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Abstract. In this paper, a nonlinear torsional vibration model with meshing errors, time varying 

meshing stiffness, damping coefficients and gear backlashes was established and dimensionless 

equations of the system are derived in the planetary gear train processing device. The paper 

analyzed the nonlinear dynamic behavior of the device which was used to machine the 

Circular-Arc-Tooth-Trace cylindrical gear. By using the method of numerical integration, the 

bifurcation diagrams are obtained and the results indicate that the processing device has abundant 

bifurcation characteristics with the change of the dimensionless speed, and the damping ratios, 

gear backlashes and meshing errors of meshing pairs could influence the vibration greatly. The 

bifurcation diagrams reveal that increasing the damping ratios can change the bifurcation and the 

chaos can be avoid when the damping ratios are bigger enough, reducing the gear backlashes can 

reduce the dimensionless displacement amplitudes, increasing the meshing errors can make the 

bifurcation diagrams shift left for a distance, and alternating load torque with large amplitude will 

cause complex chaos phenomenon. The study can help to avoid the fatigue failure and instabilities 

caused by chaos and it also contribute to improving the performance of the processing device. 

Keywords: planetary gear train, nonliear vibration, bifurcation characteristics, chaos. 

1. Introduction 

The planetary gear processing device was used to machine the CATT gear because it had many 

advantages, such as large torque-to-weight ratio, large transmission ratios, reduced vibrations and 

noise as well as high efficiency [1]. These characteristics make sure that the CATT gears have 

higher machining accuracy. So it is very important to investigate the vibration characteristics of 

the CATT gear processing device.  

At present, although many researchers have investigated the transmission characteristics of the 

normal planetary gear train and the dynamic characteristics of planetary gear reducer, few research 

methods can be used to study the CATT gear processing for the vibration model of the processing 

device is different from the previous studies. The device consists of three or more planetary gear 

sets and it has translational and rotary motions which can form the ideal tooth profile of the CATT 

gear [2]. In order to reducing the system vibration which will be influence the correct 

manufacturing of the tooth profile, this paper has established the vibration model for the 

processing device. 

There are many research papers about the vibration of the planetary gear train in recent decades. 

But most of the published planetary gear train dynamic models were limited to the normal 

planetary gear system such as the 2K-H planetary gearbox. Early models were of linear 

time-invariant type and model summation techniques were used to predict the natural modes and 

the force responses [3-6], such as A. Kahraman analyzed the natural modes of planetary gears [4]. 

He used a family of torsional dynamic models of compound gear sets to predict the free vibration 

characteristics under different kinematic configurations resulting in different speed ratios with a 

linear model [5]. J. Lin and R. G. Parker also investigated the natural frequency and vibration 

mode sensitivities to system parameters for both tuned and mistuned planetary gears [7, 8]. 
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Afterwards some studies have shown that the gear trains should be modeled as nonlinear systems 

including periodically varying parameters and backlash [6, 9]. The references [10, 11, 12] 

investigated the time-varying mesh stiffness and clearance influences. J. Lin and R. G. Parker also 

studied the structured vibration characteristics of planetary gears with unequally spaced planets 

[13]. Moreover, Robert G. Parker examined the effectiveness of planet phasing to suppress 

planetary gear vibration in certain harmonics of the mesh frequency based on the physical forces 

acting at the sun-planet and ring-planet meshes [14]. Several years later, R. G. Parker et al. 

analyzed vibration modes of planetary gears with unequally spaced planets and an elastic ring gear 

[15]. Sun Zhimin et al. used a clearance-type nonlinear dynamic model of a 2K-H planetary gear 

train to analyze the nonlinear dynamic behavior [16]. The paper indicated that the backlash would 

induce complicated nonlinear dynamic behavior. Li Tongjie et al. also established a nonlinear 

torsional vibration model with transmission errors, time varying stiffness and gear backlashes. His 

paper revealed that the system’s motion state would change into chaos and a smaller damping 

coefficient would cause complex motion in the vibration system [17].  

