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Abstract. The governing equation of flow-induced vibration is deduced in terms of Hamilton’s 

principle for a variable diameter pipe conveying axial steady flow. Frobenius method is applied 

to analyze the governing equation. After the recursion formulas of coefficients are obtained, 

dynamic stiffness method is proposed for free vibration analysis of the variable diameter pipe 

conveying fluid. In the example, the natural frequencies of uniform pipes conveying fluid are 

computed and comparisons are made to validate the dynamic stiffness method. Then, the natural 

frequencies and modal shapes are obtained for the variable diameter pipe conveying fluid with 

different section variation coefficients and fluid velocities. 
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1. Introduction 

Fluid-conveying pipe is widely used in nuclear industry, petroleum industry, and many other 

industries. The failure caused by the interaction between fluid and pipe wall occurs very frequently 

in practice. So flow-induced vibration of pipe conveying fluid attracts more and more interests of 

researchers. Ashley and Haviland [1] begun the research of bending vibrations of pipe line 

containing flowing fluid. Paidoussis [2] has studied the dynamic characteristics of pipe conveying 

fluid for many years, the great achievement he accomplished in nonlinear vibration of pipes set 

the foundation of pipe dynamics. Recently, flow-induced vibration of pipe conveying fluid is 

researched more exhaustively. Doare et al. [3] studied the dissipation effect on the local and global 

stability of pipe conveying fluid and proposed a numerical method to analyze the stability of 

finite-length system. Jung, Chung [4] investigated the stability of semi-circular pipe conveying 

harmonically oscillating fluid. They considered the extensibility and nonlinearity of the 

fluid-conveying pipe with different boundary conditions through Hamilton principle. Rinaldi, 

Prabhakar [5] studied micro-scale resonators containing internal flow, modeled as 

micro-fabricated pipe conveying fluid, and investigated the effects of flow velocity on damping, 

stability, and frequency shift. Huang, Liu [6] studied the natural frequencies of fluid conveying 

pipe with different boundary conditions through Garlerkin approach. Ragulskis, Fedaravicius [7] 

have developed a harmonic balance method in the FEM analysis of the fluid in pipe with taking 

the interactions between the vibrating pipe and fluid flow into consideration. 

Uniform pipe was always adopted in the flow-induced vibration analysis of pipe conveying 

fluid. However, fluid-conveying pipes with variable section are widespread in nuclear engineering, 

such as pipe-expanding and nozzle etc. Hannoyer and Paidoussis [8, 9] have studied the dynamics 

of a slender tapered beam with internal and external flow in theory and experiment. Based on the 

researches of Hannoyer and Paidoussis [8, 9], we studied the dynamic characteristics of variable 

diameter pipes conveying fluid through stiffness matrix method. Natural frequencies and modal 

shapes of the variable diameter pipe were calculated in this paper and contrasts were made 

between the results in this paper and previous researches, which prove that the method employed 

in this paper is reasonable. 
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2. Motion equation of variable diameter pipe conveying fluid 

Here, we use Hamilton’s principle to build the dynamic model of variable diameter pipe 

conveying fluid. Because that the fluid-conveying pipe is an open system. The Hamilton’s 

principle for open system is used here, i.e.: 

𝛿 ∫ ℒ𝑑𝑡 + ∫ 𝛿𝑊𝑑𝑡

𝑡2

𝑡1

𝑡2

𝑡1

− ∫ 𝑚𝑓𝑉(𝑥)(𝑟̇𝑒  + 𝑉(𝑥)𝑒𝑡) ⋅ 𝛿𝑟𝑒

𝑡2

𝑡1

𝑑𝑡 = 0, (1) 

where, ℒ is the system’s Lagrange function, that is ℒ = 𝑇𝑘 − 𝑇𝑝, where 𝑇𝑘, 𝑇𝑝 stand for the kinetic 

energy and potential energy of the system respectively. 𝛿𝑊 is the work done by non-conservative 

force, 𝑚𝑓 is the fluid mass per unit length, 𝑟𝑒 is the position vector of pipe exit. 𝑒𝑡 is the unit vector 

in tangent direction of the deformed pipeline, as shown in Fig. 1. 

In the coordinate shown in Fig. 1, the absolute fluid velocity can be written as follow: 

𝑉𝑎
→

(𝑥) = (𝑢̇ + 𝑉(𝑥)𝑢′)𝑒1 + (𝑤̇ + 𝑉(𝑥)𝑤′)𝑒2. (2) 

In Eq. (2), 𝑉(𝑥) stands for the velocity of the fluid relative to the pipe. 𝑒1 and 𝑒2 are unit 

vectors in 𝑥 - and 𝑦 -directions.  ( )′ and ( )̇  stand for the partial derivatives with respect to 𝑥 

(coordinate) and 𝑡 (time). According to the law of conservation of fluid mass, as shown in Eq. (3), 

the velocity of the fluid is change along the length of the conical pipe. So we use 𝑉(𝑥) and 𝑉𝑎(𝑥) 

here: 

𝑉(𝑥)𝐴𝑓(𝑥) = 𝐶, (3) 

where 𝐶 is a constant. 

