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Abstract. An approach to obtain with acceptable accuracy probabilistic response transformation 
factors by training an artificial neural network (ANN) model is presented. The transformation 
factors are defined as the ratio of the seismic response of multi-degree-of-freedom structures and 
their equivalent single-degree-of-freedom systems, associated with a given annual exceedance 
rate. The approach is used for predicting the seismic response of steel framed buildings. Equations 
useful to obtain probabilistic response transformation factors for maximum ductility and 
inter-story drift, as functions of their mean annual rate of exceedance, and of the fundamental 
vibration period of the structure, are proposed. It is shown that artificial neural networks are a 
useful tool for reliability-based seismic design procedures of framed buildings and for the 
improvement toward the next generation of earthquake design methodologies based on structural 
reliability. 
Keywords: artificial neural network, probabilistic seismic response transformation factors, 
single- and multi-degree-of-freedom systems, steel frames. 

1. Introduction 

Most of the seismic design codes are based on deterministic parameters that are focused on 
satisfying deterministic constraints to achieve a satisfactory design; nevertheless, due to the 
uncertain nature of the earthquakes and theirs effects on structures, these design criteria cannot be 
considered as the best alternative to solve the problem of seismic design. A more realistic design 
must take into account all random parameters, including the probability of failure of the structure 
during a given interval of time, under all the possible ground motion intensities produced by 
earthquakes, which represents its structural reliability. In the last decades several researchers have 
developed procedures for solving structural reliability problems using different methods [1, 2]. 
Nowadays, despite the fact that structural reliability methodologies are very common, there are 
serious obstacles for practical implementations, especially, because one of the main requirements 
of seismic design codes are their easy application by structural engineers. Therefore, the use of 
practical-applicable models or simplified models as single-degree-of-freedom (SDOF) systems 
which represent with good accuracy the structural behavior of multi-degree-of-freedom (MDOF) 
systems, both with similar annual rate of exceeding a structural performance parameter, is a good 
alternative for practical implementation in structural reliability methodologies. The ratio between 
the seismic response of MDOF and that of its equivalent SDOF system associated with a similar 
rate of exceeding a performance parameter is defined as probabilistic seismic response 
transformation factor (PRTF). Bojórquez et al. [3] found PRTF between the seismic response of 
MDOF and their equivalent SDOF systems; however, the results were limited to a few models. In 
the present paper a new approach to reduce the computational effort needed in the analysis is 
presented. The methodology is based on the use of artificial neural networks. 

In recent years ANN methods of structural reliability problems have been considerably used 
by many researchers. Papadrakakis et al. [4] applied ANN for estimating the reliability of 
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elastic-plastic structures; Papadrakakis and Lagaros [5] used the backpropagation neural network 
model oriented to the reliability-based optimization of complex structural systems. A numerical 
device for the reliability assessment of structural systems was developed using the feed-forward 
ANN [6]. Cardoso et al. [7] used a methodology for computing the probability of structural failure 
by combining ANN and Montecarlo simulation. Möller et al. [8] used an ANN model to optimize 
the total structural cost under constraints related to minimum target reliabilities specified for 
different limit states. The prediction of seismic-induced structural damage was estimated using 
ANN [9]. Serkan et al. [10] proposed an efficient model to predict the torque capacity of steel 
fiber reinforced concrete beams. Chin-Sheng and I-Cheng [11] developed a structural optimization 
package that is based on the ANN theory. Therefore, artificial neural networks can be used to give 
reasonable response to problems having nonlinear and complex solutions. Additional information 
about ANN can be found in [12, 13]. The aim of the present study is to develop a set of applicable 
equations for the assessment of probabilistic response transformation factors using ANN. It is 
important to say that the new proposed factors could be used to estimate the seismic response of 
complex multi-degree of freedom systems (in this case, steel frame structures) through the seismic 
response of simplified SDOF models having similar probability of failure. For this reason, this 
study is oriented toward the development of practical tools for application in new reliability-based 
seismic design criteria. In the following section, it is described the traditional approach to compute 
the structural reliability of buildings, which is crucial to calculate the probabilistic response 
transformation factors. 

