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Abstract. Vibration-based analysis is the most commonly used technique to monitor the condition 
of gearboxes. Accurate classification of these vibration signals collected from gearbox is helpful 
for the gearbox fault diagnosis. In recent years, deep neural networks are becoming a promising 
tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive 
data. In this paper, a study of deep neural networks for fault diagnosis in gearbox is presented. 
Four classic deep neural networks (Auto-encoders, Restricted Boltzmann Machines, Deep 
Boltzmann Machines and Deep Belief Networks) are employed as the classifier to classify and 
identify the fault conditions of gearbox. To sufficiently validate the deep neural networks 
diagnosis system is highly effective and reliable, herein three types of data sets based on the health 
condition of two rotating mechanical systems are prepared and tested. Each signal obtained 
includes the information of several basic gear or bearing faults. Totally 62 data sets are used to 
test and train the proposed gearbox diagnosis systems. Corresponding to each vibration signal, 
256 features from both time and frequency domain are selected as input parameters for deep neural 
networks. The accuracy achieved indicates that the presented deep neural networks are highly 
reliable and effective in fault diagnosis of gearbox. 
Keywords: deep learning, neural network, gearbox, fault diagnosis, vibration signal. 

1. Introduction 

Industrial environments have constantly increasing requirements for the continuous working 
of transmission machines. That is why new proposals for building fault diagnostic systems with 
low complexity and adequate accuracy are highly valuable [1]. As one of the core components in 
rotary machinery, gearbox is widely employed to deliver torque or provide speed conversions 
from rotating power sources to other devices [2]. Identifying gearbox damage categories, 
especially early faults and combined faults, is an effective way to avoid fatal breakdowns of 
machines and prevent loss of production and human casualties. The vibration signals during the 
run-up and run-down periods of a gearbox contain a wealth of condition information [3]. 
Vibration-based analysis is the most commonly used technique to monitor the condition of 
gearboxes.  

In gear fault diagnosis, several analysis techniques have been used, such as wavelet transform 
[4, 5], group sparse representation [6], multiscale clustered grey infogram [3], and generalized 
synchrosqueezing transform [7]. The availability of an important number of condition parameters 
that are extracted from gearbox signals, such as vibration signals, has motivated the use of machine 
learning-based fault diagnosis, where common approaches use support vector machine [8, 9], 
neural networks (NN) [10-13] and their related models, because of the simplicity for developing 
industrial applications.  

The SVM family received good results in comparison with the peer classifiers [14]. In [13], a 
comparison study was conducted on three types of neural networks: feedforward back-propagation 
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(FFBP) artificial neural network, functional link network (FLN) and learn vector quantization 
(LVQ). The study achieved good results with FFBP for the classification of three faults at different 
rotation frequencies. However, as Y. Bengio reported in [15, 16], the gradient-based training of 
supervised multi-layer neural networks (starting from random initialization) gets easily stuck in 
“apparent local minima or plateaus”, which is to restrict its application in more complex gearbox 
fault diagnosis.  

In recent years, deep neural networks are becoming a promising tool for fault characteristic 
mining and intelligent diagnosis of rotating machinery with massive data [17]. Since 2006, deep 
learning networks such as Restricted Boltzmann Machine (RBM) [18], Deep Belief Networks 
(DBN) [19] have been applied with success in classification tasks and other fields such as in 
regression, dimensionality reduction, and modeling textures [20]. Some reports showed that the 
deep learning techniques have been applied for the fault diagnosis with commonly one modality 
feature. Tran et al. [21] suggested a DBN-based application to diagnose reciprocating compressor 
valves. Tamilselvan and Wang [22] employed the deep belief learning for health state 
classification of iris dataset, wine dataset, Wisconsin breast cancer diagnosis dataset, and 
Escherichia coli dataset. C. Li et al [23] proposed multimodal deep support vector classification 
for gearbox fault diagnosis, where Gaussian-Bernoulli deep Boltzmann machines (GDBMs) were 
used to extract the feature of the vibration and acoustic signal in time, frequency and wavelet 
modalities, respectively; and then the extracted features are integrated for fault diagnosis using 
GDBMs. Li’s research [23] indicated that Gaussian-Bernoulli deep Boltzmann machine is 
effective for the gearbox fault diagnosis. We have presented a multi-layer neural network (MLNN) 
for gearbox fault diagnosis (MLNNDBN) [24], where the weights of deep belief network are used 
to initialize the weights of the constructed MLNN. Experiment results showed MLNNDBN was an 
effective fault diagnosis approach of gearbox. However, data sets were only collected from an 
experimental rig, which only included 12 kinds of condition parameters. 

There are growing demands for condition-based monitoring of gearboxes, and techniques to 
improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable 
contributions [25]. In this work, basing on the time-domain and frequency-domain features 
extracted from vibration signal, we evaluated the performance of four classical deep neural 
networks (Auto-encoders, Restricted Boltzmann Machines, Deep Boltzmann Machines and Deep 
Belief Networks) for gearbox fault diagnosis. In the existing researches of intelligent gearbox fault 
diagnosis systems, their experimental data sets were usually obtained from a simple experimental 
rig, where a signal only corresponds to one type of gear or bearing fault, and one data set only 
involves the classification of several fault condition patterns. As a result, it is insufficient to 
validate the generalization of an intelligent diagnosis system. To ensure that the proposed 
diagnosis systems are highly effective and reliable in fault diagnosis of industrial reciprocating 
machinery, three types of data sets based on the health condition of two rotating mechanical 
systems are prepared and tested in our study. Each signal obtained includes the information of 
several basic gear or bearing faults. Totally 62 data sets are used to test and train the proposed 
gearbox diagnosis systems.  