  
Fig. 1. The displacement sketch of simply supported pipe Fig. 2. The sketch of variable diameter pipe 

The sketch of a variable diameter pipe is shown in Fig. 2. The fluid flows from left end to right 

end. The outer and inner diameters of left end of the pipe are 𝐷𝑖  and 𝑑𝑖𝑠  respectively. The 

non-uniformity of the pipe is characterized by the diameter variation coefficient 𝛾. The outer and 

inner diameters of the section at coordinate 𝑥  can be expressed as 𝐷(𝑥) = (1 − 𝛾
𝑥

𝐿
)𝐷𝑖  and 

𝑑(𝑥) = (1 − 𝛾
𝑥

𝐿
) 𝑑𝑖 respectively, where 𝐿 is length of the pipe. Because that the area of the fluid 

is 𝐴𝑓(𝑥) =
1

4
𝜋𝑑2(𝑥), the velocity of the fluid along the length of the pipe can be expressed as: 

𝑉(𝑥) =
𝐶

(1 −
𝛾𝑥
𝐿 )

2

𝑑𝑖
2
. (4) 
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Given that the flow velocity at the entrance of the pipe is 𝑉0, then Eq. (4) can be transformed 

into following form: 

𝑉(𝑥) =
1

(1 −
𝛾𝑥
𝐿 )

2 𝑉0. (5) 

Now, we use Hamilton’s principle for open system to deduce the motion equation of variable 

diameter pipe conveying fluid. The kinetic energy of fluid in pipe can be written in the following 

form: 

𝑇𝑘𝑓 =
1

2
∫𝜌𝑓

𝐿

0

𝐴𝑓(𝑥)𝑉𝑎
2(𝑥)𝑑𝑥 =

1

2
∫𝜌𝑓

𝐿

0

𝐴𝑓(𝑥)(𝑤̇2 + 𝑉2(𝑥) + 2𝑤̇𝑤′𝑉(𝑥) + 2𝑉(𝑥)𝑢̇)𝑑𝑥. (6) 

Here, the axial inextensible assumption was used, i.e.  (
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑤

𝜕𝑥
)
2

= 1. And high order 

infinitesimals have been ignored in Eq. (6). 𝜌𝑓 is the density of fluid in pipe, 𝐴𝑓(𝑥) is area of the 

fluid section located at 𝑥. 𝑚𝑓(𝑥)𝑑𝑥 = 𝜌𝑓𝐴𝑓(𝑥)𝑑𝑥 is mass of the fluid element analyzed. 

The kinetic energy of the pipe is as follow: 

𝑇𝑘𝑝 =
1

2
∫𝜌𝑝𝐴𝑝(𝑥)𝑤̇2𝑑𝑥

𝐿

0

=
1

2
∫ 𝑚𝑝(𝑥)𝑤̇2𝑑𝑥

𝐿

0

, (7) 

where, 𝜌𝑝  is density of the pipe material, 𝐴𝑝(𝑥)  is area of the pipe cross section at 𝑥 .  

𝑚𝑝(𝑥)𝑑𝑥 = 𝜌𝑝𝐴𝑝(𝑥)𝑑𝑥 is mass of the pipe element. 

The potential energy of the pipe is as follow: 

𝑇𝑝𝑝 =
1

2
𝐸 ∫ 𝐼𝑥𝑤

″2

𝐿

0

𝑑𝑥. (8) 

In Eq. (8), 𝐼𝑥  is the inertial moment of the pipe section. Obviously, 𝐼𝑥  also changes along 

𝑥-axis. Only considering the work done by fluid pressure, the work done by non-conservative 

force is zero [2], that is: 

𝛿𝑊 = 0. (9) 

Substituting Eq. (6)-(9) into Eq. (1), the following equation can be obtained: 

𝛿 ∫
1

2

𝑡2

𝑡1

∫[𝑚𝑓(𝑤̇
2 + 𝑉2 + 2𝑤̇𝑤′𝑉 + 2𝑉𝑢̇)

𝐿

0

+ 𝑚𝑝𝑤̇
2 − 𝐸𝐼𝑥𝑤

″2]𝑑𝑥𝑑𝑡

− ∫ 𝑚𝑓𝑉(𝑟̇𝑒 + 𝑉𝑒𝑡) ⋅ 𝛿𝑟𝑒

𝑡2

𝑡1

𝑑𝑡 = 0. 

(10) 

Here, we take the simply supported pipe (as shown in Fig. 1) for example to deduce the lateral 

vibration equation of the variable diameter pipe conveying fluid. 

The boundary conditions of simply supported pipe are: 
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𝑤(0) = 𝑤(1) = 0,   𝐸𝐼
𝜕2𝑤

𝜕𝑥2
|
𝑥=0

= 𝐸𝐼
𝜕2𝑤

𝜕𝑥2
|
𝑥=1

= 0. (11) 

At time 𝑡1 and 𝑡2: 

{
𝛿𝑢𝑡1 = 𝛿𝑢𝑡2 = 0,

𝛿𝑤𝑡1 = 𝛿𝑤𝑡2 = 0.
 (12) 

Combine Eq. (11) with Eq. (12), the following equation is obtained: 

∫ ∫[𝐸(𝐼𝑥𝑤
″)″ + (𝑚𝑝 + 𝑚𝑓)𝑤̈ + (𝑚𝑓𝑉𝑤̇′ + 𝑚𝑓′𝑉𝑤̇ + 𝑚𝑓𝑉

′𝑤̇)

𝐿

0

𝑡2

𝑡1

+ (𝑚′
𝑓𝑤

′𝑉2 + 𝑚𝑓𝑤
″𝑉2 + 2𝑚𝑓𝑉𝑉′𝑤′)]𝛿𝑤𝑑𝑥𝑑𝑡 = 0. 