Recently, Chang-Jian and Chen investigated nonperiodic and chaotic responses of flexible 

rotors supported by various bearings [18, 19]. They provided a useful method to prevent an 

undesirable motion of the rotor and to reduce the vibration [6]. Similarly, the transmission errors, 

the spacing and back-lash-related nonlinear dynamics were mainly investigated in planetary gear 

system in the reference [20] and [21]. However, these vibration models were all based on the 

conventional planetary gear trains. So the new vibration model need to be established and the 

nonlinear dynamic behaviors and bifurcation and chaos characteristics of a translational planetary 

gear train need further investigate. 

This study proposed a planetary gears device whose planetary gear center could move with 

translational motion and established a nonlinear torsional vibration model. The model included 

the transmission errors, time varying meshing stiffness, damping coefficients and gear backlashes. 

By using the method of varying-step numerical integration, the nonlinear dynamic behavior of 

spur planetary gears in the processing device was investigated. The influences of damping 

coefficient, dimensionless excitation frequency and dimensionless backlash on the vibration 

model were also investigated by calculating dynamic bifurcation diagrams. This paper tries to 

improve the stability of the CATT gear processing device by examining the bifurcation and chaos 

traits of the system.  

2. Modeling methodolgy  

The structures of the processing device of the CATT gear are shown in Fig. 1. The planetary 

gear train processing device consists of a sun gear (s), � (� = 1,2,3, …) inside planetary gears (q), � outside planetary gears (p) and a carrier (c) without ring gear [22]. The redius of carrier can be 

regulated by a adjusting nut. Fig. 1 are the 3D models of the CATT gear and its processing device 

with four gear sets, and these gear sets have to be evenly distributed around the sun gear. All gears 

are spur gears and the motion of the sun gear is constrained. Each element has one rotational 

degree-of-freedom.  

To establish the mathematical model of the system, a number of assumptions are employed as 

follows [6]: 

1. Each gear body is assumed to be rigid, and the flexibilities of the gear teeth at each gear 

mesh interface are modeled by a spring with periodically time-varying stiffness. What’s more, this 

mesh stiffness is influenced by a clearance element representing gear backlash. 

2. Excepting the sun gear, each gear and carrier are assumed to rotate along their bearings only. 

3. Each inside planet and outside planet on the planet carrier distributes uniformly with the 

same parameters. 

4. Each gear set has same meshing error and damping coefficient. 

The planetary gear dynamic model is based on the one developed by Lin and Parker [8, 12]. 

But the structure of the model is different from the previous papers. According to the motion 
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properities of the CATT gear device and the assumptions, the vibration system can be modeled a 

spring-damping vibration system with meshing errors and gear backlashes and the model is shown 

in Fig. 2.  

 
Fig. 1. The CATT gear and its planetary gear train processing device 

 
Fig. 2. Torsional vibration model of planetary gears 

The model is normally selected four gear sets for vibration analysis. Rotational motion of the 

carrier is denoted by �	. Similarly, the rotational motions of the inside planets and outside planets 

are denoted by �
� and ���,  = 1. . . �, where � indicates the number of planets. Their moments 

of inertia can be expressed by �	, �
�, ��� ( = 1,2, … , �). Not noly the tooth meshes between sun 

and inside planet but also the tooth meshes between the inside planet and the outside planet are 

modelled as linear springs with time-varying stiffnesses ��
�(�) , ���
�(�)  (  = 1, 2, … , � ). 

Simultaneously, the paper considered the non-linear factors such as the damping ��
� , ���
� , 

clearance ��
�, ���
� and meshing error ��
�(�), ���
�(�) to establish a complete model as shown 

in Fig. 2. By using the Lagrange equation, the system’s equations of motion are: 
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���
���
���
� − ���
� + !�
� − ���
� − !��
�"#$
� = 0,������� + &'( − �!��
� + ���
�"#$�� = 0,

)�	 + *�+��#	, + +
�#	("-
�.( / ��	 + &', + *���
� + !�
�"#$� cos 3-

�.( = &4 , (1)

where  = 1, 2, … , �, and the parameters #$�, #$
�, #$��, are the base circle radii of the sun, inside 

planets and outside planets respectively. #	( is the radius of the circle passing through the inside 

planets centers for the carrier and #	, is the radius of the circle passing through the outside planets 

centers for the carrier. These parameters are shown in Fig. 2. Moreover, +�, +
�, +��, +	 are the 

masses of the sun gear, inside planet gear, outside planet gear and carrier. There are three external 

torques in the processing device system. &4 is input torque, &'( and &', are load torques. !�
� and !��
� are the elastic meshing forces [16]. They can be expressed as: 

