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Abstract. Modal analysis of a flexible, non-rotating rotor with a crack in a shaft is presented. The 
Jeffcott model of the rotor consists of the massless shaft and a disk concentrating the mass of the 
full system. The model includes ball bearings supporting the shaft and the model of the transverse 
shaft crack located near the disk. Simulation results present changes in natural frequencies of the 
system with the changing angular position of the rotor. Those changes are observed as doubled 
natural frequency peaks in the rotor’s frequency responses. They appear only for the cracked rotor 
and can be explained by shaft stiffness changes due to the opening and closing of crack faces 
under gravity. The results of the conducted numerical analyzes demonstrate that these doubled 
frequency peaks can be used for early shaft crack detection. 
Keywords: modal analysis, shaft crack detection, Jeffcott rotor. 

1. Introduction 

Frequently used signatures of developing cracks in various mechanical structures are shifts in 
natural frequencies and changes in mode-shapes of natural vibrations. This is because the crack 
introduces small local changes in stiffness, which change modal properties of the structure. Those 
small changes of modal parameters can be detected experimentally by exciting a given structure 
with a modal hammer and registering its vibration response with an accelerometer. Based on these 
measurements modal characteristics (natural frequencies and mode-shapes) are evaluated. Such 
modal approach for damage detection of various mechanical structures is widely reported in the 
literature. 

Nahvi and Jabbari [1] presented analytical and experimental results of modal analysis of 
cantilever beams. It was observed that the natural frequencies decreased significantly as the crack 
location moved towards the fixed end of the beam. Dilena and Morassi [2] studied analytically 
and experimentally the changes in mode-shapes of vibrating thin beams. They confirmed that a 
crack in a beam shifts the positions of nodal points of vibration modes. The direction by which 
nodal points shift may be used to estimate the location of damage. Kisa and Gurel [3] used the 
component mode synthesis technique combined with the finite element method to demonstrate 
that natural frequencies and mode shapes of a beam depend on the location and depth of cracks. 
Similar results have been obtained by Viola et al. [4] who conducted experimental and finite 
element analyses to confirm the shifts in natural frequencies and mode-shapes of natural vibrations 
of cantilever beams. Gudmundson [5] utilized perturbation methods to calculate variations in 
natural frequencies due to cracks, notches and other geometrical changes in various mechanical 
structures. The obtained results were well verified with experiments. A new modeling approach 
for cantilever beams with cracks has been proposed by Shifrin and Ruotulo [6]. Natural 
frequencies of a cracked beam were evaluated by representing cracks as massless springs and 
using a continuous mathematical model of the beam in transverse vibration. 

Modal analysis of rotating shafts differs from typical modal analysis of other mechanical 
structures. The differences are due to additional loadings (gyroscopic moments and Coriolis  
forces) resulting from the rotational motion of the rotor. Rotating shafts with cracks are even more 
complicated for analysis as they are described by ordinary differential equations with time-variant 
coefficients, i.e. by differential equations of the parametric type. Mathematical foundations of the 
modal analysis of rotating structures have been introduced by Irretier [7]. However, the proposed 
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approach was complicated and not useful for practical applications. 
Therefore, Suh et al. [8] suggested a new method of modal analysis of rotating structures with  

cracks. The method introduces modified coordinates of the rotor by transforming its motion 
equation with time-variant coefficients into a set of linear differential equations with 
time-invariant coefficients. Numerical calculations of a flexible, asymmetric rotor confirmed high 
effectiveness of the method. 

Another method of shaft crack diagnosis based on modal analysis has been proposed by 
Gosiewski and Sawicki [9]. In the method the changes in the system poles are analyzed as results 
of periodical stiffness changes of a cracked shaft. Locations of the system poles are presented in 
dependency of the shaft rotating speed. The method is time-effective and does not require 
expensive force exciters [9]. 

Modal methods used for cantilever beams can be applied also for crack detection in non-
rotating shafts. Thus, changes in natural frequencies and mode-shapes of non-rotating shafts were 
analyzed and verified experimentally by Dong et al. [10] and Sinou [11]. 

It should be emphasized that an early shaft crack detection and warning is an important 
research task. Shafts are used to transfer large amounts of kinetic energy, often are extremely high 
loaded and rotate with high rotating speeds. Therefore, they should be strong and resilient to 
various possible damages as well as light and of small diameters. Those opposing, highly 
demanding requirements expose the shafts to various dangerous failures that can appear as a result 
of cyclic loading, thermal stresses, creep, corrosion and other factors to which rotating machines 
are subjected. One of these failures is the transverse shaft crack, which after initiation propagates 
quickly and can lead to a sudden machine failure, its damage and a serious accident [10]. 