2. Evaluation of structural reliability 

One of the main objectives of Earthquake Engineering is to quantify, through the consideration 
of all possible earthquake ground motion intensities at a site, the seismic reliability implicit in 
structures. Probabilistic Seismic Demand Analysis (PSDA) is used as a tool for estimating the 
reliability of structures through the evaluation of the mean annual frequency of exceeding a 
specified value of an engineering demand parameter ܲܦܧ (e.g. maximum ductility, maximum 
inter-story drift, etc). The PSDA considers the evaluation of the seismic hazard of a site and the 
conditional probability of exceeding an ܲܦܧ given an intensity measure (ܯܫ). In this context, the 
mean annual frequency of exceedance of an engineering demand parameter of interest exceeding 
a certain level ݁݀݌ can be estimated as follows [14]: ܲܦܧ)ߣ > (݌݀݁ = න ܲሾܲܦܧ > ܯܫ|݌݀݁ = ݅݉ሿ ∙ ூெ(݅݉)|ூெߣ݀| , (1)

where ܯܫ  denotes the ground motion intensity measure, ܲሾܲܦܧ > ܯܫ|݌݀݁ = ݅݉ሿ  is the 
conditional probability that a ܲܦܧ exceeds a certain level of ݁݀݌ given that the ܯܫ is evaluated 
at the ground motion intensity measure level ݅݉. In addition, ݀ߣூெ(݅݉) refers to the differential 
of the ground motion hazard curve for the ܯܫ. Hence, Eq. (1) provided the seismic demand hazard 
curves for a specific structure. Fig. 1 shows typical seismic demand hazard curves for a building 
and a SDOF system, where the parameters illustrated in the figure are discussed in the next section. 

It is emphasized the importance of selecting a ground motion intensity measure appropriately. 
In particular, three characteristics are necessary in an ܯܫ: the sufficiency, efficiency, and scaling 
robustness. In this study, the spectral acceleration at first mode of vibration ܵ௔( ଵܶ) was selected 
as ܯܫ. It has been shown that ܵ௔( ଵܶ) is sufficient with respect to magnitude and distance [15]. 
However, it is important to point out that under some circumstances ܵ௔( ଵܶ) is not a good predictor 
of nonlinear structural response, and more appropriate ܯܫ measures are necessary (especially 
those related with the elastic spectral shape of the acceleration spectrum). As example, the vector 〈ܵ௔,  which is related to the elastic spectral shape, has resulted sufficient and efficient in many ,〈ߝ
cases [16]. Other such measures include the advanced scalar ܯܫ proposed by [17]; the vector ܯܫ 〈ܵ௔, ்ܴଵ,்ଶ〉 [18]; and the vector 〈ܵ௔, ௣ܰ〉 [19]. A recent study suggests that ܯܫ  based on the 
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spectral shape are the most efficient and also which results sufficient. The records used herein 
allow the use of a scaling criteria based on ܵ௔( ଵܶ): 1) First, due to sufficiency of ܵ௔( ଵܶ) with 
respect to ܯ and ܴ; and 2) Second, due to the similar spectral shape of the records, because the 
ground motion records selected for a specific site have similar values of ௣ܰ; and 3) The property 
known as scaling robustness is satisfied, and this is valid although significant bias usually occurs 
when increasing nonlinear structural behavior, Bojorquez and Iervolino [19] demonstrated that for 
scale factors in a range of 1 to 100, no significant bias occurs for important levels of nonlinear 
behavior (ductility demands up to six) if the records have similar values of ௣ܰ. Within this context, 
Eq. (2) can be expressed as: ܲܦܧ)ߣ > (݌݀݁ = න ܲሾܲܦܧ > )௔ܵ|݌݀݁ ଵܶ) = ௔ሿݏ  ⋅ ห݀ߣௌೌ( భ்)(ݏ௔)ห 

ௌೌ( భ்) , (2)

where ݀ߣௌೌ( భ்)(ݏ௔) = )ௌೌߣ భ்)(ݏ௔) − )ௌೌߣ భ்)(ݏ௔ +  ௔) is the hazard curve differential expressedݏ݀
in terms of ܵ௔( ଵܶ). Eq. (2) was used to evaluate the structural reliability demand hazard curves of 
the steel frames in terms of two ݏܲܦܧ: ductility and inter-story drift. If a lognormal distribution 
is considered to evaluate ܲሾܲܦܧ > )௔ܵ|݌݀݁ ଵܶ) = ܲܦܧ ௔ሿ, then the probability thatݏ  exceeds  ݁݀݌, given ܵ௔( ଵܶ) =  :௔, is given byݏ

