
 

3740 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. DEC 2014, VOLUME 16, ISSUE 8. ISSN 1392-8716  

1456. Structural response reconstruction for 
non-proportionally damped systems in the presence of 
closely spaced modes 

Zhimin Wan1, Ting Wang2, Qibai Huang3, Lin Li4 
State Key Laboratory of Digital Manufacturing Equipment and Technology,  
Huazhong University of Science and Technology, Wuhan, 430074, P. R. China 
3Corresponding author 
E-mail: 1zhiminwan@hust.edu.cn, 2lwxting@hust.edu.cn, 3qbhuang@hust.edu.cn, 4linli3012@gmail.com 
(Received 16 May 2014; received in revised form 27 June 2014; accepted 23 July 2014) 

Abstract. An approach of structural response reconstruction for non-proportionally damped 
systems is proposed in this paper, which is a time domain method based on the empirical mode 
decomposition method with intermittency criteria and modal superposition method. The state 
space method is employed for decoupling the dynamic system equation to obtain the complex 
mode shapes. Response reconstruction of the structural system in the presence of closely spaced 
modes is studied in detail. The key idea is to regard each set of closely spaced modes as an integral 
part. Two numerical examples are conducted to validate the effectiveness of the proposed method. 
Keywords: response reconstruction, non-proportionally damped system, closely spaced modes, 
empirical mode decomposition. 

1. Introduction 

Structural dynamic response reconstruction has received increased attention in the past 
decades. In order to monitor the structure's condition, it is necessary to accurately obtain the 
system response in the critical areas of the structure [1, 2]. However, in some instances, it is not 
possible to measure the responses at the desired locations in operational conditions [3]. For 
example, the locations of interest are at interface between substructures in a large structural system 
[4]. In addition, in real life, it is impossible to arrange sensors at every location due to economic 
reasons. Therefore, prediction of the dynamic responses at critical spots becomes an essential 
component to perform structural monitoring [5, 6]. 

Literature review on recent studies reveals several types of approaches for structural dynamic 
response reconstruction. One type is based on transmissibility concept [7, 8]. Ribeiro et al. [9] 
defined the concept as a transmissibility matrix between the known response functions and the 
other unknown response functions in frequency domain. The transmissibility matrix allows for the 
reconstruction of the response at an arbitrary location of the structure from another location where 
the response is known. Its basic idea is transforming the measurable responses into the responses 
at the desired locations with a transmissibility matrix. Law et al. [10] proposed the concept of 
transmissibility for dynamic response reconstruction in a substructure, and expanded the concept 
of transmissibility to the wavelet domain using the unit impulse response function [11, 12]. 
However, for all the applications using transmissibility concept, it is necessary to know the 
locations where forces or moments are applied. 

The second type of the reconstruction methods is based on the empirical mode decomposition 
(EMD) [13]. For convenience, this method is called the REMD (reconstruction based on EMD) 
method for short in this paper. Responses of the measurable locations are decomposed into modal 
responses represented in intrinsic mode functions (IMFs). Using those modal responses, the modal 
responses at inaccessible locations are computed with the mode shapes. Then modal superposition 
methodology is employed to calculate the dynamic responses in time domain with all the modal 
responses. To ensure each IMF contains only one frequency component, the sifting process with 
intermittency criteria is used. This method is very efficient in terms of computational cost, and 
very suitable for various dynamic response reconstruction based on the different types of sensor 
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measurements. Also a limited number of measurement locations are required. Another advantage 
of this response reconstruction method is that there is no longer a need to know the locations where 
the excitation forces are applied, compared with the reconstruction method based on 
transmissibility concept. However, due to the hypothesis of the intermittency criteria, when one 
mode couldn’t be separated accurately, especially when facing closely spaced modes [13], the 
REMD method will be no longer suitable. It has been marked as a challenge for a structure 
identification and reconstruction problem involving closely spaced modes [14]. In Ref. [15], the 
authors proposed a reconstruction approach based on the REMD method to deal with the situation 
of closely spaced modes. Using this method, there is no need to obtain the modal responses of the 
individual closely spaced modes. A complete mode set of a structure is divided into two sets: One 
set is the closely spaced modes, and the other set is the rest of the modes. The rest of the modal 
responses whose response are measurable can be obtained using the EMD method with 
intermittency criteria, and the rest of the modal responses at desired locations can be computed 
from them with the mode shapes. Thus, the contribution of the closely spaced modal responses 
can be obtained by the mode shapes and the rest of the modal responses. 

Aside from the above methods, some other types of the methods have also been developed. In 
Ref. [16], the reconstruction problem is defined as an inverse optimization problem subject to 
constraints. Then sophisticated optimization techniques are adopted. In Refs. [17, 18], the dynamic 
reconstruction method of a flexible beam has been studied. It is based on the interpolation of 
available measurements using spline shape functions. The accuracy of reconstructed responses 
increases with the number of recorded sensors and is strongly influenced by the layout of sensors. 
Compared with these methods, the REMD method doesn’t need sophisticated optimization 
techniques and a lot of measured locations. 

In a previous report by the authors [15], only the proportionally damped system was considered. 
Modes of proportionally damped systems preserve the simplicity of the real normal modes as in 
the undamped case [19]. However, there is no physical reason why a structural system should 
behave like this. In fact, practical experience in modal testing shows that most real-life structures 
possess complex modes, which indicates that the general linear systems are non-proportionally 
damped. In this paper, a reconstruction approach for non-proportionally damped system is 
developed, which is the extension version of Ref. [15]. The state-space method [20, 21] is the 
most popular method for decoupling the dynamic system equation, and it is employed in this paper 
for obtaining the complex mode shapes. The case of closely spaced modes is considered in detail. 
Furthermore, the case of multiple sets of closely spaced modes is also investigated. 

2. Modal response using empirical mode decomposition 

An essential step of the proposed dynamic response reconstruction method is to obtain the 
individual modal responses of the measured signals. The EMD method with intermittency criteria 
is adopted to decompose the measured signals into modal responses which are called IMFs in 
EMD. In Section 2.1, the standard sifting process of the EMD method [13, 22] is discussed. 
Section 2.2 describes the intermittency criteria. 

The idea of the EMD method is to break down a given signal into functions which form a 
complete and nearly orthogonal basis for the original signal. The resulting functions, which have 
a mean value of zero and only one extreme between zero crossings, known as IMFs, are sufficient 
to describe the underlying dynamics of the signal. The sufficiency and completeness of the EMD 
method are ensured by the way the signal is decomposed [23]. Those approximately orthogonal 
constituent IMFs bear close resemblance to base functions and are problem specific and data 
oriented [24]. 