The most popular modeling approach to rotating machines is known as Jeffcott model of the 
rotor [12-14]. Chan and Lai [12] presented a detailed analysis of a Jeffcott model of a 250 MW 
turbine rotor with a cracked shaft. In their analysis they included different depths of the crack, 
damping coefficients, eccentricity values and rotating speeds of the rotor. 

A transverse shaft crack is usually modeled as a local change in the shaft stiffness. This 
stiffness change is not constant but varies periodically with the rotation of the rotor as a result of 
a so called crack breathing mechanism. When the rotor rotates, the crack changes its angular 
position. Then, under the load of external forces applied to the shaft crack faces close and open 
periodically in accordance to variable stresses appearing at the crack edge.  

The current article presents modal analysis of a flexible Jeffcott rotor containing a transverse 
crack in the shaft. Unlike in the paper by Gosiewski and Sawicki [9], the rotor is not rotating but 
its angular position changes step by step from 0 to 360°. For those 36 angular positions frequency 
responses are calculated based on the developed Jeffcott model. It is observed that when angular 
position of the rotor changes doubled peaks near natural frequencies in the frequency spectra 
appear. Those doubled peaks are characteristic only for the cracked rotor and can be explained 
with shaft stiffness changes due to the crack. As a result of those stiffness changes the system 
poles change their locations which results with doubled frequency peaks in the frequency 
responses. The obtained numerical results demonstrate that the observed doubled natural 
frequency peaks can be used for early shaft crack detection. 

2. Mathematical model 

Theoretical analysis has been conducted for Jeffcott mathematical model of the rotor. Jeffcott 
rotor consists of a massless, flexible shaft and a rigid disk located in the middle of the shaft's 
length (Fig. 1(a)). The mass of the rotor is concentrated in the disk. The mass center of the disk is 
shifted by ߝ from the shaft axis (Fig. 1(b)), simulating the unbalance of the rotor. The rotor is 
supported by ball bearings of equal stiffness in both horizontal and vertical directions. A transverse 
shaft crack is located near the disk. 

The motion of the rotor is considered in two coordinate systems: global (inertial) coordinate 
system ݖݕݔ, and local (rotating) coordinate system ߟߦ. The local coordinate system rotates with 
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the rotor’s rotating speed Ω. While rotating, the ߦ axis of the local system remains perpendicular 
to the crack edge. 

The angular position of the unbalance in the local coordinate system is defined with angle ߚ 
between the crack centerline and the unbalance vector ߝ  (Fig. 1(b)). In the global coordinate 
system, the position of the unbalance is defined with angle ߴ, where [14]: (ݐ)ߴ = (ݐ)߮ + (ݐ)߮(1) ,ߚ = Ω(2) .ݐ

 
Fig. 1. Model of the rotor: a) side view and dimensions, b) shaft cross-section  

at crack location in global and local coordinate systems 

It is assumed that the rotor is weight dominant [11, 15-17]. Thus, during the rotation, the 
breathing behavior of the crack can be simulated with a crack steering function ݂(߮), depending 
on the angular position ߮ of the rotor. 

Considering lateral vibrations, the kinetic ܶ  and potential ܷ  energies of the rotor can be 
presented as [14]: 

ܶ = 12 ௣ܬ ሶߴ ଶ + 12 ݉൫ݖሶଶ + ሶݕ ଶ + ଶߝ ሶߴ ଶ + ߝ2 ߴሶsinݖ−ሶሾߴ + ,ሿ൯ߴሶcosݕ (3)ܷ = 12 ሾݖ ூܭሿݕ ቂݕݖቃ, (4)

where: 

ூܭ = ൤݇௭௭ ݇௭௬݇௬௭ ݇௬௬൨. (5)

Utilizing Lagrange's approach, the following nonlinear differential equations of lateral 
vibrations of the rotating rotor are obtained: ݉ݖሷ + ܿ௟ݖሶ + ݇௭௭ݖ + ݇௭௬ݕ = ௭ܨ + ൫ߝ݉ ሶߴ ଶcosߴ + ,൯ߴሷsinߴ ሷݕ݉(6) + ܿ௟ݕሶ + ݇௬௭ݖ + ݇௬௬ݕ = ௬ܨ + ൫ߝ݉ ሶߴ ଶsinߴ − .൯ߴሷcosߴ (7)

