFT and WT are 

region-based methods [5-8], which represent the shape in terms of the internal characteristics, and 

both of them have their own advantages and disadvantages. The 2-D FFT is a traditional signal 

image processing method, which transforms the original shaft orbit into frequency domain image 

[6], however, it could not reveal the signal instantaneous mutation and image edge. As a 

time-frequency domain signal analysis method, WT can be used to represent the shaft orbit with 
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different scales, and that overcomes the shortcomings of FFT and makes it available to detail 

transaction and edge detection [7, 8]. But its complicated calculation and the large amount of 

extracted features could lead to great computational burden and high time consuming. Invariant 

moments are proposed by HU [9] and improved by Chen [10] to extract the shape feature with 

invariance to scaling, translation and rotation by combining the normalized 2- and 3-order central 

moments through some different algebraic manipulations, but the physical meaning of the 

acquired invariant moments is spoiled during the manipulation process [11], and that makes it 

difficult to guarantee the identification accuracy of shaft orbit. 

FD, WD and chain code are all contour-based methods, and they only utilize the boundary 

characteristics to represent the shaft orbit. FD [12, 13] reduces the 2-D problem to 1-D by using 

the center distance to substitute the coordinate of boundary pixels, and takes the FFT spectrum of 

the center distance sequence as the shape features. Xiang [14, 15] uses Walsh descriptor to extract 

shape feature, which takes the fast Walsh Transform instead of FFT to deduce the descriptor. In 

both FD and WD, the feature amount of the whole spectrum is so large that only a part of the 

spectrum can be selected as the descriptors, and the representation abilities of them both depend 

on the descriptor selection. Chain code is an effective method for shape recognition and shows the 

advantages of simple calculation and small storage space [16], but still has some problems with 

the sampling grid spacing [17]. 

To overcome the defects of previous methods, in this paper, a novel feature extraction method 

named statistical fuzzy vector chain code (SFVCC) based on the chain code is proposed, which 

focuses on the rotating direction and angle information, and introduces fuzzy vectors to construct 

the chain code instead of the conventional shape codes. It inherits the advantages of the chain code, 

and avoids the sampling grid spacing, so that it can represent the shape characteristics with high 

separability. Furthermore, taking these extracted feature vectors as input, support vector machine 

(SVM) is utilized to process the shaft orbit identification automatically. SVM is a relatively new 

supervised learning technique available for pattern recognition problems [18], which has been 

successfully applied to many different fields such as fault diagnosis. 

The rest of the paper is organized as follows: In Section 2, angle information of shaft orbit is 

described. In Section 3, shaft orbit feature extraction and representation by SFVCC is illustrated. 

In Section 4, the shaft orbit feature vectors is trained and tested by SVM. Section 5 gives the 

experimental results and discussion. And the conclusions of this work are summarized in Section 6. 

2. Angle information of shaft orbit 

The shaft orbit of rotating machinery can be synthesized by the vibration signals in both 𝑥 and 

𝑦 directions collected by two orthogonal displacement sensors installed on each bearing section. 

However, the vibration signals are usually accompanied with noise, and the purification procedure 

is important and necessary to eliminate the noise and improve the signal quality before the feature 

extraction [19, 20]. 
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Fig. 1. Internal angles of the polygon 
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The purified shaft orbit is actually a complex directed polygon [21], and the goal of feature 

extraction is to represent the shape characteristics of the polygon with high separability. Since the 

shape information is fully contained by its angle information and rotating direction, it is feasible 

to extract the shape features by calculating the internal angles of all vertices, and a simplified 

example of internal angle calculation is given in Fig. 1, where 𝑃𝑖 is the 𝑖th vertex, while 𝜃𝑖 is the 

corresponding internal angle. The calculation of 𝜃𝑖 uses the following steps. 

Step 1. Translation. 