ܲܦܧ)ܲ > )௔ܵ | ݌݀݁ ଵܶ) = (௔ݏ = 1 − Φ ቆln(݁݀݌) − )୪୬ா஽௉|ௌೌߤ̂ భ்)ୀ௦ೌߪො୪୬ா஽௉|ௌೌ( భ்)ୀ௦ೌ ቇ. (3)

In Eq. (3), ̂ߤ୪୬ா஽௉|ௌೌ( భ்)ୀ௦ೌ and ߪො௟௡ா஽௉|ௌೌ( భ்)ୀ௦ೌ are the sample mean and standard deviation 
for lnܲܦܧ, respectively, and Φ(∙) is the standard normal cumulative distribution function. It has 
been shown that the maximum inter-story drift has been found to be well represented by a 
lognormal distribution [16], and for this reason this probability density function was considered 
in the present study. 

3. Probabilistic response transformation factors: definition 

It is well-known that most of seismic design codes are commonly based on the use of response 
spectra derived for SDOF systems with elasto-plastic behavior. However, the ductility and other 
relevant parameters (e.g., maximum inter-story drift) in actual structures may differ from those 
estimated for SDOF systems. As a consequence, it is desirable to consider the differences between 
the seismic demands in the MDOF structures and their corresponding SDOF models. This can be 
achieved through the use of SDOF to MDOF transformation factors. Moreover, 
earthquake-resistant design codes do not guaranty the same level of annual exceedance rate 
between the SDOF systems and complex structures [20, 21]. On the other side, the seismic design 
spectra or provisions recommended by the codes are not associated with structural reliability levels 
or prescribed annual exceedance rates [22-24]. Some trends in the seismic design of structures 
suggest that earthquake spectra that take into account the structural reliability must be used 
[24, 25]; nevertheless, for recommending the use of this type of spectra, it should be available 
tools that allows the use of SDOF system to represent the performance of complex structures 
associated to similar structural reliability levels; that is, factors that relate both responses for the 
same probability of exceeding certain structural response parameter. Those factors are known as 
probabilistic response transformation factors. The factors are estimated using seismic demand 
hazard curves, which are computed with Eq. (1) and are illustrated in Fig. 1. In this figure, ݀ௌ஽ைி 
and ܦெ஽ைி represent the structural demand for the single and for the MDOF systems, respectively, ߣ௢  is the expected annual rate of exceeding the structural demand, and ln  indicates natural 
logarithm. In the present study, the PRTF for maximum ductility and for maximum inter-story 
drift are obtained via Eqs. (4) and (5). In these equations, ௣ܶఓ and ௣ܶఊ are the PRTF for maximum 
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ductility and for inter-story drift, respectively; ߤெ஽ைி(ߣఓ) and ߤௌ஽ைி(ߣఓ) are the median values 
of the maximum ductility demand for the multi- and the SDOF systems associated with some 
specific annual rate of exceeding the maximum ductility ߣఓ; ߛெ஽ைி(ߣఊ) and ߛௌ஽ைி(ߣఊ) are the 
median values of the maximum inter-story drift demand for the multi- and the SDOF systems 
associated with some specific annual rate of exceeding the maximum inter-story drift ߣఊ , 
respectively. Note that both systems (SDOF and MDOF) are associated to the same structural 
reliability given by the annual rate to exceed the maximum ductility or, alternatively, the 
maximum inter-story drift: 

௉ܶఓ = (ఓߣ)ௌ஽ைிߤ(ఓߣ)ெ஽ைிߤ , (4)

௉ܶఊ = (ఊߣ)ௌ஽ைிߤ(ఊߣ)ெ஽ைிߤ . (5)

The evaluation of the structural reliability by means of the demand hazard curves is described 
below. The probabilistic response transformation factors herein are defined as the ratio between 
the seismic response of MDOF system and their equivalent SDOF systems associated with a given 
annual exceedance rate (ߣ଴). The demand hazard curves are used for this purpose. Thus, the 
uncertainty associated with the structural response as well as all the possible interval of ground 
motion intensity levels in the site is considered (seismic hazard curves). In this case, the steel 
frames are supposed to be located in soft soil sites of Mexico City, and the seismic hazard curves 
used correspond to the Ministry of Communications and Transportations site [26].  

Notice that to calculate the structural reliability of a specific complex building requires several 
nonlinear analyses, thus the computational time is quite large in comparison with the estimation 
of the structural reliability of SDOF systems. This motivate the present study to propose PRTF 
through MDOF and SDOF systems based on the well-known computational tool ANN. The 
following section describe the procedure to estimate PRTF using the traditional approach. 