(13) 

The detail manipulation of the third term in Eq. (10) is as follow: 

𝛿 ∫ ∫𝑚𝑓𝑉𝑤̇𝑤′𝑑𝑥𝑑𝑡 = ∫ ∫(𝑚𝑓𝑉𝑤′𝛿𝑤̇ + 𝑚𝑓𝑉𝑤̇𝛿𝑤′)𝑑𝑥𝑑𝑡

𝐿

0

𝑡2

𝑡1

𝐿

0

𝑡2

𝑡1

= ∫ ∫[−𝑚𝑓𝑉𝑤̇′ − (𝑉𝑚𝑓𝑤̇)′] 𝛿𝑤𝑑𝑥𝑑𝑡

𝐿

0

𝑡2

𝑡1

= − ∫ ∫(𝑚𝑓𝑉𝑤̇′ + 𝑚𝑓
′ 𝑉𝑤̇ + 𝑚𝑓𝑉

′𝑤̇)𝛿𝑤𝑑𝑥𝑑𝑡

𝐿

0

𝑡2

𝑡1

. 

(14) 

Considering the assumption of axial inextensible, we obtain that 𝑢𝑒 = −
1

2
∫ 𝑤′2𝑑𝑥

𝐿

0
, where 

the subscript ‘𝑒’ means “exit”, and the following equation can be gained: 

∫ 𝑚𝑓𝑉(𝑟̇𝑒 + 𝑉𝑒𝑡) ⋅ 𝛿𝑟𝑒

𝑡2

𝑡1

𝑑𝑡 = ∫ 𝑚𝑓𝑉
2𝛿𝑢𝑒𝑑𝑡

𝑡2

𝑡1

= − ∫ ∫𝑚𝑓𝑉
2𝑤′𝛿𝑤′𝑑𝑥𝑑𝑡

𝐿

0

𝑡2

𝑡1

= ∫ ∫(𝑚𝑓𝑤
′𝑉2)′𝛿𝑤𝑑𝑥𝑑𝑡

𝐿

0

= ∫ ∫(𝑚′
𝑓𝑤

′𝑉2 + 𝑚𝑓𝑤
″𝑉2 + 2𝑚𝑓𝑉𝑉′𝑤′)𝛿𝑤𝑑𝑥𝑑𝑡.

𝐿

0

𝑡2

𝑡1

𝑡2

𝑡1

 

(15) 

Now, we can get the motion equation of variable diameter pipe conveying fluid as follow: 

𝐸(𝐼𝑥𝑤
″)′′ + (𝑚𝑝 + 𝑚𝑓)𝑤̈ + (𝑚𝑓𝑉𝑤̇′ + 𝑚𝑓𝑉𝑤̇ + 𝑚′𝑓𝑉

′𝑤̇)

+ (𝑚′
𝑓𝑤

′𝑉2 + 𝑚𝑓𝑤
″𝑉2 + 2𝑚𝑓𝑉𝑉′𝑤′) = 0. 

(16) 

3. Free vibration analysis of variable diameter pipe 

3.1. Frobenius method 

To harmonic vibration, we have: 

𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑒𝑖𝜔𝑡. (17) 
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Substituting Eq. (17) into Eq. (16), we can get the following ordinary differential equation: 

𝐸𝐼𝑥
𝑑4𝑊

𝑑𝑥4
+ 2𝐸

𝑑𝐼𝑥
𝑑𝑥

𝑑3𝑊

𝑑𝑥3
+ (𝐸

𝑑2𝐼𝑥
𝑑𝑥2

+ 𝑚𝑓𝑉
2)

𝑑2𝑊

𝑑𝑥2
+ (𝑚𝑓𝑉𝑖𝜔 + 𝑚𝑓

′𝑉2
+ 2𝑚𝑓𝑉𝑉′)

𝑑𝑊

𝑑𝑥

+ [(𝑚𝑓
′ 𝑉 + 𝑚𝑓𝑉

′)𝑖𝜔 − (𝑚𝑝 + 𝑚𝑓)𝜔
2]𝑊 = 0, 

(18) 

where: 

𝑚𝑓(𝑥) = 𝜌𝑓𝐴𝑓(𝑥) = 𝜌𝑓𝜋
(1 −

𝛾𝑥
𝐿 )

2

𝑑𝑖
2

4
= (1 + 𝛼1

𝑥

𝐿
+ 𝛼2

𝑥2

𝐿2
)𝜌𝑓𝐴𝑓(0), 

𝑚𝑝(𝑥) = 𝜌𝑝𝐴𝑝(𝑥) = 𝜌𝑓𝜋
(1 −

𝛾𝑥
𝐿 )

2
(𝐷𝑖

2 − 𝑑𝑖
2)

4
= (1 + 𝛼1

𝑥

𝐿
+ 𝛼2

𝑥2

𝐿2
)𝜌𝑝𝐴𝑝(0), 

(19) 

and 

𝐼𝑥 = 𝜋
𝐷𝑥

4 − 𝑑𝑥
4

64
= 𝜋

(1 −
𝛾𝑥
𝐿 )

4
(𝐷𝑖

4 − 𝑑𝑖
4)

64
= (1 + 𝛽1

𝑥

𝐿
+ 𝛽2

𝑥2

𝐿2
+ 𝛽3

𝑥3

𝐿3
+ 𝛽4

𝑥4

𝐿4
) 𝐼0. 

(20) 

For the purpose of analyzing Eq. (18) conveniently, the following dimensionless parameters 

are introduced here: 

𝜉 =
𝑥

𝐿
,    𝜂 =

𝑊

𝐿
,     Ω = √

𝜌𝑓𝐴𝑓(0) + 𝜌𝑝𝐴𝑝(0)

𝐸𝐼(0)
𝜔𝐿2,  

𝑣0 = √
𝜌𝑓𝐴𝑓(0)

𝐸𝐼(0)
𝐿𝑉0,    𝛽 =

𝜌𝑓𝐴𝑓(0)

𝜌𝑓𝐴𝑓(0) + 𝜌𝑝𝐴𝑝(0)
. 