The rest of this paper is constructed as follows. Section 2 introduces the adoptive 
methodologies including Auto-encoders, Restricted Boltzmann Machines, Deep Boltzmann 
Machines and Deep Belief Networks; Section 3 covers feature representation of vibration signals; 
Section 4 presents the implementation of the classifier based on deep neural networks; Section 5 
is an introduction of experimental setup; Results and discussion are presented in Section 6; The 
conclusions of this work are given at the end. 

2. Deep neural networks 

The essence of deep neural networks (DNN) is to build neural network by imitating the 
hierarchical structure of human visual mechanism and brain to analyze and learn things. By 
establishing machine learning model with multiple hidden layers and using a sea of training data, 
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deep neural network is to learn more useful features so as to improve the accuracy of classification 
and prediction. Compared with traditional shallow learning, the distinctiveness of deep neural 
network lies in that: (1) it emphasizes the depth of model structure which usually has hidden layer 
nodes of five layers, six layers, or even over ten layers; (2) it explicitly highlights the importance 
of feature learning, that is, to transform the feature expression of the sample from the original 
space to a new feature space via feature shifts layer by layer, thereby making classification or 
predictions easier. Compared with the method of regular artificial configuration, using big data to 
learn feature may better depict the abundant inner information of data. 

The training mechanism of deep neural network includes two stages: the first stage is to use 
bottom-up unsupervised learning. This process can be regarded as a process of feature learning. 
The second stage is to use top-down supervised learning, which usually applies the gradient 
descent method to fine-tune the whole network parameters. The fundamental steps are given as 
follows: 

Step 1: Build neurons layer by layer. For any two neighboring layers, suppose the input layer 
is the lower layer while the other layer is the upper layer. The connection weights between layers 
include cognitive weights upward from the lower layer to the upper one and the generative weights 
from the upper layer to the lower one. The cognitive process upward is actually the encoding stage 
(Encoder), which is to extract feature (Code) from the bottom to the top. The reconstruction 
downward is actually the decoding stage (Decoder), which is to rebuild information for the 
abstract expression and the generative weights.  

Step 2: Adjust parameters layer by layer based on the wake-sleep algorithm. This process is 
for feature learning in which the parameters in one layer are adjusted. 

Step 3: Apply top-down supervised learning. This step is to add a classifier (such as Logistic 
Regression, SVM, etc.) at the top encoding layer based on the parameters of each layer acquired 
through learning of the second step. Then apply gradient descent method to fine-tune the whole 
network parameters through data-labeled supervised learning. 

In the following subsections, four commonly-used deep neural networks, Restricted 
Boltzmann Machine (RBM), Deep Boltzmann Machine (DBM), Deep Belief Networks (DBN) 
and Stack Auto-encoders (SAE) will be briefly discussed. For more details, please refer to the 
relevant literature [18, 19, 26, 27]. 

2.1. Restricted Boltzmann machine 

The restricted Boltzmann machine is a generative stochastic artificial neural network with two 
layers as shown in Fig. 1, which can learn a probability distribution over its set of inputs. The 
standard RBM has binary-valued hidden and visible units, and consists of a matrix of weights 
associated with the connection between hidden unit and visible unit. Given these, an energy 
function of the configuration (ݒ, ℎ) is defined as following [18]: 

,ܞ)ܧ (ߠ|ܐ = − ෍ ܾ௜௡ೡ
௜ୀଵ ௜ݒ − − ෍ ௝ܿ௡೓

௝ୀଵ ℎ௝ − ෍ ௜,௝௜,௝ݓ ௜ℎ௝, (1)ݒ

where ܞ and ܐ denote the visible and the hidden neurons, ܊ and ܋ stand for their offsets, and  ߠ = ,܅} ,܊  is network parameters. To accommodate the real-valued input data, Salakhutdinov {܋
et al. [28] proposed Gaussian-Bernoulli RBM (GRBM), where the binary visible neurons can be 
replaced by the Gaussian ones. The energy function is redefined as the following: 

,ܞ)ܧ (ߠ|ܐ = ෍ ௜ݒ) − ܾ௜)ଶ2ߪ௜ଶ
௡ೡ

௜ୀଵ − ෍ ෍ ௜௝ℎ௝ݓ ௜ଶߪ௜ݒ
௡೓

௝ୀଵ
௡ೡ

௜ୀଵ − ෍ ௝ܿℎ௝௡೓
௝ୀଵ , (2)
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where ߪ௜  is the standard deviation associated with Gaussian visible neuron ݒ௜ . The statistical 
parameters for the fault diagnosis are real-valued, so Eq. (2) is selected as the energy function in 
this paper. 

 
Fig. 1. A restricted Boltzmann machine 

The probability that the network assigns to every possible pair of a visible and a hidden vector 
is given via this energy function as the following: ܲ(ܞ, (ܐ = 1ܼ ݁ିா൫ܞ, ൯, (3)ߠหܐ

where ܼ is called as “partition function” and defined as the sum of ݁ିா(௩,௛|ఏ) over all possible 
configurations. 

The network assigns probability to a visible vector, ݒ, is given by summing over all possible 
hidden vectors: ܲ(ܞ) = 1ܼ ݁ିா൫ܞ, ൯. (4)ߠหܐ

By adjusting ߠ = ,܅} ,܊  to lower the energy of a training sample and to raise the energy of {܋
other samples, the probability that the network assigns to the training sample can be raised, 
especially those which have low energies and then make a big contribution to the partition  
function. 