6!�
� = ��
�(�)7��	#	( − �
�#$
� − ��
�(�), ��
�",!��
� = ���
�(�)7��
�#$
� − ���#$�� − ���
�(�), ���
�", (2)

where 7(8, �) is the non-linear function of backlash and it can be represented by [23]: 

7(8, �) = 98 − �, (8 > �),0, (−� ≤ 8 ≤ �),8 + �, (8 < −�).  (3)

For spur gears, rectangular waves are often used to approximate mesh stiffness [12]. Each 

mesh stiffness can be represented by: 

6��
�(�) = �=�
� + �>�
� sin�A� + B�
�" ,���
�(�) = �=��
� + �>��
� sin�A� + B��
�" , (4)

where �=�
� , �=��
�  (  = 1,2, … , � ) are mean values and �>�
� , �>��
�  (  = 1,2, … , � ) are 

time-varying components of the gear meshes. A is the mesh frequency of the sun-planet and B�
�, B��
� ( = 1, 2, … , �) are the phases. ��
� , ���
�  are the viscous meshing forces and they can be expressed as [16]: 

9��
� = ��
� C�D	#	( − �D
�#$
� − �D�
�(�)E ,
���
� = ���
� C�D
�#$
� − �D��#$�� − �D��
�(�)E , (5)

where ��
�, ���
� are the damping coefficients and they can be expressed as [16]: 

��
���
� = 2F(G�=�
� �1 H�⁄ + 1 H
�⁄ "⁄ ,

���
� = 2F,G�=��
� �1 H��⁄ + 1 H
�⁄ "⁄ , (6)

where F( is the damping ratio of meshing pair for the sun to the inside planetary gear, and F, is 

the damping ratio of meshing pair for the inside planet to the outside planet. H	, H
�, H��, H� are 

the equivalent masses of the sun, planets and carrier. ��
�(�), ���
�(�) are the gear backlashes and 

can be represented by [16]: 
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6��
�(�) = J�
� sin�A� + K�
�" ,���
�(�) = J��
� sin�A� + K��
�" , (7)

where J�
� , J��
�  are the synthetical meshing errors and K�
�, K��
� are the phase angles. 

In order to eliminate the displacement of rigid body, the generalized coordinates are introduced 

as: 

6L�
� = �	#	( − �
�#$
� − ��
�(�),L��
� = �
�#$
� − ���#$�� − ���
�(�). (8)

In order to simplify the solutions of the equations we use dimensionless variables, introducing 

the parameters: 

AM = N�=�
� O 1H� + 1H	PQ , L = L�	 , LD = LDAM�	 , L� = L�AM,�	 , 
� = ��	 , �D = �DAM�	 , �� = ��AM,�	 , R = AAM , S = AM�, (9)

where S  is dimensionless time and �	  is nominal size of displacement. The dimensionless 

displacement, velocity, and acceleration are representatives of L, LD
, and L�

. 

Substituting equations Eq. (2), Eq. (5) and Eq. (8) into Eq. (1) and we obtain equations as: 

��
��
��
��
��
��
��
�L� �
� = #	(H	#$	,AM,�	 (&4 − &',) − #	(#$� cos 3H	#$	,AM, ∙ * ��
�(S)7�L�
� , ��
�"-

�.( −
             #	(#$� cos 3H	#$	,AM, ∙ * ��
�LD �
�

-
�.( − 1H
�AM ��
�LD �
� − 1H
�AM, ��
�(S)7�L�
� , ��
�" +

             1H
�AM ���
�LD ��
� + 1H
�AM, ���
�(S)7�L��
� , ���
�" − �� �
�(S),
L� ��
� = 1H
�AM ��
�LD �
� + 1H
�AM, ��
�(S)7�L�
� , ��
�" − 1H
�AM ���
�LD ��
� −
          1H
�AM, ���
�(S)7�L��
� , ���
�" − 1H��AM, ���
�(S)7�L��
� , ���
�" −
               1H��AM ���
�LD ��
� + &'(H��#$��AM,�	 − �� ��
�(S),

