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Abstract. The present work develops a novel procedure of establishing an amplitude-dependent 

time series model for a nonlinear system and estimating the instantaneous modal parameters of 

the system from the dynamical responses. The undetermined coefficient in an 

amplitude-dependent autoregressive with exogenous input (amplitude-dependent ARX) model are 

assumed as functions of amplitude and are expanded by shape functions constructing by moving 

least-squares with polynomial basis functions. The amplitude of dynamical responses could be 

obtained by Hilbert transform. The instantaneous modal parameters of the system are directly 

estimated from the coefficient in the amplitude-dependent ARX model. The feasibility of the 

procedure is demonstrated by processing numerically simulated dynamic responses of a nonlinear 

system. The proposed scheme is demonstrated to be superior to time-varying ARX model and 

recursive method in identifying modal parameters. Finally, the proposed approach is applied to 

process measured data for a frame specimen subjected to a series of base excitations in shaking 

table tests. The specimen was damaged during testing. The identified modal parameters are 

consistent with observed physical phenomena. 
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1. Introduction 

In most identification methods for real system the model structure has been assumed 

beforehand such as linear system, time-varying system and nonlinear system. The linear system 

identification ARX (AutoRegressive with eXogenous inputs), ARMAX (AutoRegressive and 

Moving Average with eXogenous inputs) and OE (Output Error) models have been extensively 

studied [1-4]. However, many practical examples of nonlinear dynamic behavior have been 

reported in the engineering literature. In mechanical and civil engineering, a system with active 

control devices [5-9] modifying stiffness or damping is a time-varying system. A structure under 

damage normally exhibits nonlinear dynamic behaviors and time-dependent stiffness and damping 

[10, 11]. Variations in system stiffness and damping over time result in time-varying modal 

parameters of the system. Consequently, determining modal parameters of a time-varying system 

or nonlinear system is generally very useful when assessing structural damage in real applications. 

The linear parameter estimation technique has been employed [4] for these nonlinear 

identifications. There are, however, few practical identification methods for nonlinear systems 

from input-output data. Several theoretical studies have been done for the identification of the 

nonlinear system represented by a linear in the parametric model with nonlinear 

functions [12, 13, 14]. 

The amplitude-dependent autoregressive with exogenous input (AD-ARX) model is often 

utilized to establish an input–output relationship of a nonlinear system from its dynamic responses 

and input forces [15]. To identify the dynamic characteristics of nonlinear structures from the 

ambient vibration, free vibration, and earthquake response data, this study develops a unified 

procedure by extending, with some modification, the amplitude-dependent ARX model by Hilbert 

transform to obtain the function of amplitude. Furthermore, to demonstrate the feasibility of the 
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proposed procedure, the procedure is applied to process a simulated nonlinear vibration model, 

and measured data for a frame specimen subjected a series of base excitations in shake table test. 

The specimen showed strong nonlinear dynamic behaviors because the damage occurred during 

testing. 

2. Methodology 

The nonlinear structural system encountered in civil and mechanical engineering can be 

described by the following equations of motion: 

��� + ��� + �� = 	, (1)

where � , �  and �  are mass, damping and stiffness matrices, respectively, and �  and �  are 

functions of amplitude of responses, while �  and 	  are displacement and force vectors, 

respectively. A building may behave nonlinearly when subjected to a large earthquake, and its � 

and � are functions of amplitude of responses. Consequently, the instantaneous modal parameters 

of the building change with amplitude of responses in each time step. One can easily judge whether 

a building is damaged or not in an event from the instantaneous natural frequencies obtained from 

dynamic responses of the building under the event. 

The equations of motion in a discrete form are equivalent to: 

�
�� = � ��
���
� − ���
���

+ � ��
��	
� − ���
���

+ ��
��, (2)

where �
� − �� and 	
� − �� are the vectors of measured responses and input forces at time � − �∆�, 
respectively; 1/Δ� is the sampling rate of the measurement, ��
�� and �$
�� are matrices of the 

coefficient functions to be determined in the model, and ��
�� is a vector representing the residual 

error accommodating the effects of measurement noise, modeling errors and unmeasured 

disturbances. Equation (2) is known as amplitude-dependent ARX model. The measured 

displacement responses are used for �
� − �� to ensure that instantaneous modal parameters can 

be directly identified from ��
�� without a systematic error [16]. 