 
Fig. 1. Example of the seismic demand hazard curves for a building  

and its corresponding equivalent SDOF system 

4. Probabilistic response transformation factors: numerical results 

4.1. Structural steel models and records selection 

The two approaches described before to obtain response transformation factors are applied to 
five regular steel frames that were designed according with the Mexico City Building Code, 2004 
[27] and subjected to 30 soft-soil ground motions recorded in the Lake Zone of Mexico City which 
exhibit a dominant period ( ௦ܶ) of two seconds. Particularly, all motions were recorded in Mexico 
City during seismic events with magnitudes near to 7 or larger. Table 1 summarizes the principal 
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characteristics of the seismic records under consideration. In this table, ܲܣܩ and ܸܲܩ represents 
the peak ground acceleration and velocity respectively. 

Table 1. Earthquake ground motions 
Record Date Magnitude PGA (cm/s²) PGV (cm/s) 

1 19/09/1985 8.1 178.0 59.5 
2 21/09/1985 7.6 48.7 14.6 
3 25/04/1989 6.9 45.0 15.6 
4 25/04/1989 6.9 68.0 21.5 
5 25/04/1989 6.9 44.9 12.8 
6 25/04/1989 6.9 45.1 15.3 
7 25/04/1989 6.9 52.9 17.3 
8 25/04/1989 6.9 49.5 17.3 
9 14/09/1995 7.3 39.3 12.2 

10 14/09/1995 7.3 39.1 10.6 
11 14/09/1995 7.3 30.1 9.62 
12 14/09/1995 7.3 33.5 9.37 
13 14/09/1995 7.3 34.3 12.5 
14 14/09/1995 7.3 27.5 7.8 
15 14/09/1995 7.3 27.2 7.4 
16 09/10/1995 7.5 14.4 4.6 
17 09/10/1995 7.5 15.8 5.1 
18 09/10/1995 7.5 15.7 4.8 
19 09/10/1995 7.5 24.9 8.6 
20 09/10/1995 7.5 17.6 6.3 
21 09/10/1995 7.5 19.2 7.9 
22 09/10/1995 7.5 13.7 5.3 
23 09/10/1995 7.5 17.9 7.18 
24 11/01/1997 6.9 16.2 5.9 
25 11/01/1997 6.9 16.3 5.5 
26 11/01/1997 6.9 18.7 6.9 
27 11/01/1997 6.9 22.2 8.6 
28 11/01/1997 6.9 21.0 7.76 
29 11/01/1997 6.9 20.4 7.1 
30 11/01/1997 6.9 16.0 7.2 

The frames, which were assumed to be used for office occupancy, have three bays of 8 m and 
a number of stories that range from four to fourteen. The story height is 3.5 m. The bay and 
inter-story dimensions are those indicated in Fig. 2. The frames were designed for ductile  
detailing. A36 steel and W sections were used for the beams and columns of the frames. 
Furthermore, Table 2 summarizes the member sizes for all frames under consideration. A two 
dimensional, lumped plasticity nonlinear model of each frame was prepared and analyzed. For 
this purpose, a bilinear model with 3 % strain-hardening was used to represent the cyclic behavior 
of the steel beams and columns. The columns in the first story were modeled as fixed at their bases 
and the beam-column connections were assumed to be rigid. Second order effects were explicitly 
considered. Time-history analysis was carried out for each frame. In the analysis, the first two 
modes of vibration were assigned 3 % of critical damping. Relevant characteristics for each frame, 
such as the fundamental period of vibration ( ଵܶ), and the seismic coefficient and displacement at 
yielding (ܥ௬  and ܦ௬) are shown in Table 3 (the latter two values were established from static 
nonlinear analysis). Note that the frames exhibit a wide range of periods. Fig. 3(a) and 3(b) compare 
the period with the seismic coefficient and the yielding displacement for the selected steel frames. 
Note that both ܥ௬ and ܦ௬ have a strongly dependency with the structural period in the buildings. 
This motivates the use of the structural period as input data for the ANN model implemented. 
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Table 2. Summary of the member sizes of the steel frames. 
FRAME F4 F6 F8 F10 F14 F18 