The uncracked rotor system is symmetric (isotropic), meaning that its stiffnesses in any 
direction perpendicular to the shaft axis are equal. Consequently, the matrix of lateral stiffness ܭூ 
is diagonal: ݇௭௭ = ݇௬௬ ≡ ݇,     ݇௭௬ = ݇௬௭ ≡ 0. (8)

The stiffness matrix of the cracked rotor system is not diagonal and its components change for 
each angular position of the rotor according to the following equation: 
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௥ܭ = ቂ݇ 00 ݇ቃ − ݂(߮) ቈΔ݇క 00 Δ݇ఎ቉, (9)

where the first matrix defines the stiffness of the uncracked rotor, and the second – the stiffness 
reductions Δ݇క and Δ݇ఎ in ߦ and ߟ directions, respectively. The function ݂(߮) is a crack steering 
function and it depends on the angular position ߮ of the rotor. According to Mayes and Davies 
[13, 18, 19] the crack steering function can be presented as: 

݂(߮) = 1 + cos߮2 . (10)

In the global coordinate system, the stiffness matrix ܭூ of the cracked rotor system can be 
presented as [14]: 

ூܭ = ோܶିଵܭܶ = ൤݇௭௭ ݇௭௬݇௬௭ ݇௬௬൨ = ቂ݇ 00 ݇ቃ     − 2ܭ(߮)݂ ൤Δ݇ଵ + Δ݇ଶ cos(2߮) Δ݇ଶ sin(2߮)Δ݇ଶ sin(2߮) Δ݇ଵ − Δ݇ଶ cos(2߮)൨, (11)

where ܶ is the transformation matrix defined with the angular position ߮ as follows: ܶ = ൤cos߮ −sin߮sin߮ cos߮ ൨. (12)

Components Δ݇ଵ and Δ݇ଶ of the stiffness matrix ܭூ are calculated as [14]: 

Δ݇ଵ = Δ݇క + Δ݇ఎ݇ ,  Δ݇ଶ = Δ݇క − Δ݇ఎ݇ . (13)

It has been shown [14] that for deep cracks: 

Δ݇ఎ = Δ݇క6 , (14)

which results in: 

Δ݇ଵ = 76 Δ݇క݇ ,     Δ݇ଶ = 56 Δ݇క݇ . (15)

2.1. Model of the non-rotating rotor 

Modal analysis of the cracked rotor is made for the non-rotating Jeffcott rotor. Motion 
equations of the rotor are obtained from Eqs. (6)-(7) in the following form: ݉ݖሷ + ܿ௟ݖሶ + ݇௭௭ݖ + ݇௭௬ݕ = ,௭ܨ ሷݕ݉(16) + ܿ௟ݕሶ + ݇௬௭ݖ + ݇௬௬ݕ = ,௬ܨ (17)

after assuming that ߴ = const, and consequently ߴሶ = ሷߴ ,0 = 0. 
As can be seen from Eqs. (16)-(17), rotor vibrations in directions ݕ and ݖ are coupled, meaning 

that the vibrations in ݖ influence the vibrations in ݕ (by the coupling component ݇௭௬ݕ in Eq. (16)) 
and the vibrations in ݕ influence the vibrations in ݖ (by the coupling component ݇௬௭ݖ in Eq. (17)). 
The stiffness coefficients ݇௭௬, ݇௬௭ that couple Eqs. (16)-(17) are non-diagonal components of the 
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stiffness matrix ܭூ (Eq. (11)). It should be noted that ݇௭௬, ݇௬௭ are zero for ߮ being the multiples 
of 90°, i.e. for ߮ = ݊ × 90°, ݊ = 0, 1,…. This is because ݇௭௬ , ݇௬௭  depend on sin(2߮). Thus, 
Eqs. (16)-(17) are coupled only for ߮ ≠ ݊ × 90° and decoupled for ߮ = ݊ × 90°. 