2.1. Sifting process of the EMD method 

A sifting process is used by the EMD method to filter out IMFs from a given signal. (ݐ)ݖ is 
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denoted as a time domain signal, the sifting process is summarized as follows: [13, 14, 22]. 
1. Construct the upper and lower envelopes of the signal by cubic-spline fitting. Compute the 

mean of both envelopes, which is denoted by ݈ଵ(ݐ). 
2. Compute the first component ℎଵ(ݐ) = (ݐ)ݖ − ݈ଵ(ݐ) and check to see whether ℎଵ(ݐ) is a 

monocomponent, referred to as an IMF. If it is not an IMF, continue the sifting process using ℎଵ(ݐ) as the new signal data. 
3. Construct the envelops of ℎଵ(ݐ) and denote ݈ଵଵ(ݐ) as the mean of the envelops, and compute 

the component ℎଵଵ(ݐ) = ℎଵ(ݐ) − ݈ଵଵ(ݐ). 
4. Repeat step 3 for ݇ times until the resulting ℎଵ௞(ݐ) (ℎଵ௞(ݐ) = ℎଵ(௞ିଵ)(ݐ) − ݈ଵ௞(ݐ)) is an 

IMF. 
5. Denote ݓଵ(ݐ) = ℎଵ௞(ݐ), which is the first IMF extracted from the signal data. 
6. Repeat the above steps to get the second IMF ݓଶ(ݐ)  from the remaining signal of  (ݐ)ݖ −  .(ݐ)ଵݓ
7. Continue the above procedure to obtain another IMF from the remaining signal until the rest 

of the signal (ݐ)ݎ) (ݐ)ݎ = (ݐ)ݖ − ∑ ௡௜ୀଵ(ݐ)௜ݓ ) is the mean trend (or a constant) of the signal. ݓ௜(ݐ) 
is the ݅th IMF and (ݐ)ݎ is the residue. 

2.2. The EMD method with intermittency criteria 

IMFs obtained from the sifting process described above may contain more than one frequency, 
which is not an exact modal response. To obtain the structural modal responses, the intermittency 
criteria are used to ensure that each of the IMFs contains only one frequency component. The idea 
of the intermittency criteria in sifting process is to remove all frequency components lower and 
higher than ߱௜௡௧  (an intermittency frequency) from an IMF by using a band-pass filter  
[13, 14, 25]. Here, ߱௜௡௧ is just determined by the ݅th natural frequency ߱௜ of the structure. The 
procedure to obtain the modal responses is summarized as follows: 

1. Estimate an approximate frequency range for ߱௜  (i.e. ߱௜௅ < ߱௜ < ߱௜ு) either by Fourier 
spectra of the measured signal (ݐ)ݖ or FEM computations as the band-pass filter. 

2. Process the signal (ݐ)ݖ through the band-pass filter. 
3. Use the sifting process described in Section 2.1 to process the data obtained from step 2. 

The first IMF is considered to be the approximation of modal response. 
By repeating the above procedure with different frequency ranges for different natural 

frequencies, all the required modal responses can be obtained. It is important to note that the phase 
shift of the band-pass filter should be as small as possible. Using the sifting process with 
intermittency criteria, the original signal expression can be written as: 

(ݐ)ݖ ≈ ෍ ݀௜(ݐ) +௠
௜ୀଵ ෍ (ݐ)௜ݓ +௡ି௠

௜ୀଵ ,(ݐ)ݎ (1)

where ݀௜(ݐ) is the modal response (that is also an IMF) for the ݅th mode. ݓ௜(ݐ) (݅ = 1,…, ݊ − ݉) 
are other IMFs but not modal responses. 

Applying the EMD method with intermittency criteria to the measured signal, the modal 
responses can be extracted except for the closely spaced modal responses which the band-pass 
filter cannot separate. 

3. Reconstruction theory 

In Ref. [13, 15], the modal superposition method was employed in response reconstruction, 
and only proportionally damped system was discussed. However, in real life, the general linear 
systems are non-proportionally damped. When the system is non-proportionally damped, the 
general equation of motion can’t be decoupled to ܰ second-order uncoupled equation by using 
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real mode shapes in the undamped case. The state-space method is one of the most popular 
methods to solve the decoupling problem for the non-proportionally damped system according to 
the literature and it is based on transforming the ܰ second-order coupled equation into a set of 2ܰ 
first-order coupled equations by augmenting the displacement response vectors with the velocities 
of the corresponding coordinates. 

The general equation of motion of a viscously damped structure with ݊ DOFs can be written 
as: ܠۻሷ(ݐ) + (ݐ)ሶܠ۱ + (ݐ)ܠ۹ = ,(ݐ)܎ (2)

where ۱ ,ۻ and ۹ are the mass, damping and stiffness matrices of the structure, respectively;  ܠሷ ሶܠ ,(ݐ)  are, respectively, the nodal acceleration, velocity and displacement vectors of the (ݐ)ܠ ,(ݐ)
structure; (ݐ)܎ is the load vector. In state space, Eq. (2) can be expressed as: ቂ ۱ ۻۻ ૙ ቃ ቄܠሶܠሷ ቅ + ቂ۹ ૙૙ ቃۻ− ቄܠܠሶቅ = ቄ(ݐ)܎૙ ቅ. (3)

Eq. (3) can also be simplified as: ܡۯሶ + ܡ۰ = ۴, (4)

where ܡ = ቄܠܠሶቅ  is the state vector, ۯ = ቂ ۱ ۻۻ ૙ ቃ , ۰ = ቂ۹ ૙૙ ቃۻ−  are the matrices which are 

consisted of the system parameters, and ۴ = ቄ(ݐ)܎  ૙ ቅ  is the vector of the excitation force.  
Obviously, Eqs. (3) and (4) are 2ܰ×2ܰ first-order equations. According to the theory of the 
state-space method, the mode shape matrix can be obtained by solving the generalized eigenvalue 
problem as: (ۯݏ + ۰)઴ = 0, (5)

where ઴ = ൜ ૖ ૖∗૖s ૖∗s∗ൠ  is the complex mode shape, and the superscript “∗” represents the 

conjugation and ݏ is the complex eigenvalue. The mode shape matrix ૖ is expressed as: 

૖ = ൥߶ଵଵ ⋯ ߶ଵ௡⋮ ⋱ ⋮߶௡ଵ ⋯ ߶௡௡൩. (6)

3.1. Response reconstruction without closely spaced modes 

Assume that the response of the structure doesn’t contain any closely spaced modes. According 
to the theory of modal analysis, the response can be expressed as the summation of ݊ modal 
responses. Define that ݔ௔భ(ݐ), ݔ௔మ(ݐ) (regard as the responses of DOF-ܽଵ and DOF-ܽଶ) are the 
two responses of the known responses which can be obtained by sensor measurement, ݔ௨(ݐ) is the 
vector of the unknown responses one wishes to know. The following equations can be obtained 
as: 