(21) 

The dimensionless form of Eq. (18) is as follow: 

(1 + 𝛽1𝜉 + 𝛽2𝜉
2 + 𝛽3𝜉

3 + 𝛽4𝜉
4)

𝑑4𝜂

𝑑𝜉4
+ 2(𝛽1 + 2𝛽2𝜉 + 3𝛽3𝜉

2 + 4𝛽4𝜉
3)

𝑑3𝜂

𝑑𝜉3

+ [(2𝛽2 + 6𝛽3𝜉 + 12𝛽4𝜉
2) + (1 + 𝛼1𝜉 + 𝛼2𝜉

2)
𝑣0

2

(1 − 𝛾𝜉)4
]
𝑑2𝜂

𝑑𝜉2

+ [(𝛼1 + 2𝛼2𝜉)
𝑣0

2

(1 − 𝛾𝜉)4
+ (1 + 𝛼1𝜉 + 𝛼2𝜉

2)
𝛾𝑣0

2

(1 − 𝛾𝜉)5
+ 𝑖Ω𝑣0

1

4(1 − 𝛾𝜉)2 √𝛽]
𝑑𝜂

𝑑𝜉

+ {𝑖Ω√𝛽 [(𝛼1 + 2𝛼2𝜉)
1

(1 − 𝛾𝜉)2
+ (1 + 𝛼1𝜉 + 𝛼2𝜉

2)
𝛾𝑣0

(1 − 𝛾𝜉)3
]

− (1 + 𝛼1𝜉 + 𝛼2𝜉
2)Ω2} 𝜂 = 0. 

(22) 

Given that the contraction angle of the conical pipe is very small, that is, (𝛾𝜉) is sufficiently 

small so that we can use Tylor series here as: 
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1

1 − 𝛾𝜉
= ∑(𝛾𝜉)𝑛

∞

𝑛=0

≈ 1 + 𝛾𝜉 + (𝛾𝜉)2 + (𝛾𝜉)3 + (𝛾𝜉)4 + (𝛾𝜉)5 + (𝛾𝜉)6, 

1

(1 − 𝛾𝜉)2
≈ 1 + 2𝛾𝜉 + 3(𝛾𝜉)2 + 4(𝛾𝜉)3 + 5(𝛾𝜉)4 + 6(𝛾𝜉)5 + 7(𝛾𝜉)6, 

1

(1 − 𝛾𝜉)3
≈ 1 + 3𝛾𝜉 + 6(𝛾𝜉)2 + 10(𝛾𝜉)3 + 15(𝛾𝜉)4 + 21(𝛾𝜉)5 + 28(𝛾𝜉)6, 

1

(1 − 𝛾𝜉)4
≈ 1 + 4𝛾𝜉 + 10(𝛾𝜉)2 + 20(𝛾𝜉)3 + 35(𝛾𝜉)4 + 56(𝛾𝜉)5 + 84(𝛾𝜉)6, 

1

(1 − 𝛾𝜉)5
≈ 1 + 5𝛾𝜉 + 15(𝛾𝜉)2 + 35(𝛾𝜉)3 + 70(𝛾𝜉)4 + 126(𝛾𝜉)5 + 210(𝛾𝜉)6. 

(23) 

Here, we apply Frobenius method to analyze Eq. (22). Given that the solution of Eq. (22) takes 

the following form: 

𝜂(𝜉) = ∑ 𝑎𝑛𝜉𝑛+𝑘

∞

𝑛=0

,   𝑎0 ≠ 0. (24) 

In which 𝑎𝑛 is the coefficient of the polynomial. The derivatives of 𝜂(𝜉) are: 

𝑑𝜂

𝑑𝜉
= ∑ 𝑎𝑛(𝑛 + 𝑘)𝜉𝑛+𝑘−1

∞

𝑛=0

,   
𝑑2𝜂

𝑑𝜉2
= ∑ 𝑎𝑛(𝑛 + 𝑘)(𝑛 + 𝑘 − 1)𝜉𝑛+𝑘−2

∞

𝑛=0

, 

𝑑3𝜂

𝑑𝜉3
= ∑ 𝑎𝑛(𝑛 + 𝑘)(𝑛 + 𝑘 − 1)(𝑛 + 𝑘 − 2)𝜉𝑛+𝑘−3

∞

𝑛=0

, 

𝑑4𝜂

𝑑𝜉4
= ∑ 𝑎𝑛(𝑛 + 𝑘)(𝑛 + 𝑘 − 1)(𝑛 + 𝑘 − 2)(𝑛 + 𝑘 − 3)𝜉𝑛+𝑘−4

∞

𝑛=0

. 

(25) 

When 𝑛 = 0, substituting Eq. (24) and Eq. (25) into Eq. (22), because that the lowest power 

of 𝜉 equals to zero, so the following equation can be obtained: 

𝑎0𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 3) = 0. (26) 

Because that 𝑎0 ≠ 0, so we obtain: 

𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 3) = 0. (27) 

Eq. (27) is namely indicial equation and it plays an important role in the analysis [10]. 