A standard approach to estimate the parameters of a statistical model is maximum-likelihood 
estimation, which maximizes the likelihood by using the training data to train the parameters  ߠ = ,܅} ,܊  :The likelihood is defined as .{܋

,ߠ)ܮ ܵ) = ෑ ௡ೞ(௜ܞ)ܲ
௜ୀଵ , (5)

where ܵ represents the set of samples and ݊௦ is the size of ܵ. Maximizing the likelihood is the 
same as maximizing the log-likelihood given by: 

lnߠ)ܮ, ܵ) = ln ෑ ௡ೞ(௜ܞ)ܲ
௜ୀଵ = ෍ lnܲ(ܞ௜)௡ೞ

௜ୀଵ . (6)

Gradient descent method is usually employed to find the maximum likelihood parameters 
analytically. The derivative of the log probability of a training data ܞ with respect to ߠ is given by: 
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∂lnܲ(ܞ)߲ߠ = − ෍ ௛(ܞ|ܐ)ܲ
,ܞ)ܧ߲ ߠ߲(ܐ + ෍ ,ܞ)ܲ ܐ,ܞ(ܐ

,ܞ)ܧ߲ ߠ߲(ܐ . (7)

Because there are no direct connections between the hidden units in an RBM, it is very easy 
to calculate the first item of Eq. (7). Given a randomly selected training data (real-valued), ܞ, the 
binary state of each hidden unit, ℎ௝, is set to 1 with probability: 

ܲ൫ℎ௝ = 1หܞ൯ = ݏ ൭෍ ௜ݒ௜௝ݓ + ௝ܿ௜ ൱, (8)

where ݏ( ) is a sigmoid function. Similarly, given a hidden vector ݒ ,ܐ௜ is set to 1 with probability: 

௜ݒ)ܲ = (ܐ|1 = ܰ ൭෍ ௜ݒ௜௝ݓ + ௝ܿ, ଶ௜ߪ ൱, (9)

where ܰ(⋅) expresses normal distribution function. 
However, it is much more difficult to get the second item. It can be done by starting at any 

random state of the visible units and performing alternating Gibbs sampling for a very long time. 
An iteration of alternating Gibbs sampling consists of updating all of the hidden units in parallel 
using Eq. (8) followed by updating all of the visible units in parallel using Eq. (9). 

The algorithm performs Gibbs sampling and is used inside a gradient descent procedure to 
compute weight, which is updated as the following [29]: 

(1) Take a training sample ܞ, compute the probabilities of the hidden units and sample a hidden 
activation vector ܐ from this probability distribution. 

(2) Compute the outer product of ܞ and ܐ and call this the positive gradient. 
(3) From ܐ , sample a reconstruction ܞᇱ  of the visible units, then resample the hidden 

activations ܐᇱ from this. (Gibbs sampling step). 
(4) Compute the outer product of ܞᇱ and ܐᇱ and call this the negative gradient. 
(5) Update the weight: ௜ܹ,௝ = ௜ܹ,௝ + Δ ௜ܹ,௝ . Δ ௜ܹ,௝ =∈ ்ܐܞ) − (்′ܐ′ܞ  is expressed as: the 

positive gradient minus the negative gradient, the result of which times some learning rate. 
The update rule for the biases ܊ and ܋ is defined analogously.  

2.2. Deep Boltzmann machine 

A deep Boltzmann machine (DBM) [28] is undirected graphical models with bipartite 
connections between adjacent layers of hidden units, which is a network of symmetrically coupled 
stochastic units. Similar to RBMs, this binary-binary DBM can be easily extended to modeling 
dense real-valued count data. For real-valued cases, Cho et al. [30] proposed a Gaussian-Bernoulli 
deep Boltzmann machine (GDBM) which used the Gaussian neurons in the visible layer of the 
DBM. Fig. 2(b) presents a three-hidden-layer DBM, whose energy is defined as Eq. (10), where ܮ is the number of hidden layers: 

,ܞ)ܧ ,(ଵ)ܐ . . . , (ߠ|(௅)ܐ = − ෍ ෍ ௜ܹ௝ݒ௜ℎ௝(ଵ)/ߪ௜ଶேభ
௝ୀଵ

ேೡ
௜ୀଵ + ෍ ௜ݒ)2 − ܾ௜)ଶ/ߪ௜ଶ ேೡ

௜ୀଵ  
       − ෍ ෍ ௝ܾ(௟)ℎ௝(௟)ே೗

௝ୀଵ
ேೡ

௜ୀଵ − ෍ ෍ ෍ ௝௞(௟)ℎ௝(௟)ℎ௞(௟ାଵ)ே೗ାଵݓ
௞ୀଵ

ே೗
௝ୀଵ

௅ିଵ
௜ୀଵ . (10)

Salakhutdinov et al. [28] introduced a greedy and layer-by-layer pretraining algorithm by 
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learning a stack of modified RBMs for DBM model, where contrastive divergence learning [25] 
works well and the modified RBM is good at reconstructing its training data. In this modified 
RBM with tied parameters, the conditional distributions over the hidden and visible states are 
defined as Eq. (11) and Eq. (12): ݌൫ݒ௜หܐ(ଵ), ൯ߠ = ܰ൫ݒ௜ห ∑ ℎ௝(ଵ)ேభ௝ୀଵ ௜௝ݓ + ܾ௜, ,(ଵିଵ)ܐ൫ℎ௝(௟)ห݌௜ଶ൯, (11)ߪ ,(ଵାଵ)ܐ ൯ߠ = ݏ ቌ ෍ ℎ௝(௟ିଵ)ே೗షభ