Following the method proposed by Huang et al. [16], each coefficient function in ��
�� and �$
�� is linearly expanded by the so called shapes functions constructed by a set of basis functions, 

which are polynomials herein, through a moving least-squares approach [17]. Let %&'� 
�� and (&'� 
�� denote (), *) element of ��
�� and �$
��, respectively, and they are expressed as: 

%&'� 
�� = +
��%,&'� ,    (&'� 
�� = +
��-.&'� , (3)

where +
�� = /0
��012�
��3
��  is a vector of shape functions, 3
�� = [5�, 56, … , 5' ̅] ,  5' = :
�, �'�/
�'�,Ω
�� = < :
�, �'�/
�'�/0
�'�' ̅
'�� , /0 = 
1, �, �2, … , �=.�, : is a weight 

function; � is the amplitude of dynamic responses that would obtained by Hilbert transform; * ̅is 
the number of nodal points used for each coefficient function, >. &'�  and -.&'�  are two unknown 

vectors of coefficients for %&'� 
�� and (&'� 
��, respectively. Many weight functions can be used in 

the above formulation [18]. In this work, the exponential weight function is applied: 

:
�?, �@� = AB2

CD2CE� �.GH⁄ �J , |�? − �@|/L ≤ 1,0, |�? − �@|/L > 1, (4)

where L is the support of the weight function. 
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A least-squares approach is applied to determine >. &'�  and -.&'�  by minimizing: 

P, = �Q��
��,�R0=
�,��

��
��,�, (5)

where S is the number of data points to be used in establishing the amplitude-dependent ARX 

model. Then, one can obtain the following equation through typical and lengthy mathematical 

manipulation: 

�T = 
U0U�2�U0VW, (6)

where: 

�T = X�.� �. 6 ⋯ �. � �.� �.� ⋯ �.�Z, (7a)VW = [�
��� �
�6� ⋯ �
�=�], (7b)

[0 =
\]
]̂
_�,C` _6,C` ⋯ _�,C` a�,C` a�,C` ⋯ a�,C`_�,CJ _6,CJ ⋯ _�,CJ a�,CJ a�,CJ ⋯ a�,CJ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮_�,Cd _6,Cd ⋯ _�,Cd a�,Cd a�,Cd ⋯ a�,Cdef

fg, (7c)

�. � =
\]
]]̂
Q+.��� R0 Q+.�6� R0 ⋯ Q+.��� R0
Q+. 6�� R0 Q+. 66� R0 ⋯ Q+. 6�� R0

⋮ ⋮ ⋱ ⋮Q+. ��� R0 Q+. �6� R0 ⋯ 
+. ��� �0ef
ff
g
, (7d)

�.� =
\]
]]
]̂Q-.��� R0 Q-.�6� R0 ⋯ Q-.��h� R0
Q-.6�� R0 Q-.66� R0 ⋯ Q-.6�h� R0

⋮ ⋮ ⋱ ⋮Q-.��� R0 Q-.��� R0 ⋯ Q-.��h� R0ef
ff
fg, (7e)

_�,C = �
� − �� ⊗ +
��T, (7f)a�,C = 	
� − �� ⊗ +
��T, (7g)

and ⊗ denotes the Kronecker product. After determining >. &'�  and substituting them into Eq. (3), 

one obtains ��
��. Then, like determining modal parameters from an ARX model, one can obtain 

the instantaneous modal parameters of the nonlinear system from ��
�� . A matrix k  is 

constructed from ��
�� as follows: 

k =
\]
]]̂

l m l ⋯ ll l m ⋯ l⋮ ⋮ ⋮ ⋱ ⋮l l l ⋯ m��
�� ��2�
�� ��26
�� ⋯ ��
��ef
ff
g, (8)

where l is a zero matrix and m is an unit matrix. Then, the instantaneous modal parameter (nature 

frequencies, damping ratios and mode shapes) of the structure can be estimated from the 

instantaneous eigenvalues and eigenvectors of k . Let n&
��  and {%&
��}  represent the kit 

instantaneous eigenvalue and eigenvector of k  at reponses amplitude � , respectively. The 

instantaneous eigenvalue n&
�� is normally a complex number, and is set as qr&
�� + �sT&
��. The 

instantaneous frequency and damping ratio of the system are computed, respectively, by: 
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t&
�� = uv&6
�� + w&6
��,   x&
�� = − v&
�� t&
��⁄ , (9)

where: 

w&
�� = 1Δ� tan2� |sT&
��qr&
��},   v&
�� = 12Δ� ln �qr&6
�� + sT&6
���. (10)

The )th instantaneous mode shape can be determined from the following the procedure of 

Huang (2001) [19]. 