Suppose the coordinates of vertex 𝑃𝑖 is (𝑥𝑖, 𝑦𝑖), then move the polygon graphic on 𝑋𝑂𝑌-plane, 

so that the translated vertex 𝑃′ coincides with the origin of coordinates (0, 0), while the vertices 

𝑃𝑖−1  and 𝑃𝑖+1  are translated to 𝑃′𝑖−1  and 𝑃′𝑖+1 , and their coordinates can be obtained by the 

following equations: 

{
𝑥′𝑖−1 = 𝑥𝑖−1 − 𝑥𝑖,

𝑦′
𝑖−1

= 𝑦𝑖−1 − 𝑦𝑖 ,
 

{
𝑥′𝑖+1 = 𝑥𝑖−1 − 𝑥𝑖,

𝑦′
𝑖+1

= 𝑦𝑖−1 − 𝑦𝑖 .
 

(1) 

Step 2. Rotation. 

Rotate vertex 𝑃′𝑖−1  in clockwise direction around 𝑃′𝑖  until it reaches the directed edge 

𝑃′𝑖𝑃
′
𝑖+1, and the rotating angle 𝜑𝑖 can be deduced from Eq. (2): 

{
 
 

 
 cos𝜑𝑖 =

𝑥′𝑖−1𝑥
′
𝑖+1 + 𝑦

′
𝑖−1
𝑦′
𝑖+1

𝑥′𝑖−1 + 𝑦′𝑖−1
×
|𝑃𝑖−1𝑃𝑖|

|𝑃𝑖𝑃𝑖+1|
,

sin𝜑𝑖 =
𝑥′𝑖−1𝑦

′
𝑖+1

− 𝑥′𝑖+1𝑦
′
𝑖−1

𝑥′𝑖−1 + 𝑦′𝑖−1
×
|𝑃𝑖−1𝑃𝑖|

|𝑃𝑖𝑃𝑖+1|
,

 (2) 

where |𝑃𝑖𝑃𝑖+1| and |𝑃𝑖−1𝑃𝑖| are the length of the edge |𝑃𝑖𝑃𝑖+1| and |𝑃𝑖−1𝑃𝑖| [21]. 

Step 3. Correction. 

By repeating the above two steps, the rotating angles 𝜑 of all vertices can be obtained, and it 

is noticed that, the relation between internal angles 𝜃 and rotating angles 𝜑 depends on the moving 

direction of the polygon. If the moving direction is counter-clockwise, the internal angle 𝜃𝑖 equals 

𝜑𝑖, otherwise, 𝜃𝑖  equals 2𝜋 − 𝜑𝑖. In order to decide the moving direction of the polygon, the 

rotating angle 𝜑𝑠  of a special vertex 𝑃𝑠  with the minimum 𝑥-coordinate value is utilized as a 

criterion. It has been proved that the internal angle of 𝑃𝑠 must be less than 𝜋 [22], and the internal 

angle 𝜃𝑖 can be obtained by Eq. (3): 

𝜃𝑖 = {
𝜑𝑖 , 𝜑𝑠 < 𝜋,
2𝜋 − 𝜑𝑖 , 𝜑𝑠 ≥ 𝜋.

 (3) 

All the internal angles can be deduced by the three steps, furthermore, the concavity and 

convexity of each vertex can be identified by its corresponding internal angle, and the convexity 

rate defined as the quotient of the convex vertex amount divided by total vertex amount, can be 

obtained and utilized as an extracted feature. All of these characteristics can be used to represent 

the shape features of shaft orbit. 

3. Shaft orbit representation by statistical fuzzy vector chain code 

As the amount of vertices is quite large, and the internal angles distribute in the range of 

0-2𝜋 rad randomly, the set of internal angles and convexity rate is too complex to be used as the 

shape feature vectors directly. Therefore, it’s necessary to extract more effective feature vectors 
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from the angle information. As the angle information manifests as a sequence of internal angles, 

the ideas of chain code can be utilized, and a novel method, statistical fuzzy vector chain code, is 

proposed and used to extract feature vectors. 