௜ୀଵ ௜௝(௟ିଵ)ݓ + ෍ ℎ௞(௟ାଵ)ே೗శభ
௞ୀଵ ௝௞(௟)ݓ + ௝ܾ(௟), ௜ଶቍ. (12)ߪ

where ݏ( ) is a sigmoid function. When a stack of more than two RBMs is greedily being trained, 
the modification only needs to be used for the first and the last RBM in the stack. For all the 
intermediate RBMs, simply halve their weights in both directions when composing them to form 
a deep Boltzmann machine. It should be noted that there are two special cases: the last and the 
first hidden layers for the above equation. For the last hidden layer (i.e., ݈ = we set ௅ܰାଵ ,(ܮ = 0. 
As for the first hidden layer (i.e., ݈ = 1), parameters for Eq. (12) should be set as: 

(௟ିଵ)ܐ = ෍     ,ܞ ℎ௝(௟ିଵ)ே೗షభ
௜ୀଵ ௜௝(௟ିଵ)ݓ = ෍ ௜ݒ ௜௝ݓ ௜ଶ⁄ேೡߪ

௜ୀଵ ,     ݈ = 1, (13)

 

 
a) Deep belief network 

 
b) Deep Boltzman machine 

Fig. 2. DBN&DBM 

2.3. Deep belief networks 

Deep belief networks (DBNs) [19] can be viewed as another greedy, layer-by-layer 
unsupervised learning algorithm that consists of learning a stack of RBMs one layer at a time. The 
top two layers form a restricted 

Boltzmann machine which is an undirected graphical model, but the lower layers form a 
directed generative model (see Fig. 2(a)). The training algorithm for DBNs proceeds as follows. 
Let ܺ be a matrix of inputs, and regarded as a set of feature vectors. 

(1) Train a restricted Boltzmann machine on ܺ to obtain its weight matrix, ܹ, and use this as 
the weight matrix between the lower two layers of the network. 

(2) Transform ܺ by the RBM to produce new data ܺ′. 
(3) Repeat this procedure with ܺ ← ܺ′ for the next pair of layers, until the top two layers of 

the network are reached. 
(4) Fine-tune all the parameters of this deep architecture with respect to the supervised 

criterion. 
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2.4. Stacked Auto-encoders 

The Auto-encoder is trained to encode the input ܺ into some representation ܥ(ܺ) so that the 
input can be reconstructed from that representation [29]. Hence the target output of the 
auto-encoder is the auto-encoder input itself. If there is one linear hidden layer and the mean 
squared error criterion is used to train the network, then the ݇ hidden units learn to project the 
input in the span of the first ݇ principal components of the data. Auto-encoders have been used as 
building blocks to build and initialize a deep multi-layer neural network [15, 30, 31]. The training 
procedure is similar to the one for Deep Belief Networks. The principle is exactly the same as the 
one previously proposed for training DBNs, but auto-encoders instead of RBMs are used as the 
following [20]: 

(1) Train the first layer as an auto-encoder to minimize some forms of reconstruction errors of 
the raw input.  

(2) The outputs of hidden units on the auto-encoder are used as input for another layer, which 
is also trained to be an auto-encoder.  

(3) Iterate as step (2) to initialize the desired number of additional layers. 
(4) Take the last hidden layer output as input to a supervised layer and initialize its parameters 

(either randomly or by supervised training, keeping the rest of the network fixed). 
(5) Fine-tune all the parameters of this deep architecture with respect to the supervised 

criterion. Alternately, unfold all the auto-encoders into a very deep auto-encoder and fine-tune the 
global reconstruction error, as in [32]. 

3. Feature representations of vibration signals 

In this section, the feature extraction of vibration signal will be introduced. The gearbox 
condition can be reflected through the information included in different time, frequency and 
time-frequency domain. The features in frequency and time domain are extracted from the set of 
signals obtained from the measurements of the vibrations at different speeds and loads, which are 
used as input parameters for the deep neural network. 

3.1. Frequency-domain feature extraction 

For a vibration signal of the gearbox, (ݐ)ݔ, its spectral representation ܺ(݂) can be calculated 
by Eq. (14): 

ܺ(݂) = (݂)ොݔ = න ାஶݐଶగ௝௙௧݀ି݁(ݐ)ݔ
ିஶ , (14)

where the “^” stands for the Fourier transform, ݐ is the time and ݂ is the frequency.  
The time domain signal was multiplied by a Hanning window to obtain the FFT spectrum. The 

spectrum can be divided into multiple bands, and the root mean square value (RMS) for each band 
keeps track of the energy in the spectrum peaks. RMS value is evaluated with Eq. (15), where ܯ 
is the number of samples of each frequency band: 

ܨܨ ௥ܶ௠௦ = ෍ ெ.(݊)ܶܨܨ
௡ୀଵ  (15)

Fig. 3 and Fig. 4 present the FFT spectrum and its RMS representation of a vibration signal, 
respectively. It is obvious that the root mean square (RMS) values keep track of the energy in the 
spectrum peaks. To reduce the number of input data, the spectrum was split in multiple bands and 
the RMS value of each band is used as feature representation in the spectrum domain. 
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Fig. 3. Original frequency representation 

 
Fig. 4. Frequency representation using RMS values 

3.2. Time-domain feature extraction 

The time-domain signal collected from a gearbox usually changes when damage occurs in a 
gear or bearing. Both its amplitude and distribution may be different from those of the 
time-domain signal of a normal gear or bearing. Root mean square value reflects the vibration 
amplitude and energy in time domain. Standard deviation, skewness and kurtosis may be used to 
represent time series distribution of the signal in time domain. 