 (10)

where H	, H
�, H��, H� can be expressed as: 

H	 = )�	 + *�+��#	, + +
�#	("-
�.( / #$	,U ,  

H
� = �
� #$
� ,⁄ , H�� = ��� #$��,⁄ , H� = �� #$�,⁄ , (11)

where ��
�(S), ���
�(S), ��
�(S), ���
�(S), can be represented by: 

6��
�(S) = �=�
� + �>�
� sin�ΩS + B�
�" ,���
�(S) = �=��
� + �>��
� sin�ΩS + B��
�", (12)
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��
���
�(S) = J�
��	 sin�ΩS + K�
�" ,

���
�(S) = J��
��	 sin�ΩS + K��
�" . (13)

In order to investigate the effect of the external noise on the vibration system, the load torques &'( and &', can be expressed as following: 

W&'((S) = X( + Y( sin(ΛS + [() ,&',(S) = X, + Y, sin(ΛS + [,) , (14)

where X(  and X,  are the average torques of &'(  and &',  respectively, Y(  and Y,  are external 

noises of the load torques, Λ = A\/AM, A\ is the angular velocity of the external noises, [( and [, are the phase angles, in general, [( = [, = 0. 

3. The analysis of the bifurcation characteristics 

This paper investigated the vibration characteristics of the planetary gear processing device by 

using a set of basic parameters. The system parameters are listed in Table 1 and the calculation 

parameters are given in Table 2. What’s more, the other parameters are set as B�
� = B��
� = 0, K�
� = K��
� = 0. 

Table 1. System parameters of the planetary gear processing device 

Parameter Sun Inside planet Outside planet Carrier 

Number of teeth 40 30 40 - 

Module (mm) 3 3 3 - 

Pressure angle (°) 20 20 20 - 

Tooth width (mm) 15 15 15 - #$ (mm) 56.38 42.29 56.38 105&210 � - 7.13e-4 0.002 7.58e-3 

Table 2. Calculation parameters of the planetary gear processing device 

Parameter Value Parameter Value �=�
�  (N/m) 0.825e9 �	 (mm) 0.01 �=��
� (N/m) 1.0e9 � 4 �>�
� , �>��
�  (N/m) 0.2e9 &4 (Nm) 1500 J�
�, J��
� (mm) 0.01 X( (Nm) 600 ��
� , ���
�  (mm) 0.05 X, (Nm) 900 

The paper used numerical integration algorithm to solve the non-linear Eq. (10) with four order 

Runge-Kutta method and investigated the steady state responses of the planetary gear system. First 

of all, we investigated the vibtation system without considering the external noises, so the 

parameters are set at Y( = Y, = 0.  The bifurcation diagram of the system with the 

non-dimensional speed is shown in Fig. 3 when the damping ratios are at F( = F, = 0.05. 

Fig. 3 shows that the system is stable before the critical speed R = 0.7 and the dynamic 

behavior of the system is found to be a periodic motion, then the system will pass through the 

chaotic regions and the single periodic regions. The dynamic behavior is found to be 2&-periodic 

motion at R = 1~1.2. Then the system will be in the second chaotic region. Simultaneously, when 

the non-dimensional speed is at R = 1.4~1.5, the dynamic behavior is a 4&-periodic motion. As 

the non-dimensional speed R further increaases, the dynamic behavior of the system transits to 

nonperiodic motions and the displacement L�
� has unpredictable magnitude. Finaly, the motion 

of the system will be the single periodic harmonic response again when the non-dimensional speed 
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R is bigger than 3.2. 

Lb�
�

 
Fig. 3. Bifurcation diagram of the system with non-dimensional planetary speed R (F( = F, = 0.05) 

When the damping ratios are at F( = F, = 0.1, the bifurcation diagram of the system with the 

non-dimensional speed is shown in Fig. 4. Comparing it with Fig. 3, the bifurcation characteristics 

is more obvious and the chaotic region is smaller. The bifurcation diagram of the system is shown 

in Fig. 5 when the damping ratios are at F( = F, = 0.2. Fig. 5 shows that the motion of the system 

is only single periodic response when the damping ratios are bigger enough. So the chaos can be 

avoided by increasing the damping ratios. 