Number of stories 4 6 8 10 14 18 
Internal columns       

Story 1 W21×122 W30×173 W36×210 W36×280 W36×328 W36×359 
Story 2 W21×122 W30×173 W36×210 W36×280 W36×328 W36×359 
Story 3 W21×111 W30×148 W36×194 W36×245 W36×280 W36×359 
Story 4 W21×111 W30×148 W36×194 W36×245 W36×280 W36×359 
Story 5  W30×124 W36×170 W36×210 W36×280 W36×328 
Story 6  W30×124 W36×170 W36×210 W36×280 W36×328 
Story 7   W36×160 W36×182 W36×245 W36×280 
Story 8   W36×160 W36×182 W36×245 W36×280 
Story 9    W36×150 W36×210 W36×245 

Story 10    W36×150 W36×210 W36×245 
Story 11     W36×182 W36×210 
Story 12     W36×182 W36×210 
Story 13     W36×150 W36×182 
Story 14     W36×150 W36×182 
Story 15      W36×150 
Story 16      W36×150 
Story 17      W36×150 
Story 18      W36×150 

External columns       
Story 1 W18×97 W27×146 W36×194 W36×280 W36×328 W36×359 
Story 2 W18×97 W27×146 W36×194 W36×280 W36×328 W36×359 
Story 3 W18×86 W27×129 W36×182 W36×245 W36×280 W36×359 
Story 4 W18×86 W27×129 W36×182 W36×245 W36×280 W36×359 
Story 5  W27×114 W36×160 W36×210 W36×280 W36×328 
Story 6  W27×114 W36×160 W36×210 W36×280 W36×328 
Story 7   W36×135 W36×182 W36×245 W36×280 
Story 8   W36×135 W36×182 W36×245 W36×280 
Story 9    W36×150 W36×210 W36×245 

Story 10    W36×150 W36×210 W36×245 
Story 11     W36×182 W36×210 
Story 12     W36×182 W36×210 
Story 13     W36×150 W36×182 
Story 14     W36×150 W36×182 
Story 15      W36×150 
Story 16      W36×150 
Story 17      W36×150 
Story 18      W36×150 
Beams       
Story 1 W16×67 W18×71 W21×83 W21×68 W21×93 W21×101 
Story 2 W16×57 W18×76 W21×93 W21×93 W21×93 W21×101 
Story 3 W16×45 W18×76 W21×93 W21×101 W21×111 W21×111 
Story 4 W16×40 W16×67 W21×83 W21×101 W21×111 W21×111 
Story 5  W16×50 W18×71 W21×101 W21×111 W21×111 
Story 6  W16×45 W18×65 W21×93 W21×101 W21×101 
Story 7   W18×55 W21×73 W21×93 W21×101 
Story 8   W18×46 W21×68 W21×83 W21×93 
Story 9    W21×57 W21×83 W21×93 

Story 10    W21×50 W21×73 W21×83 
Story 11     W21×73 W21×83 
Story 12     W21×62 W21×73 
Story 13     W21×62 W21×73 
Story 14     W21×57 W21×62 
Story 15      W21×62 
Story 16      W21×62 
Story 17      W21×57 
Story 18      W21×57 
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Fig. 2. Geometrical characteristics of steel frames 

Table 3. Relevant characteristics of the steel frames 
Frame Number of stories ଵܶ (s) ܥ௬ ܦ௬ (m) 

F4 4 0.90 0.45 0.136 
F6 6 1.07 0.42 0.174 
F8 8 1.20 0.38 0.192 
F10 10 1.37 0.36 0.226 
F14 14 1.91 0.25 0.30 

 

a) 
 

b) 
Fig. 3. Relation between structural period and a) seismic coefficient, b) yielding displacement 

4.2. PRTF for maximum ductility and maximum inter-story drifts  

The probabilistic response transformation factors for maximum ductility and for maximum 
inter-story drift obtained by means of Eqs. (4) and (5) are summarized in Figs. 4 and 5. Several 
conclusions can be obtained from these figures. The probabilistic response transformation factors 
for both structural performance parameters are similar for the wide range of mean annual rate of 
exceeding a specific performance level. The probabilistic ductility transformation factors lie in the 
interval of 0.8 to 1.0. It suggests that the maximum ductility can be estimated via SDOF systems 
with good accuracy. Moreover, the use of response spectra for reliability-based earthquake 
resistant design is a good alternative to evaluate the structural performance of multi-degree of 
freedom steel frames for the case of maximum ductility. On the other hand, the maximum 
inter-story drift transformation factors are in a range of 1.4 to 1.8 which means that the maximum 
inter-story is larger for the steel frames, compared with their equivalent SDOF systems. Tables 4 
and 5 summarizes the average values obtained for maximum ductility and maximum inter-story 
drift.  
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Fig. 4. Probabilistic maximum ductility 
transformation factors ( ௉ܶఓ) related  

to different exceedance rates 

 
Fig. 5. Probabilistic maximum inter-story drift 

transformation factors ( ௉ܶఊ) related  
to different exceedance rates 

Table 4. Summary of the average probabilistic maximum ductility transformation factors 
Frame Number of stories ଵܶ (s) ௉ܶఓ 