Obviously, Eq. (27) have four roots, i.e. 𝑘𝑗 = 0, 1, 2, 3 (𝑗 = 1, 2, 3, 4) respectively. To each 𝑘, 

only one coefficient 𝑎𝑛(𝑘) is related. Substituting Eq. (24) and Eq. (25) into Eq. (22), then all the 

coefficients can be obtained: 

𝑉0 = 0, (28a) 

𝑎1(𝑘) = −
𝛽1(𝑘 − 1)

𝑘 + 1
𝑎0(𝑘), (28b) 

𝑎2(𝑘) = −
𝛽1𝑘

𝑘 + 2
𝑎1(𝑘) −

𝛽2𝑘(𝑘 − 1) + 𝜁1

(𝑘 + 2)(𝑘 + 1)
𝑎0(𝑘), (28c) 
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𝑎3(𝑘) = −
𝛽1(𝑘 + 1)

𝑘 + 3
𝑎2(𝑘) −

𝛽2𝑘(𝑘 + 1) + 𝜁1

(𝑘 + 3)(𝑘 + 2)
𝑎1(𝑘) 

      −
𝛽3(𝑘 + 1)𝑘(𝑘 − 1) + 𝛼1𝜁1𝑘 + 4𝜁1𝛾(𝑘 − 1) + (𝜁1 + 𝜁2)

(𝑘 + 3)(𝑘 + 2)(𝑘 + 1)
𝑎0(𝑘), 

(28d) 

𝑎4(𝑘) = −
𝛽1(𝑘 + 2)

𝑘 + 4
𝑎3(𝑘) −

𝛽2(𝑘 + 2)(𝑘 + 1) + 𝜁1

(𝑘 + 4)(𝑘 + 3)
𝑎2(𝑘) 

      −
𝛽3(𝑘 + 2)(𝑘 + 1)𝑘 + 𝛼1𝜁1(𝑘 + 1) + 4𝛾𝜁1𝑘 + (𝜁1 + 𝜁2)

(𝑘 + 4)(𝑘 + 3)(𝑘 + 2)
𝑎1(𝑘)

−

[
𝛽4(𝑘 + 2)(𝑘 + 1)𝑘(𝑘 − 1) + (4𝛼1𝛾 + 10𝛾2 + 𝛼2)𝜁1𝑘(𝑘 − 1)

+[(4𝛼1𝛾 + 2𝛼2 + 5𝛾 + 𝛼1)𝜁1 + 2𝛾𝜁2]𝑘 + (𝛼1𝜁3 + 𝜁4 − 𝜁5)
]

(𝑘 + 4)(𝑘 + 3)(𝑘 + 2)(𝑘 + 1)
𝑎0(𝑘), 

(28e) 

𝑎𝑛+5(𝑘) = −
𝛽1(𝑘 + 𝑛 + 3)

𝑘 + 𝑛 + 5
𝑎𝑛+4(𝑘) −

𝛽2(𝑘 + 𝑛 + 3)(𝑘 + 𝑛 + 2) + 𝜁1

(𝑘 + 𝑛 + 5)(𝑘 + 𝑛 + 4)
𝑎𝑛+3(𝑘) 

       −

[
𝛽3(𝑘 + 𝑛 + 3)(𝑘 + 𝑛 + 2)(𝑘 + 𝑛 + 1)

+𝛼1𝜁1(𝑘 + 𝑛 + 2) + 4𝛾𝜁1(𝑘 + 𝑛 + 1) + (𝜁1 + 𝜁2)
]

(𝑘 + 𝑛 + 5)(𝑘 + 𝑛 + 4)(𝑘 + 𝑛 + 3)
𝑎𝑛+2(𝑘)

−

{

𝛽4(𝑘 + 𝑛 + 3)(𝑘 + 𝑛 + 2)(𝑘 + 𝑛 + 1)(𝑘 + 𝑛)

+(4𝛼1𝛾𝜁1 + 10𝛾2𝜁1 + 𝛼2)(𝑘 + 𝑛 + 1)(𝑘 + 𝑛)

+[(4𝛼1𝛾 + 2𝛼2 + 5𝛾 + 𝛼1)𝜁1 + 2𝛾𝜁2](𝑘 + 𝑛 + 1) + (𝛼1𝜁3 + 𝜁4 − 𝜁5)
}

(𝑘 + 𝑛 + 5)(𝑘 + 𝑛 + 4)(𝑘 + 𝑛 + 3)(𝑘 + 𝑛 + 2)
𝑎𝑛+1(𝑘)

−
𝜁3(2𝛼2 + 2𝛼1𝛾) + 𝜁4(3𝛾 + 𝛼1) − 𝜁5𝛼1

(𝑘 + 𝑛 + 5)(𝑘 + 𝑛 + 4)(𝑘 + 𝑛 + 3)(𝑘 + 𝑛 + 2)
𝑎𝑛(𝑘), 

(28f) 

where: 

𝜁1 = 𝑣0
2 ,   𝜁2 = 𝑖Ω𝑣0√𝛽,   𝜁3 = 𝑖Ω√𝛽,   𝜁4 = 𝑖Ω√𝛽𝛾,   𝜁5 = Ω2. (29) 

Here, the high orders of 𝛾 have been neglected. After getting these coefficients, the solution 

of Eq. (22) can be written in the following form: 

𝜂(𝜉) = 𝐴1𝑓1(𝜉) + 𝐴2𝑓2(𝜉) + 𝐴3𝑓3(𝜉) + 𝐴4𝑓4(𝜉), (30) 

where 𝐴𝑗 is constant. The expression of 𝑓𝑗(𝜉) is as follow: 

𝑓1(𝜉) = 𝑎0(𝑘1) + 𝑎1(𝑘1)𝜉 + 𝑎2(𝑘1)𝜉
2+𝑎3(𝑘1)𝜉

3 + ⋯, 
𝑓2(𝜉) = 𝑎0(𝑘2)𝜉 + 𝑎1(𝑘2)𝜉

2+𝑎2(𝑘2)𝜉
3+𝑎3(𝑘2)𝜉

4 + ⋯, 
𝑓3(𝜉) = 𝑎0(𝑘3)𝜉

2+𝑎1(𝑘3)𝜉
3+𝑎2(𝑘3)𝜉

4+𝑎3(𝑘3)𝜉
5 + ⋯, 

𝑓4(𝜉) = 𝑎0(𝑘4)𝜉
3+𝑎1(𝑘4)𝜉

4+𝑎2(𝑘4)𝜉
5+𝑎3(𝑘4)𝜉

6 + ⋯. 