Lb�
�

 
Fig. 4. Bifurcation diagram of the system with non-dimensional planetary speed R (F( = F, = 0.1) 

Lb�
�

 
Fig. 5. Bifurcation diagram of the system with non-dimensional planetary speed R (F( = F, = 0.2) 

Figs. 6, 7 and 8 are the bifurcation diagrams when the damping ratios are at 0.05, 0.1 and 0.2. 
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They show the bifurcation characteristics of the system with the non-dimensional speed between 

inside planetary gears and outside planetary gears. 

When the damping ratios are smaller such as 0.05 or 0.1, the dynamic behavior of the system 

is found to be a periodic motion, then the system will pass through the chaotic regions and the 

single periodic regions. When the damping ratios are bigger such as 0.2, the dynamic behavior is 

found to be the single periodic harmonic response and the vibration form will not change with the 

speed change. Similarly, comparing with the Figs. 3, 4 and 5, the damping ratios will still influence 

the bifurcation characteristics greatly. 

Lb��
�

 
Fig. 6. Bifurcation diagram of the system with non-dimensional planetary speed R (F( = F, = 0.05) 

Lb��
�

 
Fig. 7. Bifurcation diagram of the system with non-dimensional planetary speed R (F( = F, = 0.1) 

Lb��
�

 
Fig. 8. Bifurcation diagram of the system with non-dimensional planetary speed R (F( = F, = 0.2) 
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In order to investigate the influence of the gear backlashes on the bifurcation characteristics, 

Fig. 9 shows the results of the numerical simulation between the sun gear and the inside planetary 

gears when F( = F, = 0.1, ��
� = ���
� = 30 μm. Comparing Fig. 9 with Fig. 4, it can be found 

that the shape of the bifurcation diagram don’t change but the dimensionless displacements reduce 

whatever the dimensionless speed will be set. So the displacement amplitude can be reduced 

through reducing the gear backlashes. But the method can’t avoid the chaos.  

Similarly, the influence of the gear backlashes on the bifurcation characteristics of the 

dimensionless displacement has same rule as Fig. 9 between inside planetary gears and outside 

planetary gears. Fig. 10 shows the results of the numerical simulation between inside gear and the 

outside planetary gears when F( = F, = 0.1 , ��
� = ���
� = 30 μm.  Comparing Fig. 10 with 

Fig. 7, it can be found that the shape of the bifurcation diagram didn’t change but the 

dimensionless displacements reduced. So the displacement amplitude can be reduced through 

reducing the gear backlashes. However, the method can’t avoid the chaos too. 

Lb�
�

 
Fig. 9. Bifurcation diagram of the system with non-dimensional planetary speed R  

(F( = F, = 0.1, ��
� = ���
� = 30 μm) 

Lb��
�

 
Fig. 10. Bifurcation diagram of the system with non-dimensional planetary speed R  

(F( = F, = 0.1, ��
� = ���
� = 30 μm) 

The bifurcation diagram of the dimensionless displacement between the sun gear and the inside 

planetary gear is shown as Fig. 11 when F( = F, = 0.1 , J�
� = J��
� = 20 μm . Comparing 

Fig. 11 with Fig. 4, the displacement amplitude didn’t change but the bifurcation diagram shifted 

left for a distance, that is to say, the smaller dimensionless speed can cause bifurcation and chaos 

when the meshing errors are increased. 
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Lb�
�

 
Fig. 11. Bifurcation diagram of the system with non-dimensional planetary speed R  

(F( = F, = 0.1, J�
� = J��
� = 20 μm) 

Similarly, the influence of the meshing errors on the bifurcation characteristics of the 

dimensionless displacement in Fig. 12 has the same rule as Fig. 11 between inside planetary gears 

and outside planetary gears. Fig. 12 shows the results of the numerical simulation between inside 

gear and the outside planetary gears when F( = F, = 0.1 , J�
� = J��
� = 20 μm.  Comparing 

Fig. 12 with Fig. 7, it can be found that the shape and the dimensionless displacement of the 

bifurcation diagram didn’t change, but the diagram translated left for a distance too. The smaller 

dimensionless speed can cause bifurcation and chaos when the meshing errors are increased, 

meanwhile, the method can’t avoid the chaos too. 

