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Abstract. The aim of this study is to find a rapid and accurate method for wing flutter prediction 

in the early stage of aircraft design. A method using the concept of equivalent stiffness is presented 

for the modal and flutter analysis of a wing. The concept of equivalent stiffness method is that the 

stringer-stiffened panels in wing structures are replaced by unstiffened panels with the same 

stiffness, and accordingly the complicacy of the finite element (FE) modeling for wing structures 

can be reduced substantially. The key of the method is on computation of the stiffness matrices of 

the unstiffened panels with the equivalent mechanical properties of the stringer-stiffened panels. 

A regional aircraft wing is used for a case study to verify the accuracy of this method. Both the 

detailed FE model and the FE model with equivalent stiffness for the wing structure are created 

and analyzed in MSC.Patran/Nastran. The numbers of elements and degrees of freedom in the FE 

model with equivalent stiffness are reduced to one-tenth of those in the detailed wing FE model. 

The complicacy of the detailed FE modeling of the wing structure, such as modeling stringers and 

handling irregular surface, is avoided in the FE model with equivalent stiffness. The results show 

that the natural frequencies, mode shapes and flutter speed from the two models are in a good 

agreement. Satisfactory accuracy and rapid modeling of the FE model with equivalent stiffness 

make it suitable for wing flutter prediction in conceptual and preliminary aircraft design. 

Keywords: modal, flutter, wing, finite element model, equivalent stiffness, pre-design. 

1. Introduction 

Flutter is a dynamic instability of a flight vehicle associated with the interaction of 

aerodynamic, elastic and inertial forces [1]. Because flutter is usually destructive, it must be 

completely eliminated by design or prevented from occurring within the entire flight envelope. 

The requirement for flutter prevention has large impacts on the stiffness and mass distribution of 

wing. Therefore, it is essential to take flutter into account in the early stage of aircraft design, 

especially for the high aspect ratio flexible wing design. 

Wing flutter prediction involves the aerodynamic forces applied on the wing and the dynamic 

characteristics such as natural frequency and mode shape of the wing structure. A reasonably 

accurate analysis model for the wing dynamic characteristics is critical for flutter prediction. In 

general, there exists three kinds of methods for structural dynamic analysis the equivalent beam 

model, the equivalent plate model, and the finite element method. 

For the equivalent beam model, the wing structure is simplified into a beam [2]. It was widely 

used in flutter analysis of high aspect ratio wings in the past due to its simplicity and high 

computation efficiency. But good engineering experience is needed to create such models. In 

addition, its accuracy is limited. Furthermore, the equivalent beam model can hardly be applied to 

the wing with novel configurations and materials. 

For the equivalent plate model, the wing planform and structure are divided into a set of 

trapezoidal plates using the classical plate theory and polynomial Ritz approximation. The 

trapezoidal plates have the same mechanical properties as those in the original wing structure. 

This method was introduced by Giles [3, 4], further developed by Livne [5]. The equivalent 

laminated plate solution (ELAPS) program was applied to the high speed civil transport (HSCT) 

for static, modal and flutter analysis [6]. The equivalent plate model was also used for the 
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sensitivity analysis of wing parameters on static aeroelastic and flutter by Eldred [7]. In general, 

the equivalent plate model takes wing planform into account and can predict flutter with better 

accuracy for the wing with low aspect ratio.  

The finite element (FE) method can be considered as a versatile method and has better 

prediction accuracy for structural analysis. But its disadvantage is that the detailed FE modeling 

of wing structures is very complicated and time-consuming. The complicacy mainly roots in the 

detailed FE modeling of stringer-stiffened panel in wing structures. As a result, the standard FEM 

are hardly used to predict flutter of wing in the early stage of aircraft design.  

One solution to deal with the complicacy of FE modeling above is to simplify the FE model 

by using the equivalent stiffness method. In the equivalent stiffness method, the stringer-stiffened 

panel of aircraft structure is replaced by a clean panel (unstiffened panel) which has the same 

mechanical properties (same stiffness). In this way, the FE modeling for stringer-stiffened panel 

is simplified, and consequently the complicacy of the FE modeling for wing structure is reduced 

substantially. 

The concept of the equivalent stiffness has been studied in aircraft structural analysis by many 

authors. For example, the equivalent stiffness method was applied to buckling load analysis of 

grid stiffened composite cylinders by Kidane [8], used for static analysis of a blended wing body 

aircraft by Bradley [9], utilized for optimization of composite wing structures by Zhao [10], 

applied to strength and buckling analysis for mass estimation of primary structure by Wenzel [11]. 

