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a) Bearing 7, sensor at 45° 

 
b) Bearing 7, sensor at 135° 

Fig. 10. Polar response diagram in bearing 7 at 45° and 135° of turbogenerator 2 

 
a) Bearing 8, sensor at 45° 

 
b) Bearing 8, sensor at 135° 

Fig. 11. Polar response diagram in bearing 8 at 45° and 135° of turbogenerator 2 

 
Fig. 12. Characteristic patterns of mode separation frequency 1 in bearing 8 of turbogenerator 2 

In Fig. 11 the mode separation that was detected and which corresponds to the first mode 
detected in turbogenerator 1 is presented. Unlike turbogenerator 1, where a pair of close frequency 
modes was detected, the same mode separation frequency was found in Equipment 2. The even 
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mode of the latter could not be identified.  
Another mode detected in bearing 7 is shown in Fig. 13. 

 
Fig. 13. Characteristic patterns of mode separation frequency 2 in bearing 8 of turbogenerator 2 

The modal parameters extracted in the modes presented in Fig. 12 and Fig. 13 are shown in 
Table 3 and Table 4. 

Table 3. Modal parameters extracted in mode separation frequency 1 in Equipment 2 

B. Mode 1 ߱௡ (rpm) PDS (°) ߶ஐ ିଵ (°) ߟ ܺஐ ିଵ (μm) 
7 – – – – – 
8 973 160 24 0.03 15.19 

Table 4. Modal parameters extracted in mode separation frequency 2 in Equipment 2 

B. Mode 2 ߱௡ (rpm) PDS (°) ߶ஐ ିଵ (°) ߟ ܺஐ ିଵ (μm) 
7 1903 50 53.2 0.03 25.41 
8 1909 20 –144.8 0.04 57.35 

In bearing 7, it was not possible to locate the mode for 973 rpm, as presented in Table 3. 
In Table 4, a mode of vibration near 1900 rpm is presented, with a 5.26 % difference with 

respect to the working speed. This indicates that the electric generator of turbogenerator 2 is 
working close to resonance in its second modal mode. 

6. Discussion 

An analysis was run for diagnostic purposes on the polar diagrams of the 2 field 
turbogenerators with the same physic characteristics. There were several difficulties during the 
implementation of the methodologies proposed in [5-6], one being the low levels of vibration 
amplitude, as the equipment was functioning below the established levels in [10], which caused 
high noise levels coupled with the modes of vibration, making difficult the use of MPE tool. In 
addition, all of the analyzed diagrams have different levels of run-out magnitude, as shown in 
Fig. 6, Fig. 7, Fig. 10, and Fig. 11.  

According to [10], for an electric generator working at 1,800 rpm when measuring relative 
peak-to-peak displacement, a permitted vibration amplitude magnitude of 90 μm is obtained for 
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zone A/B (including zones B/C and C/D, the first of these being the range of least vibration 
amplitude). Based on the vibration amplitudes detected in Tables 1 and 2, these are found to be 
below ISO standard 7919-2.  

Finally, another difficulty arose during the process of adjusting each mode with the 
experimental MPE tool denominated AMODAL, property of the Electrical Research Institute 
(ERI) based in Cuernavaca, Morelos, Mexico, due to high noise levels in the polar diagrams. 

During the analysis process, in Fig. 8 the presence of close frequency modes were found in the 
graph (ߠஐ ୀ ଵ vs ߙ), and applying the methodology proposed in [5], which is summarized in the 
flowchart in Fig. 3, the modal parameters presented in Table 1 are extracted. For this particular 
case, the MPE was performed on each of the modes when considering an 20 % difference in 
displacement vibration amplitude and perpendicularity between the PDS. [9] demonstrates that 
for amplitudes in displacement equal to or lower than 20 % a good approximation of the modal 
parameters extracted from the modes is achieved.  

For the case study of turbogenerator 2, no close modes were detected. However, a separation 
mode was detected with a natural frequency similar to that of the pair of close modes detected in 
turbogenerator 1. The MPE is shown in Table 3.  

During the analysis of Equipments 1 and 2 a separation mode was detected in 7 and 8, as shown 
in Fig. 9 and Fig. 13. The modal parameters are shown in Table 2 and Table 4, where the identified 
mode has a natural frequency close to the working velocity, indicating that the electrical generator 
in Fig. 4 is functioning close to resonance. In the same tables, it can be observed that based on the 
variation of the phase angle between bearings 7 and 8, this mode corresponds to the second modal 
mode of the generator.  

Finally, a 30° difference is identified between the PDS of bearings 7 and 8 for the same mode 
of vibration, and that this could be due to errors during the extraction process, the use of relative 
signals, the presence of twisted modes, or a combination of these factors. 

7. Conclusion 

Currently, there are various limitations for systematically applying modal balancing in the field, 
one of the main issues being the low reliability of modal parameter extraction tools, as well as 
errors during the extraction process mainly due to the interaction between the modes of vibration 
and problems in identifying the presence of close modes. An important problem in modal 
balancing, which is not identified as such, is the importance of identifying the PDSs in order to 
eliminate errors when collocating the balancing weight, as presented in [3], as well these directions 
are fundamental for obtaining optimum modal parameters [9]. 

In order to carry out this study, the methodologies proposed in [5-6] were applied in two field 
turbogenerators with the same characteristics for diagnostic purposes. Initially, these 
methodologies were developed for the process of modal balancing. The vibration amplitude at 
mode of interest to be balanced is essential for the correct calculation of the mass correction when 
the modal balancing is used. To find the optimal position of the mass correction for a particular 
mode is necessary to calculate over the PDS for this mode. A different position from the PDS will 
be produced an error proportional to the transducer angular position and the PDS angular difference. 

Unlike the [9] where the characteristic patterns of phase angle, damping ratio and natural 
frequency are constant lines for any imaginary sensor positions around the bearing. However, in 
this work was showed that for practical analysis the effects of adjacent coupling modes could 
produce a variation in the particular behavior as well as the amplitude of vibration (see Fig. 9, 
Fig. 12 and Fig. 13). Thus, the optimal values of these modal parameters have to be extract over 
the PDS of the interest mode. 

However, like modal balancing, the diagnostic process requires identification of the different 
modes of vibration, permitting its use. During the study, the robustness of the proposed 
methodologies was tested when applying them in the dynamic response of 2 field turbogenerators 
with the same characteristics and operations and whose vibration levels were below ISO standard 
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7919-2. After the analysis, the presence of close modes was detected in Equipment 1, while the 
same frequency separation mode was detected in Equipment 2. For the case of detected close 
modes, the modal parameters of each of the modes were obtained. 

The second mode identified in the 2 turbogenerators corresponds to a frequency separation 
mode whose natural frequency is close to the working speed of 1,800 rpm, indicating that the 
electric generator is working in resonance. Furthermore, it was identified that the mode 
corresponds to the second modal mode of the element. 

Application of the methodologies proposed in [5-6] permitted testing robustness when being 
applied in field turbogenerator data in order to perform the analysis of different response diagrams 
using coordinate transformation. The obtained results allowed us to ensure the identification of 
separated modes and detect the presence of close modes in a field turbogenerator, and that the 
management of Turbomachinery of the ERI had had indication of its presence for years. On the 
other hand, evidence of the presence of twisted modes was found in the electrical generator. 
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