Eqs. (16)-(17) are linear, time-invariant equations of motion of the non-rotating Jeffcott rotor.  
These equations can be transformed to the following state-space model [20]: ݍሶ (ݐ) = (ݐ)ݍܣ + ,(ݐ)ݑܤ (ݐ)ݕ = (ݐ)ݍܥ + ,(ݐ)ݑܦ (18)

where: 

ܣ = ێێۏ
−ۍێێ 1݉ ܿ௟ − 1݉ ݇௭௭ 0 − 1݉ ݇௭௬1 0 0 00 − 1݉ ݇௬௭ − 1݉ ܿ௟ − 1݉ ݇௬௬0 0 1 0 ۑۑے

ېۑۑ ܤ     , = ێێۏ
ۍێێ 1݉ 00 00 1݉0 0 ۑۑے

 ,ېۑۑ
ܥ = ቂ0 1 0 00 0 0 1ቃ ܦ     , = ቂ0 00 0ቃ , ݍ = ሾݍଵ ଶݍ ଷݍ ,ସሿ்ݍ ݑ = ሾܨ௭ ݕ,௬ሿ்ܨ = ሾݔ௭ ଵݍ      ,௬ሿ்ݔ = ,ሶݖ ଶݍ = ,ݖ ଷݍ = ሶݕ , ସݍ = .ݕ

The model given by Eq. (18) has four states ݍଵ, ..., ݍସ, two inputs ܨ௭, ܨ௬ and two outputs ݔ௭, ݔ௬. The inputs are external forces ܨ௭, ܨ௬ applied to the rotor in directions ݖ and ݕ. The outputs are 
rotor displacements ݔ௭ and ݔ௬ in directions ݕ ,ݖ. The system given by Eqs. (16)-(17) defines one 
natural frequency and one vibrational mode for each axis ݖ and ݕ. 

3. Simulation results 

Modal analysis of the linear, time-invariant model of the tested rotor, defined by Eqs. (18) has 
been conducted in Matlab. 

The parameters of the rotor are given in Table 1. They have been assumed based on a real rotor 
system used by Sawicki [14]. 

The calculations have been conducted for two depths of the shaft crack, defined with two 
values of the stiffness reduction Δ݇ = 0.10 and Δ݇ = 0.25, where Δ݇ = Δ݇క ݇⁄ . 

The results of the modal analysis present natural frequencies ߱௜  of the cracked rotor in 
dependency of the angular position ߮ for the non-rotating rotor.  

Table 1. Parameters of the rotor 
Symbol Physical parameter Value Unit ݉ Disk mass 20 kg ݇ Shaft stiffness 8.82×105 N/m ߦ௟ Lateral damping ratio 0.01  ߚ Unbalance angle 0 deg Δ݇ Stiffness reduction ratio 0.10,…, 0.25  

The values ߱௜ of the natural frequencies depend on the locations of the system’s poles [20] ݅ݏ: ߱݅ = (19) ,|݅ݏ|

where ݏ௜ are zeros of the characteristic polynomial ܹ(ݏ) of the system: ܹ(ݏ) = det(ܫݏ − (20) ,(ܣ

and |ݏ௜| is the absolute value (modulus) of the complex pole ݅ݏ. 
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For the rotor system described with Eq. (18) two pairs of complex conjugate poles ݏ௜ ,  ݅ = 1,…, 4 are obtained from Eq. (20), where ݏଵ = ଷݏ ଶ∗ andݏ =  denotes ∗ݏ ସ∗ (here, the notationݏ
the conjugate of a complex number ݏ). 

For the uncracked rotor, the obtained pole pairs are identical, i.e. ݏଵ = ∗ଶݏ ଷݏ , = ∗ସݏ , and  ݏଵ =  ଷ. Consequently, the system has only one natural frequency ߱, which is of the same valueݏ
for vibrations in both directions ݖ and ݕ, i.e. ߱ = ߱ଵ = ⋯ = ߱ସ = |ଵݏ| =  ଷ|. This frequencyݏ|
value does not change for different angular positions ߮ of the rotor. 

However, for the cracked rotor, the obtained pole pairs ݏଵ = ଷݏ ,∗ଶݏ =  ସ∗ change as the angularݏ
position ߮ of the rotor changes, i.e. ݏଵ ≠  ଷ for different ߮. This is explained in Table 2 where theݏ
values of the cracked system poles for selected angular positions are presented. 