(ݐ)௔భݔ = ෍ ቀ߶௔భ௜ݍ௜(ݐ) + ߶௔భ௜∗ ቁ(ݐ)∗௜ݍ = ෍ ݀௔భ௜(ݐ)௡
௜ୀଵ

௡
௜ୀଵ , (7)

(ݐ)௔మݔ = ෍(߶௔మ௜ݍ௜(ݐ) + ߶௔మ௜∗ ݍ ೔∗(ݐ)) = ෍ ݀௔మ௜(ݐ)௡
௜ୀଵ

௡
௜ୀଵ , (8)
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(ݐ)௨ܠ = ෍(૖௨௜ݍ௜(ݐ) + ૖௨௜∗ ((ݐ)∗௜ݍ = ෍[૖௨௜ ૖௨௜∗ ]௡
௜ୀଵ

௡
௜ୀଵ ൬ݍ௜(ݐ)ݍ௜∗(ݐ)൰, (9)

where the subscript ݅ represents the ݅th mode, and ߶௔௜ represents the mode information for the ܽth 
DOF under ݅th mode. ૖௨௜ represents the mode information for the DOFs whose responses are 
unknown. ݍ௜(ݐ)  is the response of the ݅th  mode in modal coordinate, and  ݀௔௜(ݐ) = ߶௔௜ݍ௜(ݐ) + ߶௔௜∗  .is the ݅th modal response for DOF-ܽ in generalized coordinate (ݐ)∗௜ݍ
From Eqs. (7) and (8), we have: 

൬ݍ௜(ݐ)ݍ௜∗(ݐ)൰ = ቆ߶௔భ௜ ߶௔భ௜∗߶௔మ௜ ߶௔మ௜∗ ቇିଵ ቆ݀௔భ௜(ݐ)݀௔మ௜(ݐ)ቇ. (10)

Substituting Eq. (10) into Eq. (9), the following equation can be obtained as: 

(ݐ)௨ܠ = ෍[૖௨௜ ૖௨௜∗ ]௡
௜ୀଵ ൬ݍ௜(ݐ)ݍ௜∗(ݐ)൰ = ෍[૖௨௜ ૖௨௜∗ ]௡

௜ୀଵ ቆ߶௔భ௜ ߶௔భ௜∗߶௔మ௜ ߶௔మ௜∗ ቇିଵ ቆ݀௔భ௜(ݐ)݀௔మ௜(ݐ)ቇ       = (11) ,(ݐ)௔܌௨௔܁

with the matrix ܁௨௔ and the vector ܌௔(ݐ), which are respectively defined as: 

௨௔܁ = ቈ[૖௨ଵ ૖௨ଵ∗ ] ቆ߶௔భଵ ߶௔భଵ∗߶௔మଵ ߶௔మଵ∗ ቇିଵ [૖௨ଶ ૖௨ଶ∗ ] ቆ߶௔భଶ ߶௔భଶ∗߶௔మଶ ߶௔మଶ∗ ቇିଵ ⋯ [૖௨௡ ૖௨௡∗ ] ቆ߶௔భ௡ ߶௔భ௡∗߶௔మ௡ ߶௔మ௡∗ ቇିଵ቉, (12)

(ݐ)௔܌ = ቈቆ݀௔భଵ(ݐ)݀௔మଵ(ݐ)ቇ୘ ቆ݀௔భଶ(ݐ)݀௔మଶ(ݐ)ቇ୘ ⋯ ቆ݀௔భ௡(ݐ)݀௔మ௡(ݐ)ቇ୘቉୘, (13)

where ܌௔(ݐ) can be computed by using the EMD method discussed in Section 2, and ܁௨௔ can be 
obtained using the FEM. According to Eq. (11), it can be concluded that the unknown responses, 
e.g. at sensor inaccessible locations, can be computed from one response at a measurable location. 
Additionally, the exact mode shape is obtained from an accurate FE model for all the cases studied. 
Under realistic conditions, the estimated mode information from measurements or an inaccurate 
finite element model may be induced uncertainties in the reconstruction results [15]. 

3.2. Response reconstruction in the presence of closely spaced modes 

When a structure exists with closely spaced modes, the method proposed in Section 3.1 will 
be not suitable for the response reconstruction of this structure. In this section, an improvement to 
the reconstruction method is proposed to handle this situation with closely spaced modes.  

Assuming that ݁th and ݂th modes are closely spaced, the subscripts ݉ and ݎ represent the 
information of the closely spaced modes and the rest of the modes, respectively, the subscript ݇ 
and ݑ  represent the information of the DOFs whose responses are known and unknown, 
respectively. The known-set and unknown-set responses can be written as: ܠ௞(ݐ) = [૖௞௠ ૖௞௠∗ ] ൬ܙ௠(ݐ)ܙ௠∗ ൰(ݐ) + [૖௞௥ ૖௞௥∗ ] ൬ܙ௥(ݐ)ܙ௥∗ (ݐ)௨ܠ൰, (14)(ݐ) = [૖௨௠ ૖௨௠∗ ] ൬ܙ௠(ݐ)ܙ௠∗ ൰(ݐ) + [૖௨௥ ૖௨௥∗ ] ൬ܙ௥(ݐ)ܙ௥∗ ,൰(ݐ) (15)

where ૖௞௠ is the closely spaced mode shape matrix of the DOFs-݇ at which responses are known, ૖௞௥ is the rest of the mode shape matrix of the DOFs-݇. ૖௞௠ and ૖௨௠ are the closely spaced 
mode shape matrices of the DOFs-݇ and DOFs-ܙ .ݑ௠(ݐ) and ܙ௥(ݐ) are the response vectors of 
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the closely spaced modes and the rest of the modes in modal coordinate, respectively. They can 
be written as: ܙ௠ = (ݐ)௘ݍ] ,୘[(ݐ)௙ݍ ∗௠ܙ = (ݐ)∗௘ݍ] ௥ܙ୘, (16)[(ݐ)∗௙ݍ = (ݐ)௥భݍ] (ݐ)௥మݍ ⋯ ,୘[(ݐ)௥ೝݍ ∗௥ܙ = ∗௥భݍ] (ݐ) ∗௥మݍ (ݐ) ⋯ ∗௥ೝݍ ,୘[(ݐ) (17)

in which ݍ௘(ݐ) and ݍ௙(ݐ) are the responses of the two closely spaced modes in modal coordinate 
just as assumed before. ݍ௥భ(ݐ), ݍ௥మ(ݐ),…, ݍ௥ೝ(ݐ) are the responses of the rest of the modes in 
modal coordinate, respectively. 