3. Numerical verification 

Numerical simulation responses of a Duffing oscillator system were processed to demonstrate 

the accuracy and effectiveness of the proposed approach in determining instantaneous modal 

parameters of the nonlinear system. The Duffing oscillator system was shown as follows: 

��
�� + 2x���
�� + �6[�
�� − �G
��] = �
��, (11)

where, x = 0.05 and � = 2�. The Runge-Kutta method with a time increment (∆�) equal to 0.004 

seconds was applied to determine the dynamic responses of this Duffing oscillator system 

subjected to base excitation. 

Assumed the homogeneous solution of this Duffing equation is �
�� = �
t�cos
t� + (�, 

then substituted into equation (8) one could obtain: 

−t6�
t�cos
t� + (� − 2x�t�
t�sin
t� + (� + �6[�
t�cos
t� + (�− �G
t�cosG
t� + (�] = 0. (12)

Using Triple-angle formula and rearranging the above equation, one obtain: 

�
t� �−t6 + |1 − 34 �6
t�} �6� cos
t� + (� − 2x�t�
t�sin
t� + (�
+ �6

4 �G
t�cos3
t� + (� = 0. (13)

Applying Hilbert transform to Eq. (12), one have: 

�
t� �−t6 + |1 − 34 �6
t�} �6� sin
t� + (� + 2x�t�
t�cos
t� + (�
+ �6

4 �G
t�sin3
t� + (� = 0. (14)

Here we consider the response of the Duffing oscillator to a weak forcing, then �G
t� ≈ 0 

and combining Eq. (13) and Eq. (14), we get: 

�
t� �−t6 + |1 − 34 �6
t�} �6� B�
�C��� − �2x�t�
t�B�
�C��� = 0. (15)

By solving characteristic polynomial −t6 + 
1 − 3�6
t� 4⁄ ��6 − �2x�t = 0 and according 

the condition of t > 0. Besides, imaginary term assigned to magnitude of Euler’s formula, one 

could get the amplitude-frequency relationship: 
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t = ���1 − 34 �6
t�� − x6. (16)

Figure 1 depicts the time histories of input ground acceleration and displacement response of 

this Duffing equation. One can establish an appropriate amplitude-dependent ARX model from 

these inputs and responses by employing the formulation given in the preceding section. The 

identified instantaneous natural frequencies and modal damping ratios are shown in Figure 2, 

which also demonstrates the excellent agreement between the identified results and the true values. 

The maximum differences between the identified natural frequencies by AD-ARX model and the 

true ones are slightly more than 1 %, while the identified modal damping ratios by 

amplitude-dependent ARX model differs from the true values by slightly more than 5 %. 

To demonstrate further the superiority of the present approach to another method in the 

literature, Figure 2 shows the time-variant parameters that identified by time-varying 

autoregressive with exogenous input (time-varying ARX) model [16] and recursive method. The 

formula of TV-ARX in a similar as the AD-ARX expect that the model coefficient of former is 

function of time, while the model coefficient of latter is function of amplitude. In here, 

time-varying coefficient of time-varying ARX model was expanded by low-order polynomial 

function of time. Figure 2 discovers that the maximum differences between the identified natural 

frequencies by time-varying ARX model and the true ones are about 3 %, while the identified 

modal damping ratios by time-varying ARX model differ from the true values by slightly more 

than 10 %. And the maximum differences between the identified natural frequencies by recursive 

method and the true ones are about 4 %, while the identified modal damping ratios by resursive 

method differ from the true values by slightly more than 15 %. Comparison of the results in 

Figure 2 clearly reveals that the amplitude-dependent ARX model outperforms time-varying ARX 

model and recursive method in correctly identifying the instantaneous modal parameters of 

nonlinear system. 