Table 2. Poles and zeros of the cracked rotor system ߮ [°] Δ݇ ଷ,ସ Δ݇ݏ ,ଵ,ଶݏ ,0.10 =  ௦,ସݏ ,ଵ,ଶݏ ,0.25 =

ଵ,ଶݏ 0° = 2.5 േ ଷ,ସݏ 208.23݅ = 2.5 േ ଵ,ଶݏ 199.21݅ = 2.5 േ ଷ,ସݏ 205.56݅ = 2.5 േ 181.85݅ 
ଵ,ଶݏ 45° = 2.5 േ ଷ,ସݏ 208.49݅ = 2.5 േ ଵ,ଶݏ 200.82݅ = 2.5 േ ଷ,ସݏ 206.22݅ = 2.5 േ 186.23݅ 
ଵ,ଶݏ 90° = 2.5 േ ଷ,ସݏ 209.11݅ = 2.5 േ ଵ,ଶݏ 204.67݅ = 2.5 േ ଷ,ସݏ 207.79݅ = 2.5 േ 196.42݅ 
ଵ,ଶݏ 135° = 2.5 േ ଷ,ସݏ 209.73݅ = 2.5 േ ଵ,ଶݏ 208.44݅ = 2.5 േ ଷ,ସݏ 209.34݅ = 2.5 േ 206.10݅ 
ଵ,ଶݏ 180° = 2.5 േ ଷ,ସݏ 209.99݅ = 2.5 േ ଵ,ଶݏ 209.99݅ = 2.5 േ ଷ,ସݏ 209.99݅ = 2.5 േ 209.99݅ 
ଵ,ଶݏ 225° = 2.5 േ ଷ,ସݏ 209.73݅ = 2.5 േ ଵ,ଶݏ 208.44݅ = 2.5 േ ଷ,ସݏ 209.34݅ = 2.5 േ 206.10݅ 
ଵ,ଶݏ 270° = 2.5 േ ଷ,ସݏ 209.11݅ = 2.5 േ ଵ,ଶݏ 204.67݅ = 2.5 േ ଷ,ସݏ 207.79݅ = 2.5 േ 196.42݅ 
ଵ,ଶݏ 315° = 2.5 േ ଷ,ସݏ 208.49݅ = 2.5 േ ଵ,ଶݏ 200.82݅ = 2.5 േ ଷ,ସݏ 206.22݅ = 2.5 േ 186.23݅ 

Different locations of two conjugate pole pairs result with two natural frequencies of the 
cracked rotor system ߱ଵ,ଶ = |ଵݏ| = ଶ| and ߱ଷ,ସݏ| = |ଷݏ| =  ସ|. The first natural frequency ߱ଵ,ଶݏ|
is the frequency of natural vibrations in ݕ axis, while the second natural frequency ߱ଷ,ସ is the 
frequency of natural vibrations in ݖ axis. 

 
Fig. 2. Crack opening and closing for different angular positions ߮ 

The difference in these frequency values can be explained by different stiffness values of the 
rotor in ݕ and ݖ directions. When the angular position ߮ changes, the angular position of the crack 
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edge subject to the ݖݕ coordinate system also changes (Fig. 2). Consequently, the stiffnesses ݇௬௬ 
and ݇௭௭  in directions ݕ and ݖ also change (see Eq. (11)). As a result the frequency of natural 
vibrations in ݕ direction becomes different than the frequency in ݖ direction. 

The two natural frequencies ߱ଵ,ଶ, ߱ଷ,ସ of the cracked rotor system are presented in Fig. 3 for 
a set of angular positions ߮. 

 
Fig. 3. Natural frequencies ߱ଵ,ଶ, ߱ଷ,ସ of the cracked rotor system for different angular positions ߮ 

The largest difference between ߱ଵ,ଶ and ߱ଷ,ସ is for ߮ = 0°. This is the case when the crack 
edge is perpendicular to ݖ axis and the crack is fully open under the load of the gravity (Fig. 2). It 
is clear that in this position the smallest stiffness of the shaft is in ݖ direction, while the largest – 
in ݕ direction. Therefore, the frequency of natural vibrations in ݖ direction ߱ଷ,ସ becomes smaller 
than the frequency ߱ଵ,ଶ in ݕ direction. 

The difference between ߱ଵ,ଶ and ߱ଷ,ସ decreases smoothly when ߮ advances. The crack closes 
gradually at the same time. The difference becomes zero when ߮ reaches 180°. In this position 
the shaft crack is fully closed (Fig. 2) and shaft stiffnesses in both ݖ and ݕ directions become the 
same. This results in equal values of natural frequencies.  