3.1. Theory of chain code 

Conventional Freeman chain code represents a shape contour by a starting point and connected 

sequence of straight-line segments of specified length and direction [17], defined as: 

𝐶𝐶 = 𝑆 𝐶
𝑖=1

𝑛

𝑎𝑖 = 𝑆𝑎1𝑎2⋯𝑎𝑛 , 𝑎𝑖 = 0,1,2, … , 𝑁 − 1, (4) 

where 𝑆 denotes the coordinate of the selected starting point, 𝑎𝑖 (𝑖 = 1, 2, 3,..., 𝑛) is the directional 

code deduced by the length and direction of the segment from the 𝑖th pixel to its neighbor, and 

𝑁 = 4 or 8, respectively for the 4- or 8-directional chain code, as shown in Fig. 2(a) and (b). The 

polygon is coded from the starting point along the contour in a determined direction, and it will 

return to the starting point when the contour is closed. More details of chain code can be found 

in [23, 24]. 
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Fig. 2. Direction numbers 

An example of a polygon and its 8-directional chain code is given in Fig. 3, and each pixel on 

the contour is coded by an integer from 0 to 7, respectively corresponding to the eight directions: 

right, upper right, upper, upper left, left, and so on. 
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Fig. 3. Example of chain code 

3.2. Statistical fuzzy vector chain code (SFVCC) 

In freeman chain code, before the contour coding, the polygon needs to be rasterized to obtain 

the sequence of contour pixels, and unsuitable spacing of the sampling grid may impair the 

representation capability of chain code. To overcome this short-coming, statistical fuzzy vector 

chain code (SFVCC) is proposed. 
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SFVCC focuses on the angle information and rotating direction, and utilizes the internal angles 

to code the shape contour, so that, the feature extraction can be implemented without rasterization 

by just using the sequence of sampling vibration signals, and the decrease of representation 

capability caused by sampling grid spacing can be avoided. Meanwhile, to improve the 

separability of representation, fuzzy theory is introduced to deduce the chain code from the angle 

information, which has been widely applied to pattern recognition [25, 26]. 

All the internal angles are supposed to be in the range of 0-2𝜋 rad, which is divided into eight 

subspaces 𝐴1-𝐴8, as is shown in Fig. 4(a), respectively correspond to [0, 𝜋/4), [𝜋/4,𝜋/2),…, 

[3𝜋/2, 7𝜋/4) and [7𝜋/4 − 2𝜋]. The internal angles are located into the eight subspaces by fuzzy 

recognition, and the triangle fuzzy functions are chosen to calculate the membership to all 

subspaces, as shown in Fig. 4(b). The fuzzy vector code (FVC) of the vertex 𝑃𝑖 is defined as follow: 

𝐹𝑉𝐶𝑖 = 𝐿𝑖 · 𝐌𝑖 = {𝐿𝑖𝑚𝑖1, 𝐿𝑖𝑚𝑖2, … , 𝐿𝑖𝑚𝑖8}, (5) 

where 𝐿𝑖 is the length of 𝑃𝑖𝑃𝑖+1, and 𝐌𝑖  is the membership vector constructed by 𝑚𝑖𝑗 the fuzzy 

membership of 𝐴𝑗  (𝑗 =  1, 2,…,8). The shape contour is coded by the acquired FVCs, and 

furthermore, the FVCs are used to replace the conventional 8-directional code and compose the 

fuzzy vector chain code (FVCC): 

FVCC = 𝑆 𝐶
𝑖=1

𝑛

𝐅𝐕𝐂𝑖 = 𝑆𝐅V𝐂1𝐅𝐕𝐂2⋯𝐅𝐕𝐂𝑛 , (6) 
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Fig. 4. Fuzzy vector code: a) subspace division; b) fuzzy functions 

One advantage of using the angle information is that, the internal angles keep invariant no 

matter how the shape is scaled, translated or rotated. Thus, the FVCC is invariant to scaling, 

translation, and rotation, but it is perceived that the FVCC may change with the starting point 

selection. To overcome this defect, the statistical fuzzy vector chain code (SFVCC) is proposed, 
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which extracts the statistical information of the FVCC to represent the shape characteristics of 

shaft orbit. Meanwhile, these statistical features are combined with the convexity rate to improve 

the representation capability, and the SFVCC is defined as: 

𝐒𝐅𝐕𝐂𝐂 = {
𝑆𝑈𝑀(FVCC)