 

 
Fig. 1. Time histories of base excitation and simulated displacement response 
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Fig. 2. Instantaneous modal parameters identified from response 

4. Application 

Shaking table tests are vital to understanding the dynamic behavior, especially nonlinear 

behaviors, of structural systems under earthquakes. The National Center for Research on 

Earthquake Engineering in Taiwan conducted a series of test on reinforced concrete (RC) frames 

of two columns interconnected by a strong beam to investigate the dynamic behaviors of 

low-ductility RC columns and to understand their collapse mechanism. Figure 3 shows the 

dimensions of the typical frame and the test setup. In total, 21 tons of lead ballast were added to 

the beam to simulate axial loads on first-story columns in a typical four-story building in Taiwan. 

Accelerometers and linear displacement transducers were installed at appropriate locations to 

measure acceleration and displacement responses of a specimen. Load cells were installed 

between the specimen and shaking table to measure base shear forces. 
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Fig. 3. A sketch of experiment setup 

The specimen was subjected to a series of base excitation inputs; that is, it was first shaken 

under white noise input with small amplitude to estimate its modal parameters. The test is denoted 

as “before-damage” test because the specimen was not damaged. Then, the specimen was 

subjected to an earthquake input recoded during the 1999 Chi-Chi earthquake in Taiwan. Strong 

nonlinear behaviors observed during this test, and columns near beam connection were damaged. 

The test is denoted as “during-earthquake” test. Finally, the specimen was shaken again with a 

low-level white noise input, which is denoted as “after-damage” test. Figure 4 shows the 

acceleration input and displacement response histories during the earthquake test. 

 

   
Fig. 4. The input acceleration and response histories from during earthquake test 

As expected, small variations of instantaneous natural frequencies with time were observed 

for the cases with white noise input as no further damage occurred under such small input 
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excitation forces. The identified instantaneous natural frequencies in the “before-damage” test are 

larger than those obtained from the “after-damage” test; the trend is opposite from the identified 

instantaneous modal damping ratio. The instantaneous natural frequencies from the 

“during-earthquake” test are close to those identified from the “before-damage” test when � < 2 

seconds as no damaged existed for this duration in the “during-earthquake” test. The value of 

frequency decreased dramatically around � = 3 seconds, which likely indicates specimen damage. 

As the displacement magnitude gradually increases over time to � = 21.5 seconds, the identified 

frequency value generally decreases to 0.9 Hz and damping ratio increase to 41 % from less than 

10 %. These observations obey the well-known physical phenomenon suggestion that structural 

damage decreases the natural frequency and increases the damping ratio of a structure. 

 

   
Fig. 5. Instantaneous modal parameters identified from the responses under the Chi-Chi earthquake 

5. Conclusions 

This work presented a novel approach for identifying the instantaneous parameters of a 

building based on the amplitude dependent ARX models. The instantaneous natural frequencies 

of structural are accurately determined from the coefficient functions of amplitude dependent 

ARX models, which are expanded by MLS shape functions of amplitude which constructed 

through Hilbert transform and established from the acceleration responses of the base and the 

displacement responses of structures. 

The proposed approach was demonstrated on a nonlinear Duffing equation under earthquake 

excitation. A nonlinear system with nonlinear stiffness was considered. The proposed approach 

was validated by successfully identifying modal parameters by processing numerically simulated 

responses. Comparing the results obtained by the proposed approach with the coefficient functions 

of TV-ARX models are expanded by MLS shape functions of time and resursive method that the 

present approach is substantially superior to these methods in identifying instantaneous modal 

parameters for nonlinear system. 

To demonstrate the applicability of the proposed approach to real data, responses to shaking 

table tests were processed. The specimen was subjected to a series of base excitation inputs. The 
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specimen was first shaken under white noise input with small amplitude, then subjected to a large 

earthquake input and damaged, and finally shaken under a small amount of white noise input again. 

The trend in variations of the identified instantaneous modal parameters is consistent with the 

observed physical phenomena during the tests. Changes to instantaneous modal parameters due to 

structural damage can be applied to develop useful criteria for assessing damage of real structures. 
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