F4 4 0.90 0.73 
F6 6 1.07 0.88 
F8 8 1.20 0.92 
F10 10 1.37 0.90 
F14 14 1.91 0.97 

Table 5. Summary of the average probabilistic maximum inter-story drift transformation factors 
Frame Number of stories ଵܶ (s) ௉ܶఊ 

F4 4 0.90 1.41 
F6 6 1.07 1.46 
F8 8 1.20 1.57 
F10 10 1.37 1.56 
F14 14 1.91 1.77 

The evaluation of seismic performance of complex structures under intense ground motions 
usually requires full nonlinear dynamic analysis to be carried out. In particular, the reliability 
assessment of structural systems needs several nonlinear analyses. Despite the advances in 
efficient computational methods there is a disproportional computational effort to solve practical 
reliability problems. Here, a methodology based on ANN theory is proposed. 

5. Computing probabilistic response transformation factors using ANN: methodology 

An artificial neural network is a mathematical model or computational model that is inspired 
by the way biological nervous systems processes information, such as the brain. It is composed of 
a large number of highly interconnected processing elements (neurons), the neurons gather 
together to form groups or layers. An example of a system with three layers is as follows: the first 
layer has input neurons, which send data via synapses (weights) to the second layer of neurons, 
and then, via more synapses, to the third layer or output neurons. The power processing of an 
ANN is due to its parallel distributed structure, and its ability to learn from some examples 
presented to the ANN and therefore to be generalized. Generalization refers to the artificial 
neuronal network producing reasonable outputs for inputs not presented during training. If an 
artificial neuronal network is trained properly it will be generalized, which means that the ANN 
had learned the full mapping for solving a problem, not only of the examples used in training; 
consequently, it will respond correctly to never shown patterns.  

In earthquake engineering, one important aspect of the artificial neural model stems from the 
need to save computer time to estimate the seismic response of different building models; 
moreover, there is evidence that ANN can estimate the response of nonlinear problems with an 
adequate approximation [28, 29] specifically with the Feed-forward Backpropagation (FFBP) 
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learning algorithm. This model has been widely used with acceptable results in several studies. 
For example, Günaydın and Günaydın [30] used the FFBP model to estimate the peak ground 
acceleration for Northwest Turkey, and a new approach for solving inverse reliability problems 
was proposed by Cheng et al. [31] using the FFBP model. This motivate the present study to select 
the FFBP to estimate probabilistic response transformation factors for steel buildings under 
seismic motions, which is described in the next subsection.  

 
Fig. 6. Schematic representation of the FFBP model 

5.1. Feed-forward backpropagation networks 

The Feed-forward Backpropagation Networks allow the signal to travels one way only; from 
input to output. FFBP networks begin with an input layer. The input layer may be connected to a 
hidden layer or directly to the output layer. If it is connected to a hidden layer, the hidden layer 
can then be connected to another hidden layer or directly to the output layer. Each layer consists 
of one or more neurons (a schematic representation of the FFBP model is illustrated in Fig. 6). 
Backpropagation proposed by Rumelhart et al. [32] is a commonly used algorithm to train ANN; 
the procedure for training the network is as follows: the input data is entered through the first layer, 
the inputs are multiplied by the connection weights; later, a bias is attached to this sum, 
transformed through a nonlinearity function, and transferred to the next layer. After applying the 
nonlinear transformation function, each neuron output passes it to each neuron of the second layer, 
where each of the neurons sum up the coming information and apply the nonlinear transformation 
as well. The same procedure is applied to the next layer to provide the network output. As the 
forward processing arrives at the output layer, the overall error between the network output and 
the actual observation is calculated. The error at the output layer propagates backward to the input 
layer through the hidden layer in the network to obtain the final desired outputs. During the 
forward pass all the synaptic weights of the network are fixed. The whole procedure is repeated 
back and forth with several pairs of training data sets until the error is less than a small tolerance. 
The weights of the output layer in the ݐ +1 learning step can be calculated by adding a multiple 
of the negative gradient to the weights calculated at the ݐth step. Symbolically:  ݓ௝௜ሾݐ + 1ሿ = ሿݐ௝௜ሾݓ + Δݓ௝௜, (6)

where ݓ is the vector of weights, Δݓ௝௜ is the variation of the weight in terms of the gradient of the 
error function.  