Their studies indicate that the accuracy of the FE modeling with the equivalent stiffness is quite 

satisfactory. But there is still lack of accuracy verification of FE model with the equivalent 

stiffness for wing modal and flutter analysis. 

In this study, the FE modeling with the equivalent stiffness is applied to analysis of the wing 

modal and flutter. The computation accuracy will be verified by comparisons between results from 

the detailed FE modeling and those from the FE modeling with the equivalent stiffness. It is 

expected that the FE modeling with the equivalent stiffness has satisfactory accuracy and can be 

used for wing flutter prediction in the early stage of aircraft design. 

2. Equivalent stiffness method 

2.1. Concept of equivalent stiffness  

The stringer stiffened panels as shown in Fig. 1(a) are widely used in thin-walled or shell 

structures which are major components in aircraft structure. The existence of the stiffener causes 

the equivalent neutral surface offsetting out of skin’s middle surface, improving the local bending 

stiffness. The FE modeling for wing structure with complex stringer-stiffened panels is 

burdensome and time consuming. The aim of the equivalent stiffness method is to simplify FE 

modeling of the stringer-stiffened panels. The idea is that the stringer-stiffened panel is modeled 

by a clean panel with the same stiffness properties. The stiffness matrices of the clean panels are 

derived from the panels with specific stringer profiles. 

The process of the equivalent stiffness method is depicted in Fig. 1, and is briefly described as 

follows: 

1) The stiffener is divided into a series of strips, as shown in Fig. 1(b). 

2) The stiffness coefficients of each strips and skin are calculated according to classical 

lamination theory. 

3) The anisotropic equivalent stiffness matrices (ABD-matrices) are obtained by sum of the 

stiffness coefficients of strips and skin. 

4) The finite element properties of the clean panels are assigned with the equivalent stiffness 

matrices from the above step.  

In the following subsections, the detailed procedure will be presented. 
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Fig. 1. Modeling approach of different stiffened panels: a) various stiffened panels;  

b) profile of I-Shape stiffener; c) equivalent stiffness matrix; d) shell elements 

2.2. Coefficients of equivalent stiffness 

As shown in Fig. 2, the 123 coordinates are defined as the principal material coordinates and 

the global coordinates are the ��� coordinates. Because the load on aircraft wings and fuselages 

are mostly in-plane, only in-plane stresses of ��, �� and ��� need to be considered. For a typical 

layer of orthotropic material, the stress-strain relations [12, 13] reduce to: 

� �������	 
 ���� ��� 0��� ��� 00 0 �
	 � �������	, (1)

where the ���, ���, ���, and � are the reduced stiffnesses for a plane state in the 1-2 plane. ��, �� and ��� are strains in the 1-2 plane. Eq. (1) is reduced from a 6×6 matrix of three-dimensional 

stress-strain equation. 

 
Fig. 2. Rotation of principal material axes from ��� axes 

Usually, the principal material coordinates do not coincide with the coordinates directions 

geometrically natural to the solution of the problem. For example, a laminate includes different 

laminae at different orientations. Thus stress-strain in principal material coordinates must be 

transformed to those in the global coordinates. The stress-strain relations for a lamina of arbitrary 

orientation is: 

� �������	 
 ����� ���� ������� ���� ������ ��� ��
� � �������	, (2)

θ+
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where the ���� matrix denotes that the transformed reduced stiffness which takes the place of the 

reduced stiffness, ��� . 

According to the classical lamination theory, the skin and strips stiffnesses can be calculated. 

The load-deformation relations of a laminate is: 

���
�
���

�����������������
 
��! 


"#
##
#$%�� %�� %� &�� &�� &�%�� %�� %� &�� &�� &�%� %� % &� &� &&�� &�� &� '�� '�� '�&�� &�� &� '�� '�� '�&� &� & '� '� '()

))
)*

���
�
���

��+��+���+,�,�,�����
 
��!, (3)

where �� and �� denote the resultant forces per unit width, and ��� the shear forces per unit width. �� and �� denote the bending moments per unit width, and ��� the twisting moment per unit 

width. �+� , �+�  and �+��  represent the strains of the middle surface, ,� , ,�  and ,��  the 

curvatures of the middle surface. %��, &��  and '�� represent the extensional and bending stiffness 

respectively, given by: 

��
��
�
���
�%�� = -(����)0 ⋅ (�0 − �03�)4

05�
,

&�� = 12 -(����)0 ⋅ (�0� − �03�� )4

05�
,

'�� = 13 -(����)0 ⋅ (�09 − �03�9 )4

05�
,
   :, ; = 1,2,6, (4)

where �0 and �03� are defined in the laminate geometry of Fig. 3. 