From Eq. (14), the responses of the closely spaced modes in modal coordinate can be obtained 
as: 

൬ܙ௠(ݐ)ܙ௠∗ ൰(ݐ) = [૖௞௠ ૖௞௠∗ ]ା ቆܠ௞(ݐ) − [૖௞௥ ૖௞௥∗ ] ൬ܙ௥(ݐ)ܙ௥∗ ,൰ቇ(ݐ) (18)

where [૖௞௠ ૖௞௠∗ ]ା denotes the pseudo-inverse of matrix [૖௞௠ ૖௞௠∗ ]. It is should be noted 
that the number of the known responses should be at least 2 times equal or greater than the number 
of the closely spaced modes. 

Substituting Eq. (18) into Eq. (15), the vector of unknown responses can be written as: 

(ݐ)௨ܠ = [૖௨௠ ૖௨௠∗ ][૖௞௠ ૖௞௠∗ ]ା ቆܠ௞(ݐ) − [૖௞௥ ૖௞௥∗ ] ൬ܙ௥(ݐ)ܙ௥∗ ൰ቇ      +[૖௨௥(ݐ) ૖௨௥∗ ] ൬ܙ௥(ݐ)ܙ௥∗ .൰(ݐ) (19)

For Eq. (19), there are two methods to obtain the unknown responses vector ܠ௨(ݐ). One is to 

compute ቆܠ௞(ݐ) − [૖௞௥ ૖௞௥∗ ] ൬ܙ௥(ݐ)ܙ௥∗ ൰ቇ(ݐ)  directly using the EMD method, but it is more 

complicated than the following method, because it requires executing the EMD method for all of 
the known responses according to Eq. (19). The algorithm is illustrated in the following text. 

Eq. (19) can be transformed into another form as following: ܠ௨(ݐ) = [૖௨௠ ૖௨௠∗ ][૖௞௠ ૖௞௠∗ ]ାܠ௞(ݐ) + [૖௨௥ ૖௨௥∗ ] ൬ܙ௥(ݐ)ܙ௥∗ ൰        −[૖௨௠(ݐ) ૖௨௠∗ ][૖௞௠ ૖௞௠∗ ]ା[૖௞௥ ૖௞௥∗ ] ൬ܙ௥(ݐ)ܙ௥∗ ൰, (20)(ݐ)

and several matrices are defined as: ܂௨௠௞ = [૖௨௠ ૖௨௠∗ ][૖௞௠ ૖௞௠∗ ]ା, ௨௔௥܁(21) = ቈ[૖௨௥భ ૖௨௥భ∗ ] ቆ߶௔భ௥భ ߶௔భ௥భ∗߶௔మ௥భ ߶௔మ௥భ∗ ቇିଵ [૖௨௥మ ૖௨௥మ∗ ] ቆ߶௔భ௥మ ߶௔భ௥మ∗߶௔మ௥మ ߶௔మ௥మ∗ ቇିଵ ⋯ [૖௨௥ೝ ૖௨௥ೝ∗ ] ቆ߶௔భ௥ೝ ߶௔భ௥ೝ∗߶௔మ௥ೝ ߶௔మ௥ೝ∗ ቇିଵ቉, (22)

௞௔௥܁ = ቈ[૖௞௥భ ૖௞௥భ∗ ] ቆ߶௔భ௥భ ߶௔భ௥భ∗߶௔మ௥భ ߶௔మ௥భ∗ ቇିଵ [૖௞௥మ ૖௞௥మ∗ ] ቆ߶௔భ௥మ ߶௔భ௥మ∗߶௔మ௥మ ߶௔మ௥మ∗ ቇିଵ ⋯ [૖௞௥ೝ ૖௞௥ೝ∗ ] ቆ߶௔భ௥ೝ ߶௔భ௥ೝ∗߶௔మ௥ೝ ߶௔మ௥ೝ∗ ቇିଵ቉, (23)

(ݐ)௔௥܌ = ቈቆ݀௔భ௥భ(ݐ)݀௔మ௥భ(ݐ)ቇ୘ ቆ݀௔భ௥మ(ݐ)݀௔మ௥మ(ݐ)ቇ୘ ⋯ ቆ݀௔భ௥ೝ(ݐ)݀௔మ௥ೝ(ݐ)ቇ୘቉஋, (24)

in which the subscript ܽ represents the information of DOF-ܽ at which response is known, the 
subscript ݎଵ, ݎଶ,…, ݎ௥ represent the information of the rest of the modes, and ܌௔௥(ݐ) is denoted as 
the vector of the rest of the modal responses of DOF-ܽ. Therefore, Eq. (20) can be expressed as: 
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(ݐ)௨ܠ = (ݐ)௞ܠ௨௠௞܂ + (ݐ)௔௥܌௨௔௥܁ − =       (ݐ)௔௥܌௞௔௥܁௨௠௞܂ (ݐ)௞ܠ௨௠௞܂ + ௨௔௥܁) − .(ݐ)௔௥܌(௞௔௥܁௨௠௞܂ ௨௠௞܂(25) ௨௔௥܁ ,  and ܁௞௔௥  can be derived by FEM, and ܌௔௥(ݐ) can be computed by the EMD 
method with intermittency criteria. Eq. (25) can be called the reconstructed equation, and it is the 
same formulation as Eq. (21) in Ref. [15]. Note that a restriction of this proposed method is the 
number of the known responses ݇ must be greater or equal than the number of closely spaced 
modes 2݉. 

When a structure contains multiple sets of closely spaced modes, Eq. (14) can be written as: 

(ݐ)௞ܠ = ෍ൣ૖௞௠ೕ ૖௞௠ೕ∗ ൧ ቆܙ௠ೕ(ݐ)ܙ௠ೕ∗ ቇ௠(ݐ)
௝ୀଵ + [૖௞௥ ૖௞௥∗ ] ൬ܙ௥(ݐ)ܙ௥∗ ൰(ݐ) = ෍ ௞௠ೕ܌

௠
௝ୀଵ (ݐ) + ௞௥, (26)܌

where ௝݉  represents the ݆th  set of closely spaced modes, and  ܌௞௠ೕ(ݐ) = ൣ૖௞௠ೕ ૖௞௠ೕ∗ ൧ ቆܙ௠ೕ(ݐ)ܙ௠ೕ∗ ቇ(ݐ)  is the corresponding modal responses of the known 

responses, which just can be obtained by the EMD method according to Fourier spectra. Then one 
can obtain that: 

ቆܙ௠ೕ(ݐ)ܙ௠ೕ∗ ቇ(ݐ) = ൣ૖௞௠ೕ ૖௞௠ೕ∗ ൧ା܌௞௠ೕ(ݐ). (27)

Eq. (15) can be easily transformed as following: 

(ݐ)௨ܠ = ෍ൣ૖௨௠ೕ ૖௨௠ೕ∗ ൧ ቆܙ௠ೕ(ݐ)ܙ௠ೕ∗ ቇ௠(ݐ)
௝ୀଵ + [૖௨௥ ૖௨௥∗ ] ൬ܙ௥(ݐ)ܙ௥∗  ൰(ݐ)