When φ advances further from 180° to 360° the crack opens gradually, which results in the 
increasing difference between ߱ଵ,ଶ and ߱ଷ,ସ. 

The changes in natural frequencies described above can be observed also in frequency 
responses presented in Figs. 4, 5. The frequency responses have been obtained by calculating fast 
Fourier transforms (FFT) of the impulse responses of the rotor. During the simulation the rotor 
was excited with an impulse-like force ܨ௭ and its responses were registered as ݔ௭ (see Eq. (18)). 
Then, fast Fourier transforms of the ݔ௭ signals were calculated.  

The frequency responses have been calculated for ߮ = ݊ × 90°, ݊ = 0, 1,… (Fig. 4), and for ߮ ≠ ݊ × 90° (Fig. 5) to demonstrate the coupling between vibrations in ݖ and ݕ axes (see the 
comment below Eqs. (16)-(17)). 

If the vibrations of the rotor are coupled (Fig. 5), then two frequency peaks can be observed at 
natural frequencies ߱ଵ,ଶ and ߱ଷ,ସ for the vibrations in both ݖ and ݕ axes. The peaks are especially 
well distinguished for ߮ = 45° and ߮ = 315°. If the vibrations of the rotor are decoupled (Fig. 4), 
then only one frequency peak is observed at the natural frequency ߱ଵ,ଶ for the vibrations in ݖ axis. 

The results presented in Figs. 4 and 5 correspond well with the results in Fig. 3 and confirm 
that at certain angular positions of the cracked rotor the doubled frequency peaks can be observed 
near natural frequencies in the frequency response. 

The changes in natural frequency peaks observed in frequency responses can be used to 
develop a new shaft crack detection method. The frequency responses can be obtained 
experimentally by the modal hammer rotor testing. For this testing, an additional accelerometer 
and a modal hammer should be used to measure the frequency response functions of the rotor. By 
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performing a set of modal hammer tests of a given, non-rotating rotor for several angular positions ߮, a set of frequency responses, (similar to those presented in Figs. 4, 5) can be obtained. It is 
anticipated that by studying these frequency responses the small differences between frequency 
peaks corresponding to a given natural frequency of the rotor will be observed. As explained  
above, such doubled frequency peaks appear only in the presence of a shaft crack. However, the 
proposed concept of the new shaft crack detection method requires experimental verification, 
which is underway. 

 
Fig. 4. Frequency response of the cracked rotor for angular positions  ߮ = ݊ × 90°, ݊ = 0, 1, 2, 3; decoupled vibrations  

 
Fig. 5. Frequency responses of the cracked rotor for angular positions  ߮ = ݊ ×45°, ݊ = 1, 3, 5, 7; coupled vibrations 

4. Conclusions 

The article demonstrates that the poles of the rotor system with a cracked shaft change their 
locations with the changing angular position of the rotor. The crack is modeled as a shaft stiffness 
reduction in a direction perpendicular to the shaft edge. For different angular positions of the rotor, 
the shaft crack changes its state gradually from fully open to fully closed. As a result, the stiffness 
of the shaft in horizontal and vertical directions also changes. Consequently, the locations of the 
system poles change a little, and the natural frequency peaks at the frequency responses become 
doubled. 

It is anticipated that these doubled natural frequency peaks can be used as signatures of a 
developing shaft crack. The frequency responses can be obtained experimentally by the modal 
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hammer rotor testing. Further development of the proposed shaft crack detection method requires 
experimental verification at the test stand. 

The application of the presented method to real shaft crack diagnosis problems would require 
performing the following steps. First the rotor is disassembled from its supporting bearings and 
then suspended on two thin massless threads, to obtain the free-free mounting. Next, by using a 
modal hammer, the rotor is impulse-excited at a given shaft axial location and its vibration 
response is measured by an accelerometer attached to the shaft at other axial location. Impulse 
responses of the rotor are taken for a set of angle positions of the rotor. Then, the obtained time 
responses are analyzed using fast Fourier transform and presented in a form of frequency 
responses shown in Figs. 4, 5. The change of natural frequencies, specifically the appearance of 
doubled natural frequency peaks, as described in section 3, would indicate a possible shaft crack.  

Disassembling the rotor from its supports is rather problematic, therefore the presented method 
could be applied only at servicing overhauls of a machine. However, the method is simple and 
even at those rare servicing tests, it is worth using, especially when important rotating machines 
are to be inspected. 
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