 
Fig. 5. Gearbox fault diagnosis based on deep neural networks 

Four time-domain features, namely, standard deviation, mean value, skewness and kurtosis are 
calculated. They are defined as follows. 

(1) Mean value: 
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ݔ̅ = 1ܰ ෍ ே(݊)ݔ
௡ୀଵ . (16)

(2) Standard deviation: 

ߪ = ඩ1ܰ ෍(ݔ(݊) − ଶே(ݔ̅
௡ୀଵ . (17)

(3) Skewness: 

ܵ = ݔ)ܧ − ଷߪଷ(ݔ̅ . (18)

(4) Kurtosis: 

ܭ = 1ܰ ෍ (݊)ݔ) − ସேߪସ(ݔ̅
௡ୀଵ . (19)

To sum up, the vector of the features of the preprocessed signal is formed as follows: ோܰெௌ 
RMS values, standard deviation, skewness, kurtosis, rotation frequency and applied load 
measurements, which are used as input parameters for the deep neural networks. In this paper, ோܰெௌ is set to 251. 

4. DNN-based classifier  

In this section, the implementation of the classifier based on DNN will be introduced. Fig. 5 
presents the outline of DNN-based gearbox fault diagnosis.  

In the pre-training stage, RBM, DBM, DBN or SAE (see their detail implementation and 
parameters settings in [18, 19, 26, 27]) are employed as pre-training strategies of DNN for gearbox 
fault diagnosis respectively. At the second stage, the parameters of the whole network is fine-tuned 
by using supervised training. The training procedure is shown in Fig. 6, which presents the 
pseudo-code of DNN-based classifier followed in the processing of the signal. A batch training 
strategy is used to train the neural network, where the weights of nets are shared by a batch of 
training samples with mini batches of size.  

5. Experimental setup 

To validate the effectiveness of the proposed method for fault diagnosis, we constructed three 
kinds of vibration signal data sets based on the health condition of two rotating mechanical 
systems. The experimental set-ups and the procedures are detailed in the following subsections. 

5.1. Data set I 

The data set I of vibration signal includes different basic fault patterns as defined in Table 1 
for the gearbox diagnosis experiments. 11 patterns with 3 different load conditions (300, 600, and 
900 rpm) and 3 different input speeds (zero, small, and great) were applied during the experiments. 
For each pattern, load and speed condition, we repeated the tests for 5 times. Each time, the 
vibration signals were collected with 24 durations, each duration covered 0.4096 sec. The 
sampling frequency for the vibration signals was set for 50 kHz and 10 kHz, respectively. 
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Fig. 6. Pseudo-code of DNN-based classifier 

 
a) 

 
b) 

Fig. 7. a) Fault simulator setup; b) Internal configuration of the gearbox 

Data set I was obtained from the measurements of a vertically allocated accelerometer in the 
gearbox fault diagnosis experimental platform shown in Fig. 7. Fig. 7(a) shows the fault simulator 
setup of the gearbox. A motor (SIEMENS, 3, 2.0 HP) through a coupling is used, whose speed is 
controlled by a frequency inverter (DANFOSS VLT 1.5 kW). An electromagnetic torque load is 
used, which is controlled by a torque controller (TDK-Lambda, GEN 100-15-IS510). The 
vibration signals of the gearbox were collected by an accelerometer (PCB ICP 353C03). Fig. 7(b) 
shows the internal configuration of the gearbox, which is a two-stage transmission of the gearbox. 
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The parameters of all components on the gearbox are listed here: Input helical gear: ܼଵ = 30, 
modulus = 2.25, impact angle = 20°, and helical angle = 20°; Two intermediate helical gears:  ܼଶ = ܼଷ =45; and the output gear: ܼସ = 80. The faulty components used in the experiments 
include gears ܼଵ, ܼଶ, ܼଷ, and ܼସ, bearing 1 and house 1 are labeled in Fig. 7(b). Based on the 
above experimental platform of gearbox fault diagnosis, 11880 vibration signals (i.e.,  
ଵଵ଼଼଴(ூ)ݔ ,… ,(ݐ)ଵ(ூ)ݔ]  have been ([ଵଵܤ ,… ,ଶܤ ,ଵܤ] ,.i.e) corresponding to 11 condition patterns ([(ݐ)
recorded. 

Table 1. Condition patterns of the gearbox configuration 
Faulty 
pattern ܤଵ ܤଶ ܤଷ ܤସ ܤହ – 

Faulty 
component Gear ܼଵ Gear ܼଶ Gear ܼଷ Gear ܼଷ Gear ܼସ – 

Faulty 
detail Worn tooth Chaffing tooth Pitting tooth Worn tooth Chipped tooth – 

Faulty 
photo      

– 

Faulty 
pattern B6 B7 B8 B9 B10 ܤଵଵ 

Faulty 
component Gear Z4 Bearing 1 Bearing 1 Bearing 1 House 1 N/A 

Faulty 
detail Root crack tooth Inner race fault Outer race fault Ball fault Eccentric N/A 

Faulty 
photo N/A 

5.2. Data set II 

In data set I, each vibration signal only includes information of one fault component, which 
has only a kind of fault. However, there are usually two or more fault components in the real-world 
rotating mechanical system. In order to evaluate whether the proposed approach is applicable in 
fault diagnosis of industrial reciprocating machinery, data set II is constructed, where each fault 
pattern includes two or more basic faults. Firstly, some basic faults are defined in Table 2 and 
Table 3, which include 11 kinds of basic gear faults and 8 kinds of bear faults, respectively. 12 
combined fault patterns are defined in Table 4. 