After applying this technique to the output layer the update of weights connecting the hidden 
layers can be computed similarly.  
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The steps for evaluating the probabilistic response transformation factors using ANN are the 
following: 

1) The selection of the ANN model. There are many ANN architectures such as Feed-forward 
Backpropagation network (here selected) and radial base functions. Each of these ANN models 
have their own structure and parameters. 

2) The correct selection of the data set inputs and outputs. The optimal results of the ANN 
depend mainly on the quality of the training dataset. Furthermore, the use of importance sampling 
leads, in most cases, to considerable improvement in the quality of the ANN results. A 
fundamental part for the correct use of the ANN is the proper selection of the parameters that 
represent it. For the case studied here 1) the fundamental structural period ଵܶ and 2) the annual 
rate of exceeding and engineering demand parameter EDP, here named ߣா஽௉(ܲܦܧ)  were 
established. Note that other parameters also can be relevant for seismic assessment purposes, for 
example, the seismic resistance coefficient Cy and the yielding displacement Dy. Nevertheless, a 
strong dependency of ܥ௬ and ܦ௬ with the structural period has been observed in steel buildings 
designed by practitioner structural engineers in Mexico, as it was shown before.  

3) Training data calculation. One of the biggest problems of ANN is to estimate the minimal 
number of training datasets. To solve this problem, the training dataset needs to include the whole 
simulation domain in order to get satisfactory results. Here, five steel frames designed according 
with the Mexican City building code representative of mid-rise buildings were selected for the 
training.  

4) Architecture. The results depend highly on the architecture of the ANN. Here different 
structures were tested and analyzed, for example varying the number of neurons, the number of 
hidden layers, and testing different transfer functions. Finally, a Feedforward Backpropagation 
network, the sigmodal transfer function for the hidden layers, and a linear function for the output 
layer, were selected. 

5) Learning phase. A high number of different networks have to be trained in order to find the 
optimal one, there is not too much information available on this subject, in this paper the trial and 
error method is applied to find an appropriate model.  

6) Once the architecture is selected and the network is trained properly, the next part is to test 
the network. This phase consists on the evaluation of the response of the ANN to inputs never 
shown in the training phase. If the test gives reasonable results, in terms of the maximum error, 
then the model can estimate the response of never inputs shown. The aim of this phase is to 
generalize the problem and then it can be summarized into simpler equations. In this case the 
equations obtained are those corresponding to the probabilistic response transformation factors 
for steel frames.  

The procedure described above is applied to find probabilistic response transformation factors 
for predicting the maximum ductility demand and the maximum inter-story drift of steel frames 
by means of equivalent SDOF systems, which are performance parameters usually used for 
seismic assessment and design of structures. In the following sections the methodology is applied 
to estimate probabilistic response transformation factors for steel frames subjected to ground 
motions recorded at soft soil sites of Mexico City. 

6. Probabilistic response transformation factors using ANN: numerical results 

6.1. Artificial neural network model 

The selection of an adequate ANN model architecture is a complex task. The selection of the 
number of hidden layers and neurons is important in developing or training an ANN. This selection 
depends on the nature of the problem to be investigated, and a trial and error process is often 
followed to determine the adopted structure of the ANN model. In this paper several preliminary 
ANN models were tested by considering 1 to 30 hidden layers and 10 to 30 hidden neurons in the 
hidden layer. Two ANN models were proposed one for maximum ductility and the other for 
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maximum inter-story drift. Fig. 7 shows the best results in terms of the mean square error (MSE) 
of different architectures established for each model. 