Lb��
�

 
Fig. 12. Bifurcation diagram of the system with non-dimensional planetary speed R  

(F( = F, = 0.1, J�
� = J��
� = 20 μm) 

Finally, we investigated the bifurcation characteristics of the vibration system with external 

noises, that is to say, the parameters can be set at Y( = Y, = 100 Nm and c = 0.1 in Eq. (14). 

The bifurcation is shown in Fig. 13. 

Comparing Fig. 13 with Fig. 4, the external noises changed the chaotic regions and the 

vibration system would be influenced by its own characteristics and the external noise. Fig. 14 

and Fig. 15 are obtained after changing the parameters Y(, Y, and c. These bifurcation diagrams 

show that the external noise will influence the vibration system obviously when the amplitudes  Y( = Y, = 100 Nm  and smaller value of c  will cause more obviously local vibration 

superposition but not obviously when Y( = Y, = 10 Nm. 
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Fig. 13. Bifurcation diagram of the system with non-dimensional planetary speed R  

(F( = F, = 0.1, J�
� = J��
� = 10 μm, Y( = Y, = 100 Nm, c = 0.1) 
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Fig. 14. Bifurcation diagram of the system with non-dimensional planetary speed R  

(F( = F, = 0.1, J�
� = J��
� = 10 μm, Y( = Y, = 100 Nm, c = 2) 
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Fig. 15. Bifurcation diagram of the system with non-dimensional planetary speed R  

(F( = F, = 0.1, J�
� = J��
� = 10 μm, a) Y( = Y, = 100 Nm, c = 40; b) Y( = Y, = 10 Nm, c = 0.1;  

c) Y( = Y, = 10 Nm, c = 2; d) Y( = Y, = 10 Nm, c = 40) 

0 0.5 1 1.5 2 2.5 3 3.5 4
2

2.5

3

3.5

4

4.5

5

5.5

Ω

�
�
�

0 0.5 1 1.5 2 2.5 3 3.5 4
2

2.5

3

3.5

4

4.5

5

5.5

Ω

�
�
�

0 0.5 1 1.5 2 2.5 3 3.5 4
2.5

3

3.5

4

4.5

5

5.5

Ω

�
�
�
�

0 0.5 1 1.5 2 2.5 3 3.5 4
2.5

3

3.5

4

4.5

5

5.5

Ω

0 0.5 1 1.5 2 2.5 3 3.5 4
2.5

3

3.5

4

4.5

5

5.5

Ω

0 0.5 1 1.5 2 2.5 3 3.5 4
2.5

3

3.5

4

4.5

5

5.5

Ω



1284. NONLINEAR VIBRATION MODELING AND BIFURCATION CHARACTERISTIC STUDY OF A PLANETARY GEAR TRAIN PROCESSING DEVICE.  

SUN ZHIJUN, HOU LI, CHANG QINGLIN, WEI YONGQIAO, LI WEI 

1810 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUNE 2014. VOLUME 16, ISSUE 4. ISSN 1392-8716  

4. Conclusions 

This paper investigated the planetary gear processing device and established a nonlinear 

dynamic model. The model considered errors of transmission, time varying meshing stiffness and 

gear backlashes, what’s more, the solution of the dimensionless equations of the system was 

carried out by using the method of numerical integration. According to different bifurcation 

diagrams, the vibration properties of the planetary gear system were investigated and three 

influencing factors were researched. 

(1) The planetary gear train processing device with translational motion has abundant 

bifurcation characteristics because of the nonlinear factors. The results reveal that the motion state 

of the system will change from periodic motion to chaos, then the system will return to the periodic 

motion as the dimensionless speed increases. 

(2) The bifurcation characteristics of the system will influenced greatly by the damping ratios 

and it can avoid the chaos by the way of increasing the damping ratios. So the fatigue failure in 

the processing device can still be avoided. 

(3) Reducing the gear backlashes can reduce the dimensionless displacement amplitude. So it 

is very important to control the gear backlashes.  

(4) Increasing the meshing errors can make the bifurcation diagrams shift left for a distance 

but this way can not avoid the chaos and reduce the displacement amplitude. 

(5) The external noise can influence bifurcation characteristics of the system and it can change 

the chaotic regions with the changes of amplitude and angle velocity of load torque. 
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