(31) 

 
Fig. 3. The sketch of node force 
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3.2. Dynamic stiffness method 

Here, we use dynamic stiffness method to analyze vibration of variable diameter pipe 

conveying fluid. As shown in Fig. 3, the node displacement of the pipe is: 

𝛿𝑒 = 𝑃𝐴, (32) 

where: 

𝛿𝑒 = [𝜂1 𝜂1
′ 𝜂1 𝜂2

′ ],   𝐴 = [𝐴1 𝐴2 𝐴3 𝐴4], 

𝑃 =

[
 
 
 
𝑎0(𝑘1) 0 0 0

𝑎1(𝑘1) 𝑎0(𝑘2) 0 0

𝑓1(1) 𝑓2(1) 𝑓3(1) 𝑓4(1)

𝑓1
′(1) 𝑓2

′(1) 𝑓3
′(1) 𝑓4

′(1)]
 
 
 

. 
(33) 

As shown in Fig. 3, the shear force and bending moment can be expressed as: 

𝑀 = 𝐸𝐼𝑥
𝜕2𝑤

𝜕𝑥2
, 

𝑄 = −
𝜕𝑀

𝜕𝑥
= −𝐸𝐼𝑥

𝜕3𝑤

𝜕𝑥3
− 𝐸

𝜕𝐼𝑥
𝜕𝑥

𝜕2𝑤

𝜕𝑥2
. 

(34) 

Introducing the dimensionless form of shear force and bending moment as follows: 

𝑀̅ =
𝑀𝐿

𝐸𝐼𝑖
= (1 + 𝛽1𝜉 + 𝛽2𝜉

2 + 𝛽3𝜉
3 + 𝛽4𝜉

4)
𝑑2𝜂

𝑑𝜉2
, 

𝑄̅ =
𝑄𝐿2

𝐸𝐼𝑖
= −(1 + 𝛽1𝜉 + 𝛽2𝜉

2 + 𝛽3𝜉
3 + 𝛽4𝜉

4)
𝑑3𝜂

𝑑𝜉3
 

    −(𝛽1 + 2𝛽2𝜉 + 3𝛽3𝜉
2 + 4𝛽4𝜉

3)
𝑑2𝜂

𝑑𝜉2
. 

(35) 

The directions of 𝑀, 𝑄 are shown in Fig. 3, then it is easy to get the vector of node force: 

𝐹 = [𝑄̅1 𝑀̅1 𝑄̅2 𝑀̅2]
𝑇 , (36) 

where 𝑄̅1 = −𝑄̅(0), 𝑀̅1 = −𝑀̅(0), 𝑄̅2 = 𝑄̅(1), 𝑀̅2 = 𝑀̅(1). 
The relation between vector of node force and vector 𝐴 can now be expressed as follow: 

𝐹 = 𝐵𝐴, (37) 

where: 

𝐵 =

[
 
 
 
𝑓1′′′(0) + 2𝛽1𝑓1′′(0) 𝑓2′′′(0) + 2𝛽1𝑓2′′(0) 𝑓3′′′(0) + 2𝛽1𝑓3′′(0) 𝑓4′′′(0) + 2𝛽1𝑓4′′(0)

−𝑓1′′(0) −𝑓2′′(0) −𝑓3′′(0) −𝑓4′′(0)

𝜎1𝑓1′′′(1) − 𝜎2𝑓1′′(1) 𝜎1𝑓2′′′(1) − 𝜎2𝑓2′′(1) 𝜎1𝑓3′′′(1) − 𝜎2𝑓3′′(1) 𝜎1𝑓4′′′(1) − 𝜎2𝑓4′′(1)

𝑓1′′(1) 𝑓2′′(1) 𝑓3′′(1) 𝑓4′′(1) ]
 
 
 

.  (38) 

In which 𝜎1 = 1 + 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 , 𝜎2 = 𝛽1 + 2𝛽2 + 3𝛽3 + 4𝛽4 , and what should be 

noted here is that, ( )′ stands for the derivative with respect to 𝜉, which is different from that in 

Section 2. 

According to Eq. (32), we can get the coefficient vector as follow: 
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𝐴 = 𝑃−1𝛿𝑒. (39) 

Now, substituting Eq. (39) into Eq. (37), the following result will be gained: 

𝐹 = 𝐵𝑃−1𝛿𝑒 = 𝑆𝛿𝑒. (40) 

Here, the matrix 𝑆 is named as the dynamic stiffness matrix of the system. Once the dynamic 

stiffness matrix is obtained, the natural frequencies and modal shapes can be easily obtained. 

Here, we take the simply supported pipe for an example to illuminate how to compute natural 

frequencies of the pipe through dynamic stiffness method. The boundary conditions of simply 

supported pipe can be written as: 

𝜉 = 0: 𝜂1 = 0,   𝑀̅1 = 0, 
𝜉 = 1: 𝜂2 = 0,   𝑀̅2 = 0. 