𝐿
, 𝑅𝑐} = {

∑ 𝐅𝐕𝐂𝑖
𝑛
𝑖=1

𝐿
, 𝑅𝑐} = {𝑠𝑚1, 𝑠𝑚2, ⋯ , 𝑠𝑚8, 𝑅𝑐},  (7) 

where 𝐿 is the circumference of the shape, which can be approximately deduced by summing the 

length of all the segments 𝑃𝑖𝑃𝑖+1, 𝑅𝑐 is the convexity rate, SUM(FVCC) is the sum vector of all 

the fuzzy vector codes and 𝑠𝑚𝑗  is the statistical fuzzy membership to the 𝑗 th subspace 𝐴𝑗  

(𝑗 =  1,2,⋯,8) defined as: 

𝑠𝑚𝑗 =
∑ 𝐿𝑖𝑚𝑖𝑗

𝑛

𝑖=1

𝐿
, 𝑗 = 1,2,⋯ ,8. (8) 

It can be noticed that, the statistical features of FVCC represent the shaft orbit by the specific 

fuzzy memberships of all the internal angles to each subspace in a microscopic way, while the 

convexity rate reveals the amount of the convex vertices and represents the shape in a macroscopic 

way. By combining them together, the shape characteristics of the shaft orbit can be represented 

comprehensively. Obviously, SFVCC is not only invariant to scaling, rotation and translation, but 

also invariant to the starting point selection. 

3.3. Shaft orbit feature vector extraction 

Based on the theories above, the feature extraction of shaft orbit from the acquired vibration 

signals can be described as a sequence of operations including purification, normalization, angle 

calculation and SFVCC computation, and in the process of normalization, the sequences of 

vibration signals are separately normalized to the range of 0-1 by linear transformations. The shaft 

orbit feature vector extraction uses following steps: 

Step 1: Acquire the vibration signals in both 𝑥 and 𝑦 direction, and purify them. 

Step 2: Normalize the vibration signals, and synthesis the shaft orbit. 

Step 3: Use the coordinates of the shaft orbit to calculate the internal angles of the polygon 

according to Eq. (1) to (3), and identify the concavity-convexity of each vertex. 

Step 4: Compute the fuzzy vector chain code using Eq. (5) and (6) based on the internal angles. 

Step 5: Compute the SFVCC using Eq. (7) and (8), and get the shaft orbit feature vectors. 
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Fig. 5. Representation of shaft orbit: a) original signal; b) statistical fuzzy vector chain code 

Generally, there are four typical kinds of shaft orbit: ellipse, inner “8”, outer “8” and banana, 

corresponding to three common faults: unbalance, oil whip and misalignment. Four different 

original shaft orbits are shown in Fig. 5(a), and their SFVCCs are listed in Fig. 5(b). It can be seen 

that, the SFVCC of different shaft orbit is unique, and quite different from each other. Thus, it can 
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be utilized for feature extraction in this work, and the identification problem can be solved. 

4. Shaft orbit identification using SVM 

To identify the shape of shaft orbit by its shape feature is actually a pattern recognition problem, 

in which an accurate and efficient classification approach is quite essential, while the support 

vector machine is an effective classification method with strong robustness, simple structure, high 

recognition accuracy and computational efficiency [27]. Therefore, in this section, the extracted 

feature vectors will be used to train SVM and make it an identifier for shaft orbit identification. 

SVM is based on structural risk minimization, and it maps the input vectors on to a 

high-dimensional space and constructs an optimal separating hyper-plane simply relying on the 

support vectors to achieve classification, which are the training examples closest to the optimal 

separating hyper-plane, and that makes SVM a more effective and efficient identifier [28, 29]. 