 
Fig. 3. Geometry of an =-layered laminate 

2.3. Equivalent neutral surface for stiffened panel 

The bending stiffnesses calculation of the skin and strips are referred to the position of the 

neutral surface. Usually the neutral surface of stringer-stiffened panel is not a flat plane, but a 

curved surface, as shown in Fig. 4. In the region of stringer-stiffened the neutral surface is offset 

out off skin’s middle surface, but in the region between two stringers the neutral surface still 

coincides with the skin’s middle surface. Thus it is difficult to determine the constitutive relation 

between the reference neutral surface and discrete strips. An equivalent neutral surface is defined 

to replace the actual neutral surface, as demonstrated in Fig. 4. 
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Fig. 4. Equivalent neutral surface 

In Fig. 4, Δ��?  denotes the distance from skin’s middle surface to the equivalent neutral 

surface. Δ��� denotes the distance from skin’s middle surface to each strip’s middle surface. Δℎ�  

denotes the distance from equivalent neutral surface to each strip’s middle surface. 

The �� plane is assumed on the equivalent neutral surface. For the pure bending, the resultant 

force on combined-section along the � direction is zero [14], that is: 

A ��B
C% 
 A D,�EFGH ⋅ �3IJKLMGNO/�

3IJKL3GNO/� C� + - A D,��R�� ⋅ �3IJKLMIJKSMTKS/�
3IJKLMIJKS3TKS/� C�4

�5� 
 0, (5)

where D is the elastic modulus of isotropic material. For Δℎ�� = −Δ��? + Δ��� , and it can be 

rewritten as: 

A ��
B

C% = A D,�EFGH ⋅ �3IJKLMGNO/�
3IJKL3GNO/� C� + - A D,��R�� ⋅ �ITKSMTKS/�

ITKS3TKS/� C�4

�5�
= 0, (6)

thus the Δ��? can be calculated by: 

Δ��? = ∑ R��ℎ��4�5� Δ���VF0EFGH + ∑ R��ℎ��4�5� . (7)

2.4. Transformation of stiffness 

 
Fig. 5. The relation of skin’s middle surface and surface parallel to the middle surface 

Because the equivalent neutral surface of stringer-stiffened skin is offset from middle surface 

of skin, as shown in Fig. 2, the stiffness of skin and stringers must be transformed. The relation 

equations of skin stiffness referring to skin’s middle surface and equivalent neutral surface can be 

given by [15]: 

d 'z z d= +
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X%��Y 
 %�� ,&��Y = &�� + C%�� ,'��Y = '�� + 2C&�� + C�%�� , (8)

where %��Y , &��Y  and '��Y  represent the transformed extensional, coupling and bending stiffness 

respectively. The parameter C denotes the distance between skin’s middle surface and surface 

parallel to the middle surface, as shown in Fig. 5. 

2.5. Stiffness matrix of skin 

The skin and stiffeners can be regarded as an isotropic layer for metal wing. For the single 

isotropic layer there is no coupling effect between extension and bending. As a result, the relations 

between the resultant forces and moments and the strains [12] can be written as: 

���
�
���

�����������������
 
��! =

"#
##
##
#$

% Z% 0 0 0 0Z% % 0 0 0 0
0 0 1 − Z2 % 0 0 0
0 0 0 ' Z' 00 0 0 Z' ' 0
0 0 0 0 0 1 − Z2 '()

))
))
)*

���
�
���

��+��+���+
,�,�,�����

 
��! = [%F0 &F0&F0 'F0\

���
�
���

��+��+���+
,�,�,�����

 
��!, (9)

where Z is the Poisson ratio. % and ' are given by: 

��
�% = DVF01 − Z� ,

' = DVF09
12(1 − Z�) . (10)

Because the stringers axis are parallel to � coordinate direction, the skin bending stiffness in 

the �� plane is increased. Substituting Eq. (8) into Eq. (9), the transformed skin stiffness matrix 

can be rewritten as: 

]F0 =

"#
##
##
#$

% Z% 0 C% 0 0Z% % 0 0 0 0
0 0 1 − Z2 % 0 0 0

C% 0 0 ' + C�% Z' 00 0 0 Z' ' 0
0 0 0 0 0 1 − Z2 '()