Table 2. Nomenclature of gears fault 
Designator Description ݃ଵ Normal ݃ଶ Gear with face wear 0.6 [mm] ݃ଷ Gear with face wear 0.3 [mm] ݃ସ Gear with chafing in tooth 40 % ݃ହ Gear with chafing on tooth 100 % ݃଺ Gear with pitting on tooth depth 0.1 [mm], width 0.6 [mm], and large 0.05 [mm] ݃଻ Gear with pitting on teeth ଼݃ Gear with incipient fissure on 5mm teeth to 30 % of profundity and angle of 45° ݃ଽ Gear teeth breakage 25 % ݃ଵ଴ Gear teeth breakage 60 % ݃ଵଵ Gear teeth breakage 100 % 

Data set II was obtained from the measurements of a vertically accelerometer on another 
gearbox fault diagnosis experimental platform. Fig. 8 indicates the internal configuration of the 
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gearbox and positions for accelerometers, which is a two-stage transmission of the gearbox with 
3 shafts and 4 gears. The parameters of all components on this gearbox are as follows: Input gear: ܼଵ = 27, modulus = 2, and Φ of pressure = 20; Two intermediate gears: ܼଶ = ܼଷ = 53; and the 
output gear: Z4= 80. The faulty components used in the experiments include gears ܼଵ, ܼଶ, ܼଷ, and ܼସ, bearing ܤଵ, ܤଶ, ܤଷ, and ܤସ as labeled in Fig. 8(a). The conditions of the test are described in 
the Table 5, where 4 different load conditions and 5 different input speeds were applied for each 
fault pattern during the experiments. For each pattern with different load and speed condition, we 
repeated tests for 5 times. Each time, the vibration signals were collected with 10 durations, each 
duration covered 0.4096 sec. 

Table 3. Nomenclature of bearing fault 
Designator Description ܾଵ Normal ܾଶ Bearing with 2 pitting on outer ring ܾଷ Bearing with 4 pitting on outer ring ܾସ Bearing with 2 pitting on inner ring ܾହ Bearing with 4 pitting on inner ring ܾ଺ Bearing with race on Inner ring ܾ଻ Bearing with 2 pitting on ball ଼ܾ Bearing with 2 pitting on ball 

Table 4. Condition patterns of the experiment 

Number of patterns 
Basic faults 

Gear faults Bear faults ܼଵ ܼଶ ܼଷ ܼସ ܤଵ ܤଶ ܤଷ ܤସ ܥଵ ݃଻ ݃ଷ ݃ଵ ݃ଵ ܾଵ ܾଶ ܾଷ ܾଵ ܥଶ ݃଻ ݃ଷ ݃଺ ଼݃ ܾଵ ܾଵ ܾଵ ܾଵ ܥଷ ݃ହ ݃ହ ݃ଵ ݃ଵ ܾ଺ ܾ଻ ܾଶ ܾଵ ܥସ ݃଻ ݃ଵ ݃ଵ ݃ଵ ܾ଺ ܾ଻ ܾଶ ܾଵ ܥହ ݃ଵ ݃ଶ ݃ଵ ݃ଵ ܾଵ ܾ଺ ܾଷ ܾଵ ܥ଺ ݃ଵ ݃ଷ ݃ଵ ݃ଵ ܾଵ ܾହ ܾଷ ܾଵ ܥ଻ ݃ଶ ݃ଽ ݃ଵ ݃ଵ ܾ଺ ܾ଻ ܾଷ ܾଵ ଼ܥ ݃ହ ݃ହ ݃ଵ ݃ଵ ܾ଺ ܾଷ ܾଶ ܾସ ܥଽ ݃ଶ ݃଺ ݃ଵ ݃ଵ ܾ଺ ܾହ ܾଶ ܾଵ ܥଵ଴ ݃ଵ ݃ଵଵ ݃ଵ ݃ଵ ܾଵ ܾଷ ܾସ ܾଵ ܥଵଵ ݃ଵ ݃ଵ ݃ଵ ݃ଵ ܾଵ ܾ଺ ܾଷ ܾଵ ܥଵଶ ݃ଵ ݃ଵ ݃ଵ ݃ଵ ܾଵ ܾଵ ܾଷ ܾଵ 
Table 5. The conditions of the test 

Characteristic (ܥଵ) Value 
Sample frequency 44100 [Hz] (16 bits) 
Sampled time 10 [s] 
Power 1000 [W] 
Minimum speed 700 [RPM] 
Maximum speed 1600 [RPM] 
Minimum load 250 [W] 
Maximum load 750 [W] 
Speeds 1760, 2120, 2480, 2840, and 3200 [mm/s] 
Loads 375,500,625, and 750 [W] 
Number of loads per test 10 
Type of accelerometer Uni-axial 
Trademark ACS 
Model ACS 3411LN 
Sensibility 330 [mV/g] 
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Based on the above experimental platform for gearbox fault diagnosis, data set II has 12000 
vibration signals (i.e., [ݔଵ(ூூ)(ݐ), …, ݔଵଶ଴଴଴(ூூ)  corresponding to 12 combined condition patterns ([(ݐ)
(i.e., [ܥଵ, ܥଶ, …, ܥଵଶ]) to be recorded. 

 
a) 

 
b) 

Fig. 8. a) Internal configuration of the gearbox; b) Positions for accelerometers 

5.3. Data set III 

One or two test cases cannot fully reflect the reliability and robustness of an algorithm. 
Although some classifiers are effective for some special data sets, they get easily stuck in 
“apparent local minima or plateaus” in some other cases, resulting in a disability to classify fault 
patterns effectively. To further validate the reliability and robustness of the DNN, a fault condition 
pattern library has been constructed, which has 55 kinds of condition patterns based on the 
fundamental patterns described in Table 2 and Table 3. Each condition pattern holds more than 
one basic gearbox fault.  