(41) 

Rewriting Eq. (41) in the matrix form, we have: 

[

𝑄̅1

0
𝑄̅2

0

] = [

𝑆11 𝑆12 𝑆13 𝑆14

𝑆21 𝑆22 𝑆23 𝑆24

𝑆31 𝑆32 𝑆33 𝑆34

𝑆41 𝑆42 𝑆43 𝑆44

] [

0
𝜂1

′

0
𝜂2

′

]. (42) 

The following characteristic equation can be obtained from Eq. (42): 

[
𝑆22 𝑆24

𝑆42 𝑆44
] [

𝜂1
′

𝜂2
′ ] = 0. (43) 

It is easy to find from Eq. (43) that the following equation must be satisfied: 

ℎ(𝜔) = det |
𝑆22 𝑆24

𝑆42 𝑆44
| = 0. (44) 

The natural frequencies can be obtained from Eq. (44). In the same way, we can get the 

characteristic equation for cantilevered pipe and clamped-pinned pipe conveying fluid as follows: 

Cantilevered pipe (left clamped and right free): 

ℎ(𝜔) = det |
𝑆33 𝑆34

𝑆43 𝑆44
| = 0. (45) 

Clamped-pinned pipe (left clamped and right pinned): 

ℎ(𝜔) = det |
𝑆11 𝑆12 𝑆14

𝑆21 𝑆22 𝑆24

𝑆41 𝑆42 𝑆44

| = 0. (46) 

4. Examples 

4.1. Uniform pipe conveying fluid 

In order to validate the proposed method, we calculated the natural frequencies of a uniform 

pipe conveying fluid. The uniform pipe is actually the case of variable diameter pipe with section 

variation coefficient 𝛾 = 0. The pipe and fluid parameters are chosen the same as previous 

reference, that is, Yang’s modulus is 𝐸 = 210 GPa, the outer and inner diameters at origin of the 
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pipe are 𝐷𝑖 = 324 mm and 𝑑𝑖 = 292 mm respectively, and the pipe span is 𝐿 = 32 m, the density 

of pipe material is 𝜌𝑝 = 8200 kg/m
3
, the density of fluid is 𝜌𝑓 = 908.2 kg/m

3
 [11]. The first five 

orders of natural frequencies are computed under three different velocities, i.e. 𝑉 = 0, 𝑉 = 15 m/s, 

𝑉 = 25 m/s respectively. And comparisons are presented between the results obtained by the 

proposed method and that published in the research of Housner [11]. The computation results of 

natural frequencies and error are listed in Table 1. 

Table 1. Natural frequencies of uniform simply supported pipe conveying fluid  

under different fluid velocities (rad/s) 

Fluid velocity 
Natural frequency 

 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 

𝑉 = 0 

This paper 4.373 17.493 39.359 69.971 109.330 

Reference 4.3732 17.4928 39.3587 – – 

error (%) 0.004 0.001 0.0007 – – 

𝑉 = 15 m/s 

This paper 4.287 17.417 39.286 69.900 109.259 

Reference 4.2870 17.4171 39.2858 – – 

error (%) 0 0.0006 0.0005 – – 

𝑉 = 25 m/s 

This paper 4.131 17.282 39.156 69.772 109.133 

References 4.1293 17.2816 39.1559 – – 

error (%) 0.04 0.002 0.0003 – – 

It can be found from Table 1 that a well agreement is obtained between the results in this paper 

and that in reference. 

 
a) 

 
b) 

 
c) 

Fig. 4. Curves of lg(ℎ)-frequency under different fluid velocities: a) 𝑉 = 0, b) 𝑉 = 15 m/s, c) 𝑉 = 25 m/s 

Fig. 4 shows the curve of lgℎ(𝜔) versus frequency 𝜔 under different fluid velocities, and the 

 

 

(a) 

1  4  
2  5  

3  

 (rad/s) 
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natural frequencies have been marked in the figure. It should be noted here that when the slope of 

the curve is negative infinite, the real part and the imaginary part of ℎ(𝜔) are both zeros. In 

another word, the frequencies related to the negative cuspidal points are the natural frequencies of 

the fluid-conveying pipe. 

4.2. Variable diameter pipe conveying fluid 

To simply supported variable diameter pipes conveying fluid, we choose three different 

diameter variation coefficients, that is 0.1, 0.2, 0.3, respectively. Given that the Yang’s modulus 

of the pipe material is 𝐸 = 70 GPa, the outer and inner diameters of pipe at the origin of the pipe 

are 𝐷𝑖 = 80 mm and 𝑑𝑖 = 72 mm respectively. The pipe length is 𝐿 = 15 m, the density of pipe 

material is 𝜌𝑝 = 2800 kg/m
3
, and the density of fluid is 𝑉0 = 25 m/s. The natural frequencies are 

computed under the following three different fluid velocities: 𝑉 = 0,  𝑉 = 15 m/s,  

𝑉 = 25 m/s. The results are listed in Table 2. 

Table 2. Natural frequencies of variable diameter pipe conveying fluid  

with different diameter variation coefficients under different fluid velocities 

𝛾 and fluid velocities 
Natural frequencies 

𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 

𝛾 = 0.1 

𝑉0 = 0 3.54 14.14 31.82 56.56 88.36 

𝑉0 = 10 m/s 3.10 13.80 31.52 56.26 88.08 

𝑉0 = 25 m/s – 11.92 29.84 54.68 86.54 

𝛾 = 0.2 

𝑉0 = 0 3.34 13.48 30.32 53.88 84.18 

𝑉0 = 10 m/s 2.88 13.12 29.98 53.56 83.88 

𝑉0 = 25 m/s – 11.10 28.20 51.88 82.84 

𝛾 = 0.3 

𝑉0 = 0 3.16 12.92 29.04 51.62 80.58 

𝑉0 = 10 m/s 2.66 12.52 28.68 51.28 80.42 

𝑉0 = 25 m/s – 10.30 26.76 49.44 77.98 

From Table 2, we can find that to the same diameter variation coefficient 𝛾 , the natural 

frequencies decrease as the fluid velocity increases, and that the larger 𝛾 we choose, the smaller 

the natural frequencies we get. The results obtained above agree with that in the researches of 

Hannoyer and Paidoussis [8]. 