Given a set of training samples: {(𝒙1, 𝑦1), (𝒙2, 𝑦2),… , (𝒙𝑁, 𝑦𝑁)}, the amount of the training 

samples is 𝑁, the input vector 𝒙𝑖 ∈ 𝑅
𝑚, and the label 𝑦𝑖 ∈ {+1,−1}, where 𝑚 is the dimension of 

the input vector. For the linearly separable case, the training samples can be divided into two parts 

by a separating hyper-plane, and the corresponding hyper-plane can be expressed by the following 

equation: 

< 𝐰 ⋅ 𝐱 > +𝑏 = 0, (9) 

where the coefficient vector 𝐰 ∈ 𝑅𝑚, and < 𝐰 ⋅ 𝐱 > denotes the inner product of 𝐰 and 𝐱. There 

could be a set of hyper-planes, and the purpose of SVM is to find the maximal margin hyper-plane. 

That can achieve maximum separation between the classes and minimize the expected 

generalization error. Meanwhile the hyper-plane should satisfy the following constraint: 

𝑦(< 𝐰 ⋅ 𝐱 > +𝑏) ≥ 1. (10) 

Intuitively, it is an optimization problem to maximize the margin of the separating hyper-plane, 

which can be deduced as 2/||𝐰||, and it can be converted into its dual problem: 

𝑊(𝑎) =∑𝑎𝑖

𝑁

𝑖=1

−
1

2
∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐱𝑖 ⋅ 𝐱𝑗

𝑁

𝑖,𝑗=1

, (11) 

where 𝑎𝑖  are the Lagrange multiplier, and 𝑎𝑖  ≥  0  (𝑖 ∈ [1,𝑁]),  ∑ 𝑦𝑖𝑎𝑖
𝑁
𝑖=1 = 0.  Then the 

optimized 𝑎𝑖 are used to constitute the separating hyper-plane: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑𝑎𝑖𝑦𝑖(𝐱𝑖 ⋅ 𝐱)

𝑁

𝑖=1

+ 𝑏). (12) 

If the classification problem is linear non-separable, the input vectors x will be mapped on to 

a high-dimensional space by kernel function 𝐾(𝐱, 𝐲),  and different kernel functions can be 

selected to acquire the optimal results for different problems. In this paper, SVM is utilized to 

identify the shaft orbit, and more details of SVM can be found in [27-29]. 

5. Experimental study and analysis 

The flowchart of the presented shaft orbit identification method is given in Fig. 6, and as 

mentioned above, the shaft orbit is represented by SFVCC and identified by SVM. Based on the 

above theory, this section identifies shaft orbit experimentally, and the simulative data samples of 
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shaft orbits are constructed by the following formula: 

{
𝑥(𝑡) = 𝐴1sin(𝜔𝑡 + 𝛼1) + 𝐴2sin(2𝜔𝑡 + 𝛼2),

𝑦(𝑡) = 𝐵1cos(𝜔𝑡 + 𝛽1) + 𝐵2cos(2𝜔𝑡 + 𝛽2),
 (13) 

where 𝜔  is the rotating angular velocity, 𝐴1,  𝐴2  and 𝐵1,  𝐵2  are respectively the vibration 

amplitude of the fundamental and second harmonic generation in 𝑥 and 𝑦 direction, 𝛼1, 𝛼2 and 𝛽1, 

𝛽2 are their initial phase angle. Different shapes of shaft orbit can be obtained by changing the 

values of these parameters. 
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Fig. 6. Flowchart of the presented shaft orbit identification method 
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Fig. 7. The general structure of the shaft orbit measurement system 
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Fig. 7(a) gives the photo of the rotor test device, and Fig. 7(b) illustrates the general structure 

of its shaft orbit measurement system. In the measurement system of the rotor test device, a pair 

of eddy current displacement sensors are installed perpendicularly on the shaft near the rotor, by 

which the displacement signals of both 𝑋 and 𝑌 direction can be obtained. Then the acquisition 

system collects the displacement signals by equal periodic sampling, and the sampling frequency 

is set to 128 points per period. After processing and purification, the purified vibration signals can 

be deduced and synthesize the shaft orbit. 

All of the experiments are implemented in PC with Intel Core i5 2.7 GHz CPU and 2G RAM 

using VC++ 2010 compiler and Matlab2010a simulation software based on Windows 7 operating 

system with the help of LIBSVM [30]. 