The selected architecture is based on an input layer, one hidden layer and one output layer. In 
the training phase of the neural model proposed the input layer was composed of two neurons that 
represent ଵܶ and the mean annual rate to exceed a selected ߣ ,ܲܦܧா஽௉(݁݀݌); the hidden layers is 
constituted by 25 neurons in both models, the output layer has one single neuron that represents 
the probabilistic response transformation factors.  

a) For maximum ductility 
 

b) For maximum inter-story drift 
Fig. 7. Architectures tested to find the optimal model 

6.2. ANN training 

The backpropagation algorithm was used for the training, the transfer function in the hidden 
layer was sigmoid and the output layer was the linear function. The frame F8 was not included in 
the training phase because it is used to evaluate the performance of the ANN model. It is important 
to remark that the inputs and outputs of the network were not normalized. Two models were 
trained, one for the maximum inter-story drifts and the other for the maximum ductility. The 
results of the training stage show an excellent relation with the actual values with a mean square 
error no larger than 4 % in all the models. Figs. 8 and 9 show the training face of the network by 
comparing the PRTF results obtained from the analyses for maximum ductility and for maximum 
inter-story drift, with the ANN approach, respectively. 

6.3. ANN testing  

After the training has been successfully completed the testing phase was carried out. The 
results obtained in the testing phase did not reach the same accuracy level found during training; 
however, it can be observed an acceptable degree of similarity between the PRTF obtained by 
ANN and those obtained with the traditional approach in terms of both ܲܦܧ under consideration.  

Fig. 8. Comparison of the actual PRTF  
for maximum ductility  

and those obtained via ANN 

 
Fig. 9. Comparison of the actual PRTF  

for maximum inter-story drift  
and those obtained via ANN 
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Fig. 10. Test error for the 8-story model  
in terms of maximum ductility 

 
Fig. 11. Test error for the 8-story model  

in terms of maximum inter-story drift 

It is important to remember that the model presented in the test phase was never shown to the 
ANN model before, so it can be concluded that the accuracy obtained with the ANN model is 
satisfactory. The comparison between the ANN models and the actual values of the F8 in terms 
of maximum ductility, and of maximum inter-story drift are shown Figs. 10 and 11. The results 
indicate that its predicted output is within 7 % of the actual output for all the test cases. Therefore, 
the ANN can fully replace the mathematical model of the steel frames. 

7. Simplified equations to calculate PRTF between steel structures and equivalent SDOF 
systems 

In order to find the relationship between a MDOF steel structure and the SDOF a large database 
of buildings should be analyzed, for this purpose a set of 40 steel frames were analyzed using the 
ANN models. The time required in each analysis is considerable large, the ANN model reduces 
this time to only a few seconds. The fundamental vibration period ଵܶ  of the buildings was 
considered in a range of 0.5 to 2.0 s, and the mean annual rate of exceedance between 0.001 and 
0.01. A regression analysis was carried out in order to find simplified equations that can be used 
for practical purposes in earthquake engineering. The results corresponding to maximum ductility 
and to maximum inter-story drifts are shown in Figs. 12 and 13. The regressions analysis are 
summarized in Eqs. (7) and (8). The maximum error obtained was about 10 % of the actual value. 
Note that these equations are very good related with the PRTF in terms of both maximum ductility 
and maximum inter-story drift: 

௣ܶఓ = 0.2 ଵܶ + ߣ0.038 + 0.69, (7)௣ܶఊ = 0.287 ଵܶ + ߣ0.056 + 1.325. (8)
 

 
Fig. 12. Regression analysis for PRTF  

in terms of maximum ductility 

 
Fig. 13. Regression analysis for PRTF  
in terms of maximum inter-story drift 
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8. Conclusions 

This paper presents the use of Artificial Neural Networks aimed to provide a tool for 
reliability-based analysis of steel structural systems. The approach was applied to obtain 
probabilistic response transformation factors to evaluate the response in terms of the maximum 
inter-story drift and maximum ductility for MDOF steel frames based on the response of 
equivalent SDOF systems. The estimation of the factors requires several nonlinear analyses, 
therefore the computational effort involved in the task is considerably high; however, here it is 
shown that the use of Artificial Neural Networks is a good alternative for practical dynamic 
analysis of framed structures, obtaining results within acceptable accuracy. The computational 
effort is reduced with the use of ANN; moreover, equations applicable to obtain probabilistic 
response transformation factors for maximum ductility and inter-story drift as function of the mean 
annual rate of exceedance and of the fundamental vibration period of the structure are proposed. 
It is important to say that the new proposed factors could be used to estimate the seismic response 
of steel framed buildings through the seismic response of simplified SDOF models having similar 
probability of failure. Finally, the simplified equations proposed can be very useful in the 
implementation of new reliability-based seismic design procedures or for the improvement toward 
the next generation of seismic design methodologies based on structural reliability. 
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