To challenge the proposed approaches, we have generated a large number of data sets. Each 
data set includes ܰ kinds of condition patterns. Here three kinds of ܰ’s value are considered for 
these data sets: 12, 20 and 30, respectively. It is obvious that bigger value of ܰ  means the 
classification and identification of faults are more difficult. For each size of ܰ, 20 different data 
sets were generated, where each one involves unique combination of condition patterns that are 
randomly selected from the above mentioned pattern library. 

Here each data set is collected from the measurements of a vertically accelerometer on the 
gearbox fault diagnosis experimental platform shown in Fig. 8, whose test conditions and 
generating method are the same as that of data set II. Each data set has 12000 vibration signals 
(i.e., [ݔଵ(௜)(ݐ) ଵଶ଴଴଴(௜)ݔ ,…, (ݐ) ]) corresponding to each combination of condition patterns (i.e.,  
ܥ] ଵܲ, ܥ ଶܲ, …, ܥ ேܲ]). Here ݅ expresses ݅th data set, and [ܥ ଵܲ, ܥ ଶܲ,…, ܥ ேܲ] is a combination 
randomly selected from the pattern library. 60 different data sets are generated in total to further 
evaluate the performance of the proposed approaches. 

6. Experiment and discussion  

In this section, we will evaluate the performance of DBN, DBM, RBM and SAE based on data 
sets defined in Section 4. Based on feature extracting method, feature representations of each 
vibration signal are formulated as a vector with 256 dimensions, which includes 251 RMS values, 
standard deviation, skewness, kurtosis, rotation frequency and applied load measurements. These 
features are regarded as the input of neural network.  



2476. VIBRATION-BASED GEARBOX FAULT DIAGNOSIS USING DEEP NEURAL NETWORKS.  
ZHIQIANG CHEN, XUDONG CHEN, CHUAN LI, RENÉ-VINICIO SANCHEZ, HUAFENG QIN 

2488 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716  

6.1. Parameters tuning 

As mentioned above, the training of DNN includes two stages: pre-training and fine-tuning. 
At the stage of fine-tuning, the DNN is usually treated as a feed-forward neural network (FFNN) 
by using supervised training. FFNN is also typically used in supervised learning to make a 
prediction or classification. To evaluate the performance of DNN, a comparison study between 
FFNN with DNN is presented for gearbox fault diagnosis. The net parameters are set as Table 6-7. 
Based on different training parameters, five typical FFNNs are defined in Table 8. Four parameters 
(nn.n, nn.unit, nn.epoch1 and nn.epoch2) are fine-tuned based on data set I and data set II as 
follows. 

Table 6. Definition of net parameters 
Symbols  Description 

nn Represent the whole neural network. 
nn.n The number of layers 

nn.size A vector of describing net architecture parameters including the number of neuron each 
layer 

nn.epoch1 The epochs of pre-training using RBM, DBM, DBN or SAE in the first stage training. 
nn.epoch2 The epochs of fine-training  

nn.act_func Activation functions of hidden layer: sigmoid or optimal tanh 
nn.output Activation functions of output layer: sigmoid, softmax or linear function. 
nn.lRate Learning rate in the second stage training 
nn.mom Momentum 
nn.wp A penalty factor for the deltas of updating weights. 
nn.df “Dropout” fraction of each hidden unit is randomly omitted 

Table 7. Setting of training parameters at the pre-training stage 
Parameters RBM DBN DBM SAE 
nn.act_func Sigmoid Sigmoid Sigmoid Sigmoid 

nn.lRate 1 1 1 0.01 
nn.mom 0 0 0 0 
nn.wp 0.5 0.5 0.5 0.5 

Table 8. Setting of training parameters for FFNN 
Classifier nn.act_func nn.output nn.lRate nn.mom nn.wp nn.df 

FFNN Scheme1 Optimal tanh Sigmoid 2 0.5 0 0 
FFNNScheme2 Optimal tanh Sigmoid 2 0.5 1e-4 0 
FFNNScheme3 Optimal tanh Sigmoid 2 0.5 0 0.5 
FFNNScheme4 Sigmoid Sigmoid 1 0.5 0 0 
FFNNScheme5 Optimal tanh Softmax 2 0.5 0 0 

6.1.1. Number of layers 

The number of layers (nn.n) decides the depth of net architecture. Experimental evidence 
suggests that training deep architectures is more difficult than training shallow ones. To confirm 
the optimal number of layers of DNN for gearbox fault diagnosis, we firstly discuss the effect of 
different nn.n based on data set I and data set II.  

Five schemes of FFNN described in Table 8 are considered to investigate the effect of different 
settings. Table 9 presents the parameter tuning of nn.n where nn.unit = 30, and nn.epoch2 = 100. 
As shown in Table 9, the experimental results suggest that when the architecture gets deeper for 
each scheme, it becomes more difficult to obtain good results. When nn.n is set to 6 and 8 for 
FFNN, only FFNNScheme2 and FFNNScheme4 can achieve good classification accuracy, and all others 
obviously deteriorate. 