5.1. Identification experiment of shaft orbit 

In the identification experiment, four typical classes of shaft orbits: ellipse, inner “8”, outer “8” 

and banana are included, and each class has 40 groups of original data collected by simulation. 

All the shaft orbits are divided into two parts randomly: half of them are training samples and used 

to train SVM, while the rest of them are testing samples and used to test the identification ability 

of the trained SVM. Part of the training and testing samples are respectively shown in Figs. 8, 9. 

Firstly, the feature vectors of the training data are extracted by SFVCC described in the third 

part of the paper, and taken as input data 𝐱, while the class numbers are taken as label 𝑦. Then, 

several optimal hyper-planes separating the four classes are constructed, and the SVM is trained 

to become an identifier. In the process of identification, the feature vectors of testing data are 

extracted and imported to the SVM, and through the optimal separating hyper-planes, all of the 

testing data can be classified into the four classes, and the corresponding faults can be determined. 

Table 1. Feature vectors of the testing samples 

ID Shape 
Feature vector 

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 
1 Ellipse 0.000 0.000 0.000 0.577 0.423 0.000 0.000 0.000 1.000 

2 Ellipse 0.000 0.000 0.000 0.564 0.436 0.000 0.000 0.000 1.000 

3 Ellipse 0.000 0.000 0.000 0.554 0.446 0.000 0.000 0.000 1.000 

4 Ellipse 0.000 0.000 0.000 0.580 0.420 0.000 0.000 0.000 1.000 

5 Ellipse 0.000 0.000 0.000 0.563 0.437 0.000 0.000 0.000 1.000 

6 Inner “8” 0.000 0.000 0.002 0.605 0.393 0.000 0.000 0.000 1.000 

7 Inner “8” 0.000 0.000 0.001 0.631 0.368 0.000 0.000 0.000 1.000 

8 Inner “8” 0.000 0.000 0.002 0.608 0.390 0.000 0.000 0.000 1.000 

9 Inner “8” 0.000 0.000 0.000 0.643 0.357 0.000 0.000 0.000 1.000 

10 Inner “8” 0.000 0.000 0.003 0.597 0.400 0.000 0.000 0.000 1.000 

11 Outer “8” 0.000 0.000 0.002 0.516 0.481 0.001 0.000 0.000 0.550 

12 Outer “8” 0.000 0.000 0.000 0.520 0.479 0.001 0.000 0.000 0.580 

13 Outer “8” 0.000 0.000 0.002 0.473  0.525 0.000 0.000 0.000 0.450 

14 Outer “8” 0.000 0.000 0.004 0.509 0.485 0.002 0.000 0.000 0.550 

15 Outer “8” 0.000 0.000 0.002 0.514 0.482 0.002 0.000 0.000 0.550 

16 Banana 0.000 0.000 0.006 0.505 0.488 0.001 0.000 0.000 0.710 

17 Banana 0.000 0.001 0.003 0.521 0.475 0.000 0.000 0.000 0.690 

18 Banana 0.001 0.001 0.002 0.502 0.492 0.002 0.000 0.000 0.700 

19 Banana 0.000 0.000 0.003 0.536 0.461 0.000 0.000 0.000 0.660 

20 Banana 0.000 0.001 0.005 0.506 0.487 0.001 0.000 0.000 0.730 

Table 1 lists the extracted feature vectors of the testing samples shown in Fig. 8, where 𝑓1-𝑓8 

are the statistical features of the fuzzy vector chain code, and 𝑓9 is the convexity rate. It is revealed 

that, all the shaft orbits of the same class have similar feature vectors. Meanwhile, the statistical 

features of ellipse and inner “8” are quite different from other classes, and by only using 𝑓1-𝑓8 , 
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they can be identified well, while the outer “8” and banana are hard to separate, since the difference 

between their statistical features is not obvious. But by combining them with the convexity rate, 

the features vectors of all the four classes are quite different from each other, and that guarantees 

the separability of the extracted shape features. 