      = ෍ൣ૖௨௠ೕ ૖௨௠ೕ∗ ൧௠
௝ୀଵ ൣ૖௞௠ೕ ૖௞௠ೕ∗ ൧ା܌௞௠ೕ(ݐ) + =       (ݐ)௔௥܌௨௔௥܁ (ݐ)௞௠܌௨௞௠܁ + ,(ݐ)௔௥܌௨௔௥܁

(28)

where: ܁௨௞௠ = [[૖௨௠భ ૖௨௠భ∗ ][૖௞௠భ ૖௞௠భ∗ ]ା [૖௨௠మ ૖௨௠మ∗ ][૖௞௠మ ૖௞௠మ∗ ]ା ⋯ [૖௨௠೘ ૖௨௠೘∗ ][૖௞௠೘ ߶௞௠೘∗ ]ା], ݀௞௠(ݐ) = [݀௞௠భ(ݐ) ݀௞௠మ(ݐ) ⋯ ݀௞௠೘(ݐ)]୘.
Eq. (28) is also the reconstruction equation for the case of multiple sets of closely spaced 

modes. Note that the number of ݇ DOFs must be greater or equal than the number of 2×max( ௝݉) 
modes due to the pseudo-inverse of matrix ൣ૖௞௠ೕ ૖௞௠ೕ∗ ൧ା. Taking each set of closely spaced 
modes as an integral part to obtain the modal responses is the key idea for dealing with this 
situation. 

For stochastic or transient excitation, such as vibrations induced by ambient wind and 
earthquakes, the proposed method can reconstruct dynamic responses accurately and rapidly. 
Fig. 1 presents the overall reconstruction procedure for the methods presented in  
Section 3.1 and 3.2.  

It should be noted that the method based on the modal superposition method presented in 
Section 3.1 and 3.2 are suitable for stochastic and transient excitation, and also for the process of 
both free vibration and steady forced vibration. Moreover, this proposed method is suitable for 
various types of dynamic responses, not only displacement responses but also velocity and 
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acceleration responses. 

uaS

( )a td

umkT uarS karS

( )ar td

( )km td
ukmS uarS

( )ar td

 
Fig. 1. Overall procedure of response reconstruction for non-proportionally damped system 

4. Numerical examples 

Two numerical examples are presented here. The first example is about a 3-DOF model, which 
is to verify the method of response reconstruction for the structure without closely spaced modes. 
The second example is based on a structural system of a 6-DOF mass-spring, which is to verify 
the reconstruction method in the presence of closely spaced modes. 

4.1. Example 1: Response reconstruction without closely spaced modes 

A 3-DOF theoretical model is used in this example. The mass, stiffness and damping matrices 
are presented as following: 

ۻ = ൥1 0 00 1 00 0 1൩ , ۹ = ൥ 2000 −1000 0−1000 2000 −10000 −1000 1000 ൩ , ۱ = ൥ 3 −3 0−3 3 00 0 0൩. (29)

The units are tone, N/mm and N/mm/s, respectively. No excitation force is applied, i.e. free 
vibration. The method proposed in section 3.1 is used to reconstruct the unknown responses. The 
displacement responses of DOF-1 and DOF-2 are used to be decomposed into modal responses 
(as ܌௔(ݐ)) by the EMD method. 

The sampling frequency is 100 Hz, and the sampling time is 20 s. Fig. 2 shows the known 
displacement response of DOF-1. The Fourier spectra of the response is plotted in Fig. 3 where 
the three order frequencies are shown. The performance of the REMD method depends on the 
ability of the band-pass filter to separate different modes. Table 1 gives frequency ranges for each 
band-pass. Fig. 4 presents the filtered results of the rest of the modal responses. The reconstruction 
result and the theoretical prediction of DOF-1 are illustrated in Fig. 5. Fig. 6 is the partial 
time-history chart of Fig. 5 from 2 s to 10 s. From the two figures, it can be observed that the 
reconstruction result obtained from the proposed method is very close to theoretical prediction 
except for the beginning region. The discrepancy at the beginning of Fig. 5 is possible a result of 
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the end boundary effect, which has been wildly discussed in literature as the intrinsic weakness of 
EMD [20]. This example proves that the proposed method is suitable for response reconstruction 
for free vibration. 

 
Fig. 2. Displacement response of DOF-1 with  

no noise terms 

 
Fig. 3. Fourier spectra of displacement response  

of DOF-1 

 
Fig. 4. The modal responses of DOF-1 obtained using the EMD method with intermittency criteria 

Fig. 5. Theoretical response and reconstructed 
response (using the REMD method) of DOF-3 

 
Fig. 6. Zoom-in view of a segment (2-10 s)  

of Fig. 5 
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Table 1. Frequency ranges for each band-pass filter 
Mode I II III 

Natural frequency 2.24 6.28 9.06 
Passband corner frequency (Hz) [0.5-1.6] [4-5] [8-8.5] 
Stopband corner frequency (Hz) [3-4] [7.2-8] [9.3-9.8] 

4.2. Example 2: Response reconstruction in the presence of closely spaced modes 

A six DOF mass-spring system, as shown in Fig. 7, is presented here to demonstrate the overall 
reconstruction procedure for the problems which involving closely spaced modes. And its 
characteristics are described in Table 2. Liang damping [26] is used in all the simulations of 
example 2, which is defined as: ۱ = ۻߙ + ۹ߚ + (30) ,܀

where ܀ = diag([0.32  0.52  0.46  0.82  0.78  0.56]). It is easily verified that non-proportional 
damping ensures with the simple equation: ۱ିۻଵ۹ ≠ ଵ۱. (31)ିۻ۹

Table 3 shows the damping coefficients and the information of external excitations for all the 
cases. 