))
))
)*
. (11)

2.6. Stiffness matrix of stringer 

A stringer-stiffened panel with “I” profile is used as a baseline for calculation of stiffness 

matrix of stringer, and is depicted in Fig. 6. The stringer is divided into five strips. The parameter R�  denotes the strip width, ℎ� the strip height, EFGH the stringer pitch. The other profiles of stringer 

can be derived from I-shape stringer by setting the strip parameters. For example, when the width 

and height parameters of the strip 4 are set to 0, the stringer profile becomes J-shape. When the 

width and height parameters of the strip 4 and 5 are set to 0, the stringer profile becomes T-shape. 

Also, a Z-shaped stringer profile is obtained if the width and height parameters of the strip 2 and 
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4 are set to 0. Therefore, the stiffened panels with various profiles of stringer can be rapidly 

generated by setting the parameters of strips.  

It is assumed that � direction is parallel to the stringer axis, � is perpendicular to stringer web, 

and � is positive downward as shown in Fig. 6. Load distributions on the skin and stinger depend 

on their stiffness. The axial force and bending moment applied on stringer per unit width equal to 

the sum of all the force axial and bending moment on every strips respectively, and is stated as 

follows: 

��
��
�
���
��F� 
 1EFGH - ^ D��R��C� 
 1EFGH -(D��R��ℎ�� + D,�R��ℎ��Δℎ��)4

�5�
ITKSMTKS/�

ITKS3TKS/�
4

�5� ,

�F� =
_
`̀
a 1EFGH - A D��R���C�ITKSMTKS�

ITKS3TKS�

4

�5�
= 1EFGH -(D��R��ℎ�� ⋅ Δℎ�� + DR��(ℎ��9 /12 + ℎ��Δℎ��� ),�)4

�5� b
cc
d .

 (12)

The load-deformation relations in the form of matrix becomes: 

���
�
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�F��F��F���F��F��F�����
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#$
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���
�
���

��+��+���+
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��! = [%FG &FG&FG 'FG\

���
�
���

��+��+���+
,�,�,�����

 
��!. (13)

 
Fig. 6. The typical profile of stiffened panel 

According to the manner of stringers connecting to the skin, the calculation of the extensional 

and shear stiffness of a stringer strip depends on whether it is attached to the skin or not. For metal 

stringer stiffened panels, the stringers are connected to skin by riveting, thus the extensional and 

shear stiffness of the stringer strips can be ignored. For composite stringer stiffened panels, the 

stringers and skin are integrated. So the extensional and shear stiffness of the stringer strips 

attached to the skin should be taken into account. 

The twist stiffness of the stringer should also be considered, and is given by: 

'(FGH) = - efFGH�2EFGH , (14)
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where e is the shear modulus, and fFGH� is the torsional stiffness for each strip. 

2.7. Assembly of stiffened panel stiffness matrix 

The equivalent stiffness matrix of unstiffened panel can be assembled from the skin and 

stringer stiffness matrices, and is stated as the following: 

]gh 
 [%F0 + %FG &F0 + &FG&F0 + &FG 'F0 + 'FG\ 
 [%gh &gh&gh 'gh\. (15)

In assembling operations, the term of the coupling stiffness is eliminated. In other words, the 

matrix &gh  above is zero. 

3. Case study 

3.1. FE modeling of a wing structure 

The wing modal and flutter prediction of a regional aircraft wing is used as an example to 

verify the accuracy of the FE model with the equivalent stiffness or namely equivalent FE model. 

The aspect ratio of the wing is 10.0, the wing area is 95.75 m2, the sweep angle at 1/4 chord is 

24.5°, and thickness ratio at wing root is 0.14. 

The detailed finite element model and equivalent FE model of the wing are created and meshed 

in MSC.Patran and shown in Fig. 5. The same load cases and boundary conditions are applied on 

the two models. The structural material used in both models is aluminum alloy that has an elastic 

modulus of 70 GPa, the density of 2.7×103 kg/m3, and the Poisson’s ratio of 0.3. The detailed FE 

model for the wing consists of 58,065 elements with 302,916 degrees of freedom, as shown in 

Fig. 7(a). The detailed FE modeling of T-shape stringer-stiffened panel is also shown in Fig. 7(a). 