  
Fig. 8. Partial training samples of experiment Fig. 9. Partial testing samples of experiment 

The results of identification are stated in Table 2, 100, 95.5, 93.5 and 100 % identification 

rates for ellipse, inner “8”, outer “8” and banana, and respectively corresponding to the fault 

unbalance, oil whirl and misalignment. The lowest identification rate of testing samples, 93.5 % 

for outer “8”, is also considerable, and it reveals that the proposed method shows not only high 

accuracy, but also satisfactory stability. 

Table 2. Identification rate of shaft orbit. 

Shaft orbit Fault case Identification rate (%) 

Ellipse Unbalance 100 

Inner “8” Oil whirl 95.5 

Outer “8” Misalignment 93.5 

Banana Misalignment 100 

5.2. Comparative experiment of shaft orbit identification 

To demonstrate the effectiveness of the proposed method, comparative experiments are 

implemented, in which the same data are utilized, and the shape features are extracted respectively 

by SFVCC and the previous methods including invariant moments, Fourier descriptor and Walsh 

descriptor. The experimental result demonstrates that SFVCC shows superiority in both accuracy 

and efficiency. 

As is shown in Table 3, the numbers of features in the four method are respectively 9, 20, 20, 

6, and the average results are 97.25, 88.25, 76.25, 58.75 % identification rates, 23.18, 34.09, 31.36, 

2030 ms feature extraction time, and 17.42, 26.03, 25.81, 38.72 ms classification time respectively 

for SFVCC, Fourier descriptor, Walsh descriptor and invariant moments. 

Table 3. Comparison with different methods 

Method Number of features Identification rate Feature extraction time Classification time 

SFCC 9 97.25 % 25.13 ms 26.32 ms 

FD 20 88.25 % 34.09 ms 29.75 ms 

WD 20 76.25 % 31.36 ms 28.81 ms 

IM 6 58.75 % 2030 ms 25.77 ms 

In the comparison results, the identification rate of invariant moments is the lowest, while its 

time cost of feature extraction is far more than the others. Firstly, in order to calculate the invariant 

moments the shaft orbit is rasterized and extracted as a matrix, and the amount of data is much 

larger than the shaft orbit counter. Thus the computational complexity is much higher. Secondly, 

invariant moments are deduced from the internal characteristics, by which ellipse can be 
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recognized from other shapes, but the other shapes especially inner “8” can be hardly distinguished, 

and that reduces the average identification rate. Fourier descriptor and Walsh descriptor represent 

the shape counter respectively by two different mathematical transformations, and they have 

higher identification rate than invariant moments, and less time cost consuming of feature 

extraction. The time cost of classification depends on the number of features, and the method with 

more features consumes more time. Thus, in Fourier descriptor and Walsh descriptor, only the 

first 20 points of the whole spectrum are utilized as feature vectors, and that may reduce their 

identification rate. In conclusion, the proposed SFVCC shows highest identification rate with the 

lowest time consuming, and its superiority in the shaft orbit identification is demonstrated. 

6. Conclusion 

In this paper, a novel method based on statistical fuzzy vector chain code and SVM to identify 

the shaft orbit for rotating machinery is proposed and illustrated, in which the shape feature vectors 

of shaft orbit is extracted by statistical fuzzy vector chain code, and identified by SVM 

automatically. 

The identification results for four kinds of shaft orbit were presented of identification rate, and 

compared to three previous feature extraction algorithms respectively in identification rate, feature 

extraction time and classification time. The experimental results revealed that the proposed 

method is available to the shaft orbit identification of rotating machinery. 

Generally, the shaft orbit identification based on SFVCC is available for most kind of the 

normal rotating machineries, when the vibration signals are processed and purified appropriately. 

However, different kind of rotating machinery may have different characteristics, such as rotating 

speed, noise disturbance, etc. These characteristics may limit the application of SFVCC. Therefore, 

how to find the appropriate signal processing approach according to the specific characteristics of 

different objects is the key aspect in the application extension of SFVCC, and it will be the focus 

of the future works. 

As mentioned previously, it is an important advantage of the feature extraction approach to 

identify the shaft orbit using a more effective and efficient algorithm. And it is quite helpful for 

realizing the highly reliable fault diagnosis automatically. 
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