 
Fig. 7. The 6DOF model used in the simulations. Liang damping ۱ = ۻߙ + ۹ߚ +  is used ܀

Table 2. Characteristics of the structure system ݉ଵ ݉ଶ ݉ଷ ݉ସ ݉ହ ݉଺      
7 7 4 13 12 8      ݇ଵ ݇ଶ ݇ଷ ݇ସ ݇ହ ݇଺ ݇଻ ଼݇ ݇ଽ ݇ଵ଴ ݇ଵଵ
1 1 2 8 9 10 2 4 12 16 16 

Unit: mass-kg stiffness-105 N/m. Liang damping is used for all the cases 

Table 3. Information for different cases 
Example Case Description  Damping coefficient  Excitation  
Example1 – No closely spaced modes Direct damping matrix Free vibration 

Example2 

Case 1 Closely spaced modes ߙ = ߚ ,1 = 1e-5 ଵ݂(ݐ) 
Case 2 Effect of noise level ߙ = ߚ ,1 = 1e-5 ଵ݂(ݐ) 
Case 3 Effect of high damping ratio ߙ = ߚ ,1 = 1e-4 ଵ݂(ݐ) 
Case 4 Effect of multiply stochastic forces ߙ = ߚ ,1 = 1e-5 ଶ݂(ݐ), ଷ݂(ݐ) 
Case 5 Two sets of closely spaced modes ߙ = ߚ ,1 = 1e-5 ଵ݂(ݐ) ଵ݂(ݐ): transient force. ଶ݂(ݐ), ଷ݂(ݐ): stochastic force 
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4.2.1. Case 1: Basic example 

Sinusoidal excitation force is applied at DOF-2 for a duration of 0.05 s, which is: 

ଵ݂(ݐ) = ൜20sin(2ߨ × ,(ݐ45 t ≤ 0.05 s,0, t > 0.05 s. (32)

The sampling frequency is 2000 Hz. Fig. 8 shows the known acceleration response of DOF-4 
with no noise terms. The Fourier spectra of the response is plotted in Fig. 9 where the six 
theoretical natural frequencies are shown. It is observed that the 3rd and 4th modes are closely 
spaced. So the number of the known responses should be at least equal to 4 to satisfy the 
relationship of ݇ ≥ 2݉. 

 
Fig. 8. Acceleration response of DOF-4 with  

no noise terms 

 
Fig. 9. Fourier spectra of acceleration response  

of DOF-4 

The method proposed in Section 3.2 is used to reconstruct the unknown responses. It is 
assumed that the responses of DOF-1, 3, 4 and 6 are known. So the vectors of known and unknown 
responses are represented as: ܠ௞(ݐ) = (ݐ)ଵݔ] (ݐ)ଷݔ (ݐ)ସݔ ,்[(ݐ)଺ݔ (ݐ)௨ܠ = (ݐ)ଶݔ] .୘[(ݐ)ହݔ

The vectors of the responses in modal coordinate of the system can be written as: ܙ௠(ݐ) = (ݐ)ଷݍ] ,்[(ݐ)ସݍ (ݐ)௥ܙ = (ݐ)ଵݍ] (ݐ)ଶݍ (ݐ)ହݍ .୘[(ݐ)଺ݍ
The response of DOF-3 and 4 are used to be decomposed into modal responses to transfer the 

rest of the modal responses for the overall reconstruction procedure, i.e. ܽଵ = 3, ܽଶ = 4, according 
to Eqs. (21)-(24), the four critical matrices can be obtained as: 

௨௠௞܂ = ൬߶ଶଷ ߶ଶଷ∗ ߶ଶସ ߶ଶସ∗߶ହଷ ߶ହଷ∗ ߶ହସ ߶ହସ∗ ൰ ൮߶ଵଷ ߶ଵଷ∗ ߶ଵସ ߶ଵସ∗߶ଷଷ ߶ଷଷ∗ ߶ଷସ ߶ଷସ∗߶ସଷ ߶ସଷ∗ ߶ସସ ߶ସସ∗߶଺ଷ ߶଺ଷ∗ ߶଺ସ ߶଺ସ∗ ൲ିଵ, (33)

௨௔௥܁ = ቈ൬߶ଶଵ ߶ଶଵ∗߶ହଵ ߶ହଵ∗ ൰ ൬߶ଷଵ ߶ଷଵ∗߶ସଵ ߶ସଵ∗ ൰ିଵ ൬߶ଶଶ ߶ଶଶ∗߶ହଶ ߶ହଶ∗ ൰ ൬߶ଷଶ ߶ଷଶ∗߶ସଶ ߶ସଶ∗ ൰ିଵ ൬߶ଶହ ߶ଶହ∗߶ହହ ߶ହହ∗ ൰ ൬߶ଷହ ߶ଷହ∗߶ସହ ߶ସହ∗ ൰ିଵ ൬߶ଶ଺ ߶ଶ଺∗߶ହ଺ ߶ହ଺∗ ൰ ൬߶ଷ଺ ߶ଷ଺∗߶ସ଺ ߶ସ଺∗ ൰ିଵ቉, (34)

௞௔௥܁ = ێێۏ
൮߶ଵଵۍ ߶ଵଵ∗߶ଷଵ ߶ଷଵ∗߶ସଵ ߶ସଵ∗߶଺ଵ ߶଺ଵ∗ ൲ ൬߶ଷଵ ߶ଷଵ∗߶ସଵ ߶ସଵ∗ ൰ିଵ ൮߶ଵଶ ߶ଵଶ∗߶ଷଶ ߶ଷଶ∗߶ସଶ ߶ସଶ∗߶଺ଶ ߶଺ଶ∗ ൲ ൬߶ଷଶ ߶ଷଶ∗߶ସଶ ߶ସଶ∗ ൰ିଵ

ۇۉ
߶ଵହ ߶ଵହ∗߶ଷହ ߶ଷହ∗߶ସହ ߶ସହ∗߶଺ହ ߶଺ହ∗ ۊی ൬߶ଷହ ߶ଷହ∗߶ସହ ߶ସହ∗ ൰ିଵ ൮߶ଵ଺ ߶ଵ଺∗߶ଷ଺ ߶ଷ଺∗߶ସ଺ ߶ସ଺∗߶଺଺ ߶଺଺∗ ൲ ൬߶ଷ଺ ߶ଷ଺∗߶ସ଺ ߶ସ଺∗ ൰ିଵ

ۑۑے
(35) ,ې

(ݐ)௔௥܌ = ቈ൬݀ଷଵ(ݐ)݀ସଵ(ݐ)൰୘ ൬݀ଷଶ(ݐ)݀ସଶ(ݐ)൰୘ ൬݀ଷହ(ݐ)݀ସହ(ݐ)൰୘ ൬݀ଷ଺(ݐ)݀ସ଺(ݐ)൰୘቉୘. (36)
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Thus, the unknown responses ܠ௨(ݐ) are easily computed associated to Eq. (25). 
The modal responses of the rest of the modes which actually consisted of 1st, 2nd, 5th and 6th 

modes at DOF-3 and 4 are obtained by the EMD method with intermittency criteria. These four 
modal frequencies are used to design the band-pass filters. Frequency ranges for each band-pass 
filter are shown in Table 4. It is noted that the band-pass filter should have as small phase shift as 
possible [16]. Fig. 10 presents the filtered results of the rest of modal responses at DOF-4.  