Additionally, we notice that when the fluid velocity reaches 25 m/s, the first order natural 

frequency has already vanished. So we can conclude that such velocity has already exceeded the 

critical velocity of the pipe. Actually, the critical velocities of variable diameter pipe conveying 

fluid with different diameter variation coefficients are 𝛾 = 0.1, 𝑉𝑐𝑟 = 19.96 m/s;  𝛾 = 0.2,  

𝑉𝑐𝑟 = 18.82 m/s; 𝛾 =  0.3, 𝑉𝑐𝑟 = 17.77 m/s, respectively, as shown in Fig. 5. 

  
Fig. 5. Curves of first order natural frequency versus 

fluid velocity 
Fig. 6. Buckling of the variable diameter pipe 

conveying fluid 
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When the fluid velocity reaches the critical value, the simply supported variable diameter pipe 

would yield buckling, as a form of static instability, as shown in Fig. 6. Further, the instability 

would result in the failure of the pipe. 

It is obvious that the larger the diameter variation coefficient is, the smaller the critical velocity 

we get, which agree with the result in the researches of Hannoyer and Paidoussis [8]. 

Fig. 7 shows the curves of lgℎ(𝜔) versus frequency 𝜔 for variable diameter pipe conveying 

fluid with different diameter variation coefficients under velocity 𝑉0 = 0 and 𝑉0 = 25 m/s. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 7. Curves of log(ℎ)-frequency with different diameter variation ratio under different fluid velocities: 

a) 𝛾 = 0.1, 𝑉0 = 0; b) 𝛾 = 0.1, 𝑉0 = 25 m/s; c) 𝛾 = 0.2, 𝑉0 = 0;  

d) 𝛾 = 0.2, 𝑉0 = 25 m/s; e) 𝛾 = 0.3, 𝑉0 = 0; f) 𝛾 = 0.3, 𝑉0 = 25 m/s 

After we obtain the natural frequencies of the variable diameter pipe, the modal shapes can be 

obtained correspondingly. The modal shapes of variable diameter pipe conveying fluid are shown 
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in Fig. 8 and Table 3. 

Table 3. Dimensionless amplitudes of the modal shape under different flow velocities 

Fluid velocity 
Amplitudes 

1st order 2nd order 3rd order 4th order 

𝑉0 = 0 0.22 0.29 0.21 0.12 

𝑉0 = 10 m/s 0.25 0.31 0.23 0.15 

𝑉0 = 25 m/s 0.30 0.35 0.26 0.18 

Table 3 shows that the amplitude of the modal shape increases with increasing flow velocity. 

This illuminate that the increasing fluid velocity can weaken the pipe stiffness. 

 
Fig. 8. The first four orders modal shapes of variable diameter pipe conveying fluid  

with different diameter variation coefficients under different fluid velocities 

4.3. Variable diameter pipe with damping 

Damping is ignored in above calculations. But in practice, damping cannot be neglected. Here 

we just consider the viscous damping, then the motion equation governing the vibration of the 

pipe is: 

𝐸(𝐼𝑥𝑤
″)′′ + (𝑚𝑝 + 𝑚𝑓)𝑤̈ + (𝑚𝑓𝑉𝑤̇ ′ + 𝑚𝑓𝑉𝑤̇ + 𝑚′𝑓𝑉

′𝑤̇) + 𝑐𝑤̇

+ (𝑚′
𝑓𝑤

′𝑉2 + 𝑚𝑓𝑤
″𝑉2 + 2𝑚𝑓𝑉𝑉′𝑤′) = 0, 

(47) 

where the term (𝑐𝑤̇) is the viscous damping force, which may be introduced by immersing the 

pipe in liquid. Suppose that 𝑐 = 0.05, then we can calculate the natural frequencies of the variable 

diameter pipe. A contrast is illustrated in Fig. 9 between damping pipe and non-damping  

pipe (𝑐 = 0). 

 
Fig. 9. First order natural frequencies of damping pipe and non-damping pipe with variable fluid velocity 

From Fig. 9, we conclude that damping would decrease the natural frequencies and critical 

flow velocity of the system. This has been illustrated by Paidoussis [2] in the research for a 

uniform fluid-conveying pipe. Moreover, damping delays the decreasing speed of natural 
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frequency versus flow velocity. That is, as seen in Fig. 9, there is just a small difference between 

the two critical flow velocities, but a relatively larger difference between the natural frequencies 

when flow velocity is zero. 

5. Conclusion 

In this paper, the dynamic model was built by open system’s Hamilton’s principle on the basis 

of Euler-Bernoulli beam model and axial inextensible assumption. The motion equation of 

variable diameter pipe conveying fluid is more complex than that of uniform pipe. We employed 

Frobenius method to analyze the motion equation and proposed the dynamic stiffness method for 

free vibration analysis of variable diameter pipe conveying fluid. By using the presented method, 

the natural frequencies of a uniform pipe conveying fluid under different fluid velocities were 

obtained and the comparisons between our results and that in previous researches were made. A 

well agreement validates our method. The natural frequencies and modal shapes were obtained 

for variable diameter pipe conveying fluid with different diameter variation coefficients under 

different fluid velocities. We find that the natural frequencies and critical velocities of variable 

diameter pipe both decreased with increasing diameter variation coefficient. 
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