The corresponding equivalent FM model is shown in Fig. 7(b), and has 6,205 elements with 

26,364 degrees of freedom which are roughly one-tenth of those in the detailed wing FE model. 

 
a) 

 

 
b) 

Fig. 7. Two finite element models of the wing: a) the detailed FE model; b) the equivalent FE model  
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Comparisons between the above two FE models reveal the significance of the equivalent 

stiffness method. The complicacy of the detailed FE modeling of wing structure roots in that a lot 

of detailed structures needed to be dealt with. For instances, the stringers are usually located to be 

parallel to the rear spar in the wing structure. Some of stringers intersect with the front spar, which 

causes some triangular or pentagonal surfaces. Meshing these surfaces needs manual operations. 

This impedes automatic meshing and parametric FE modeling in aircraft pre-design stage. In the 

equivalent stiffness method, the FE modeling for stringers and handling irregular surface are 

avoided, and automatic meshing and FE parametric modeling can be implemented without 

difficulty. Furthermore, modeling various stringer stiffened skins is straightforward by changing 

the stringer profile in the equivalent FE model, without recreating the FE model. 

3.2. Modal analysis 

In general, the natural frequencies and modes shapes of wing provide enough information for 

flutter analysis. The natural frequencies and mode shapes from the detailed FE model (DFEM) 

and the equivalent FE model (EFEM) are computed in MSC.Nastran, and the results are listed in 

Table 1. 

Table 1. Result comparisons of modal analysis  

Number Mode shape 
Natural frequency 

Error / % 
DFEM / Hz EFEM / Hz 

1 1st vertical bending 3.051 3.043 –0.26 

2 2nd vertical bending 9.620 9.605 –0.16 

3 1st horizontal bending 13.653 13.789 1.00 

4 3rd vertical bending 20.363 20.135 –1.12 

5 1st torsion 27.764 28.991 4.42 

6 4th vertical bending 34.398 34.390 –0.02 

7 2nd horizontal bending 44.783 45.932 2.57 

8 2nd torsion 46.619 48.406 3.83 

9 5th vertical bending 50.895 51.049  0.30 

10 3rd torsion 65.719 67.350  2.48 

From Table 1, all mode shapes of equivalent FE model are in good agreement with those of 

detailed FE model. The differences of the natural frequencies predicted by the two FE models are 

quite small within 5 %.  

3.3. Flutter analysis 

Flutter speed is an important performance index in aircraft design. If flutter speed can be 

reliably and rapidly predicted in early phase of aircraft design, it is helpful for designers to find 

the optimal aircraft configuration and structural layout. In this study, the flutter speeds of two FE 

models for the wing are predicted by p-k method [16, 17] in MSC.Nastran.  

The first 10 modes for two FE models listed in Table 1 are selected for flutter analysis. The 

results of the velocity-damping and velocity-frequency diagrams are shown in Figs. 6 and 7 

respectively. 

Table 2. Comparison of flutter analysis results from two FE models 

Method Flutter speed / (m∙s-1) Frequency / Hz 

DFEM 398.0 14.981 

EFEM 405.4 15.586 

Relative difference / % 1.86 4.04 

According to Fig. 8 and 9, it is quite apparent that the curves of the velocity-damping and 

velocity-frequency from the two FE models are in a good agreement.  
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As shown in Table 2, the relative differences of the flutter speed and frequency from two FE 

models are pretty small, only 1.86 % and 4.04 % respectively. 

 
Fig. 8. Flutter analysis from the detailed FE model 

 
Fig. 9. Flutter analysis from the FE model with equivalent stiffness 

4. Conclusions 

This paper has presented a method for wing modal and flutter analysis using the FE model 

with equivalent stiffness. The aim of the method is to reduce complicacy of the detailed FE 

modeling of wing structure. The accuracy of the method was verified by the case study of a 

regional aircraft wing. The conclusions are drawn as follows: 

1) The FE modeling for stringers and handling irregular surface are avoided by using the FE 

model with equivalent stiffness. The number of elements and degrees of freedom in the equivalent 

FE model are reduced to one-tenth of those in the detailed FE model of the wing.  

2) The wing natural frequencies and mode shapes from equivalent FE model well match those 

from detailed FE model. 

3) The flutter speed predicted by the equivalent FE model is very close to that by the detailed 

FE model. 

4) Satisfactory accuracy and rapid modeling of the equivalent FE model make it suitable for 

wing flutter prediction in conceptual and preliminary aircraft design. 

In our future study, it is planed that the FE model with equivalent stiffness will be applied to 

wing multidisciplinary analysis and optimization in the early phase of aircraft design. 
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