Table 4. Frequency ranges for each band-pass filter 
Mode I II V VI 

Natural frequency 9.77 54.12 118.46 150.31 
Passband corner frequency (Hz) [6-9] [45-52] [102-114] [132-140] 
Stopband corner frequency (Hz) [10.5-13] [56-62] [119-130] [160-170] 

 
Fig. 10. The rest of the modal responses of DOF-4  

obtained using the EMD method with intermittency criteria 

 
a) 

 
b) 

Fig. 11. a) Theoretical response and reconstructed response of DOF-5,  
b) Absolute error between the theoretical response and reconstructed response of DOF-5 

All of the unknown responses can be obtained based on the reconstructed equation, i.e. Eq. (25). 
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For example, the reconstructed acceleration response and the theoretical response of DOF-5 are 
shown in Fig. 11(a), and Fig. 11(b) shows the absolute error of these two signals. Fig. 12 is the 
partial time-history chart of Fig. 11(a) from 1 s to 1.3 s. The two curves of responses are almost 
overlapping, indicating very high reconstruction accuracy of the proposed method. Also from 
Fig. 11 and Fig. 12, it is observed that the reconstruction result is very close to theoretical 
prediction except for the beginning region. At the beginning of Fig. 11(b), the periodic sinusoidal 
force introduces a frequency component (45 Hz) in the Fourier spectra, which is not the natural 
modes of the structure itself, and the contribution of 45 Hz is significant in frequency domain with 
the force applied. On the other hand, the discrepancy at the beginning of Fig. 11(b) is possible a 
result of the end boundary effect, which just like the discrepancies found in  
example 1. This case proves that the proposed method is suitable for response reconstruction with 
transient excitation. Following this basic example, effects of the noise level, high damping ratio, 
multiple stochastic forces and two sets of closely spaced modes are studied as four cases in detail. 

 
Fig. 12. Zoom-in view of a segment (1-1.3 s)  

of Fig. 11(a) 

 
Fig. 13. Theoretical response and reconstructed 

response of DOF-2 (no noise) 

4.2.2. Case 2: Effect of noise level 

To investigate the effect of the noise level on the performance of the reconstruction method, 
numerical experiments with different noise levels are performed. The noise is defined as a 
normally distributed random noise with zero mean and unit standard deviation, which can be 
written as: ݔ௡௢௜௦௘(ݐ) = ݊ ௥ܰstd ቀݔ௢௥௜௚௜௡௔௟(ݐ)ቁ, (37)

where ݔ௡௢௜௦௘(ݐ) is the added noise to the original measured signal; ݊ is the noise level; ௥ܰ is a 
standard normal distribution vector with zero mean and unit standard deviation and std(ݔ௢௥௜௚௜௡௔௟(ݐ)) is the standard deviation of the original measured response.  

In this case, the acceleration response of DOF-2 is reconstructed using the known acceleration 
responses. Three noise levels are calculated (݊ = 0, 2 %, 5 %). The reconstruction results are 
shown in Fig. 13-15. It can be seen that the noise level increasing leads to a bigger discrepancies. 
However, all of the reconstruction curves are still very close to the theoretical predictions. Two 
kinds of error are used to measure the error between the theoretical value and the reconstruction 
value. The mean absolute error (MAE) and relative error (RE) of a reconstructed signal are  
defined as: 

(ݔ)ܧܣܯ = 1݇ ෍|(ݐ)ݔ − ௞|(ݐ)ොݔ
௧ୀଵ , (38)
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(ݔ)ܧܴ = ∑ ൫(ݐ)ݔ − ∑൯ଶ௞௧ୀଵ(ݐ)ොݔ ൫ݔො(ݐ)൯ଶ௞௧ୀଵ × 100 %. (39)

Respectively, where ݇ is the length of the reconstructed series, and (ݐ)ݔ is the reconstructed 
value at time index ݐ and ݔො(ݐ) is the theoretical value of the signal. MAE and RE values of the 
reconstructed responses under different noise levels are listed in Table 5. These two types of errors 
are very small that proving the high stability of the proposed method in the presence of 
measurement noise. 

 
Fig. 14. Theoretical response and reconstructed 

response of DOF-2 (2 % noise) 

 
Fig. 15. Theoretical response and reconstructed 

response of DOF-2 (5 % noise) 

Table 5. MAE and RE (%) values of each DOF in the response reconstruction under different noise levels 

Noise level (%) Error DOF number 
2 5 

0 MAE 1.61 0.76 
RE 2.75 2.53 

2  MAE 2.11 1.28 
RE 6.26 2.64 

5 MAE 3.17 2.21 
RE 7.48 3.42 

4.2.3. Case 3: Effect of high damping ratio 

 
Fig. 16. Acceleration response of DOF-4 with high damping ratio 

To investigate the effect of high damping ratio to the performance of the proposed response 
reconstruction method, a higher damping coefficient is used in this numerical case. The stiffness 
damping coefficient ߚ is taken as 1.0e-4 (10 times than before). Fig. 16 shows the acceleration 
response of DOF-4. The amplitude of the signal reduces rapidly due to the high damping ratio. 
Fig. 17 shows the theoretical prediction and reconstructed result of DOF-2. Fig. 18 is the zoom-in 
view of a segment (0.2 s-0.5 s) of Fig. 17. MAE and RE values of the reconstructed responses 
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under different damping levels are listed in Table 6. It can be seen that RE of high damping system 
are larger than low damping system, however, all errors are very small, and the maximum RE is 
only 5.13 %. MAE of high damping system are less than low damping system due to the less 
absolute value of high damping system. From these figures and Table 6, good agreement can be 
observed between the theoretical acceleration and the reconstructed acceleration. This indicates 
that the proposed method has the capability for handling high damping ratio case. 

 
Fig. 17. Theoretical response and reconstructed 

response of DOF-5 

 
Fig. 18. Zoom-in view of a segment (0.2-0.5 s)  

of Fig. 17 

Table 6. MAE and RE (%) values in the response reconstruction under different damping levels 

Damping level Error DOF number 
2 2 

Low damping ratio (ߙ = ߚ ,1 =1e-5) MAE 1.61 1.61 
RE 2.75 2.75 

High damping ratio (ߙ = ߚ ,1 =1e-4) MAE 1.31 1.31 
RE 5.13 5.13 

4.2.4. Case 4: Effect of multiple forces 

 
Fig. 19. Theoretical response and reconstructed response of DOF-5 from 1-1.5 s (5 % noise) 

The feasibility of the proposed method in the presence of multiple forces acting on different 
degrees of freedom is also investigated. In real life, persistent stochastic excitation is more 
common than transient excitation. In this case, two random forces ଶ݂(ݐ), ଷ݂(ݐ) are applied at 
DOF-1 and DOF-4 persistently, respectively. The reconstructed acceleration response and the 
theoretical response of DOF-5 from 1 s-1.5 s are shown in Fig. 19. The two time-curves are very 
close even with 5 % noise, indicating very high reconstruction accuracy of the reconstruction 
method. In addition, different levels of noise have been also added to the measured signals. MAE 
and RE under different noise levels are listed in Table 7. Results in Table 7 suggest an overall 
satisfactory agreement between the reconstructed responses and actual responses and they 
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illustrate that the proposed method is still applicable in the presence of multiple forces acting on 
different degrees of freedom. 

Table 7. MAE and RE (%) values in the response reconstruction under different noise levels in Case 4 

Noise level (%) Error DOF number Noise level (%) 
2 5 

0 MAE 1.88 0.86 
RE 2.85 2.51 

2  MAE 2.35 1.32 
RE 2.98 2.71 

5 MAE 3.41 2.22 
RE 3.80 3.56 

4.2.5. Case 5: Two sets of closely spaced modes 

In real life, a structure may contain not only one set of closely spaced modes. In this case, two 
sets of closely spaced modes are assumed here for validation of dynamic response reconstruction. 
The stiffness coefficients are changed in order to have two sets of closely spaced modes, as listed 
in Table 8. The Fourier spectra of the response at DOF-1 is plotted in Fig. 20. It is observed that 
the 2nd and 3rd, 4th and 5th modes are the two sets of closely spaced modes. Thus, we have  ݉ଵ = 2 (2nd and 3rd), ݉ଶ = 2 (4th and 5th). The acceleration responses of DOF-1, 2, 4 and 6 are 
assumed known to reconstruct the responses at the rest DOFs. According to Eq. (28), one can 
obtain: 

ൣ૖௨௠భ ૖ ೠ೘భ∗ ൧[૖௞௠భ ૖ ೖ೘భ∗ ]ା = ൤߶ଷଶ ߶ଷଶ∗ ߶ଷଷ ߶ଷଷ∗߶ହଶ ߶ହଶ∗ ߶ହଷ ߶ହଷ∗ ൨ ൦߶ଵଶ ߶ଵଶ∗ ߶ଵଷ ߶ଵଷ∗߶ଶଶ ߶ଶଶ∗ ߶ଶଷ ߶ଶଷ∗߶ସଶ ߶ସଶ∗ ߶ସଷ ߶ସଷ∗߶଺ଶ ߶଺ଶ∗ ߶଺ଷ ߶଺ଷ∗ ൪ିଵ, (40)

ൣ૖௨௠మ ૖ ೠ೘మ∗ ൧ൣ૖௞௠మ ૖ ೖ೘మ∗ ൧ା = ൤߶ଷସ ߶ଷସ∗ ߶ଷହ ߶ଷହ∗߶ହସ ߶ହସ∗ ߶ହହ ߶ହହ∗ ൨ ێێۏ
ଵସ߶ۍ ߶ଵସ∗ ߶ଵହ ߶ଵହ∗߶ଶସ ߶ଶସ∗ ߶ଶହ ߶ଶହ∗߶ସସ ߶ସସ∗ ߶ସହ ߶ସହ∗߶଺ସ ߶଺ସ∗ ߶଺ହ ߶଺ହ∗ ۑۑے

ଵ, (41)ିې

(ݐ)௞௠భ܌ = [݀ଵ,ଶଷ(ݐ) ݀ଶ,ଶଷ(ݐ) ݀ସ,ଶଷ(ݐ) ݀଺,ଶଷ(ݐ)]୘, (ݐ)௞௠మ܌(42) = [݀ଵ,ସହ(ݐ) ݀ଶ,ସହ(ݐ) ݀ସ,ସହ(ݐ) ݀଺,ସହ(ݐ)]୘. (43)

The reconstructed responses can be obtained easily by Eq. (28). Frequency ranges for each 
band-pass filter are shown in Table 9. Fig. 21 presents the filtered results of the modal responses 
at DOF-1. The reconstructed acceleration response and the theoretical response of DOF-3 are 
shown in Fig. 22. Good agreement between the two signals can be seen from it, which indicates 
that the proposed method are applicable for the case of a few sets of closely spaced modes. 

Table 8. Stiffness coefficients of the structure system for Case 5 ݇ଵ ݇ଶ ݇ଷ ݇ସ ݇ହ ݇଺ ݇଻ ଼݇ ݇ଽ ݇ଵ଴ ݇ଵଵ
1 1 10 11 7 7 8 8 6 1 2 
Unit: stiffness-10ହN/m 

Table 9. Frequency ranges for each band-pass filter for Case 5 
Mode I II, III IV, V VI 

Natural frequency 9.77 49.62, 56.18 82.30, 87.00 173.50 
Passband corner frequency (Hz) [6-9] [44-48.5] [67-77] [146-162] 
Stopband corner frequency (Hz) [10.5-13] [57.5-62] [90-100] [174-190] 
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Fig. 20. Fourier spectra of acceleration response of 

DOF-1 for Case 5 

 
Fig. 21. The rest of the modal responses of DOF-1 

obtained using the EMD method  
with intermittency criteria for Case 5 

 
Fig. 22. Theoretical response and reconstructed response of DOF-3 for Case 5 

5. Conclusions and recommendations 

This paper proposes a structural dynamic response reconstruction method for 
non-proportionally damped system based on the modal superposition method in time domain. The 
state space method is used to obtain the complex mode shapes. The response reconstruction is 
based on transforming modal responses from available location to inaccessible locations. The 
FEM and EMD method with intermittency criteria are the two significant tools of the proposed 
method. It is suitable for stochastic excitation and transient excitation, such as vibrations induced 
by ambient wind and earthquakes, the forces are considered to be random, but it is not suitable for 
periodic excitation which has deterministic frequency. The case of structural system in the 
presence of closely spaced modes is studied. For this situation, using the proposed method 
presented in Section 3.2, there is no need to obtain the modal responses of the individual closely 
spaced modes. A limitation is the number of the known responses must be greater or two times 
equal than the number of the modes in the set of closely spaced modes. When a structure has a 
few sets of closely spaced modes, then the number of the known responses must be greater or two 
times equal than the number of the maximum modes of all the sets of the closely spaced modes. 
Numerical examples are conducted to validate the accuracy of the proposed methods. Effects of 
noise in measurements, high damping ratio, multiple forces and two sets of closely spaced modes 
to the response reconstruction are also investigated in detail. All of the reconstruction results are 
in good agreement with theoretical predictions. 
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Current studies assume the finite element model is accurate. Under realistic conditions, the 
mode shape identified from measurements may introduce uncertainties to the reconstruction 
results. So the FE model updating is required to be studied on the uncertainties of FE model to the 
response reconstruction in the future work.  

In this paper, only small scale models are investigated, and all the modes are used for 
reconstructing the responses. For a large scale problem, the higher modes which have extremely 
small participation factors could be ignored, and this will not decrease the accuracy of the 
reconstructed responses. Additionally, a real-life experiment should be considered in the future. 
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