 To investigate the effect of nn.n for DBN, DBM, RBM and SAE, the epoch of pre-training 
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(nn.epoch1) is set to 1 and FFNNScheme4 are selected as training scheme in the fine-training stage. 
As shown in Table 9, when nn.n is set to 6 and 8, DBN, DBM and RBM are obviously deteriorated, 
and only SAE still achieves good classification accuracy.  

From the experiment results presented in Table 9, we draw the following conclusion: for the 
DBN, DBM, RBM and FFNN, if its architecture gets deeper, it will become more difficult to 
obtain good classification accuracy for gearbox fault diagnosis; when nn.n is 3 or 4, it has the best 
performance for DNN and FFNN, which means there is one or two hidden layers for net 
architecture. So alternatively we set nn.n to 3 for all the following experiments. 

6.1.2. Number of the neuron of the hidden layer 

The number of the neuron of the hidden layer (nn.unit) is another important parameter of net 
architecture. The experiment results using different size of nn.unit for five FFNN-based classifiers 
and four DNN-based classifiers are presented in Table 10. We can draw the conclusion that it is 
not sensitive to vary the size of nn.unit for data set I and data set II. So, the number of neuron 
hidden layer is set to 30 for all the following experiments. 

Table 9. Parameter tuning of nn.n (Layer Number), nn.unit = 30, nn.epoch2 = 100 

Classifier nn.n for Data set I nn.n for Data set II 
3 4 5 6 8 3 4 5 6 8 

FFNN Scheme1 99.66 % 94.70 % 19.74 % 79.72 % 34.47 % 95.46 % 89.42 % 73.75 % 24.88 % 17.85 % 
FFNNScheme2 100 % 99.98 % 99.94 % 99.94 % 72.37 % 94.71 % 92.58 % 95.15 % 92.33 % 93.83 % 
FFNNScheme3 99.83 % 99.87 % 99.38 % 49.98 % 11.67 % 98.25 % 91.11 % 71.96 % 23.94 % 10.06 % 
FFNNScheme4 99.91 % 99.96 % 99.87 % 99.83 % 99.72 % 96.17 % 94.17 % 95.60 % 92.29 % 87.56 % 
FFNNScheme5 98.31 % 95.96 % 95.56 % 19.74 % 14.32 % 84.50 % 40.30 % 10.54 % 6.35 % 12.79 % 

DBN 100 % 99.98 % 99.66 % 68.93 % 63.06 % 98.73 % 98.04 % 87.92 % 39.27 % 30.25 % 
DBM 99.94 % 100 % 99.85 % 66.94 % 8.87 % 99.06 % 96.69 % 89.69 % 40.31 % 8.02 % 
SAE 99.96 % 100 % 99.98 % 99.91 % 99.81 % 99.13 % 98.85 % 97.06 % 90.15 % 92.00 % 
RBM 99.98 % 100 % 51.43 % 8.89 % 8.89 % 99.04 % 94.69 % 29 % 8.42 % 8.42 % 

Table 10. Parameter tuning of nn.unit, nn.epoch2 = 50, nn.n = 3 

Classifier nn.unit for Data set I nn.unit for Data set II 
40 60 80 100 40 60 80 100 

FFNNScheme1 99.945 99.79 % 99.87 % 99.87 % 94.15 % 96.83 % 97.69 % 98.75 % 
FFNNScheme2 100 % 100 % 98.89 % 99.98 % 94.65 % 93.10 % 98.33 % 96.15 % 
FFNNScheme3 99.89 % 99.91 % 99.85 % 99.94 % 94.79 % 97.29 % 98.19 % 96.98 % 
FFNNScheme4 99.94 % 99.87 % 95.06 % 99.87 % 97.19 % 96.38 % 97.73 % 98.33 % 
FFNNScheme5 98.33 % 97.84 % 97.97 % 97.91 % 88.38 % 89.50 % 89.12 % 89.31 % 

DBN 99.94 % 100 % 99.96 % 100 % 98.85 % 98.42 % 99.04 % 99.0 % 
DBN 99.96 % 99.89 % 99.87 % 99.79 % 98.65 % 97.9 % 98.44 % 98.81 % 
SAE 99.55 % 99.83 % 99.89 % 99.94 % 95.33 % 98.13 % 98.38 % 98.79 % 
RBM 99.89 % 99.96 % 99.91 % 99.94 % 98.9 % 99.27 % 97.7 % 98.9 % 

Table 11. Parameter Tuning of nn.epoch1, nn.unit = 30, nn.epoch2 = 100, nn.n = 3 

Classifier nn.epoch1 for Data set I nn.epoch1 for Data set II 
1 2 3 5 10 1 2 3 5 10 

DBN 100 % 100 % 100 % 100 % 100 % 98.73 % 99.06 % 97.15 % 98.33 % 95.56 % 
DBM 100 % 99.98 % 99.98 % 100 % 100 % 99.06 % 99.33 % 99.21 % 99.23 % 99.19 % 
SAE 99.96 % 99.98 % 100 % 99.96 % 99.91 % 99.13 % 99.19 % 98.85 % 99.13 % 96.85 % 
RBM 99.98 % 100 % 99.98 % 100 % 100 % 99.04 % 98.5 % 99.13 % 98.73 % 98.96 % 

6.1.3. Epochs of training  

The epochs of training also influence the performance of FFNN-based and DNN-based 
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classifier. If the epoch of training is too long, it will be possible to lead to “overfitting”; or even 
worse, it will possibly result in a lack of training. nn.epoch1 and nn.epoch2 represent the epochs 
of training in the pre-training and fine-tuning stage of DNN, respectively. Table 11 presents the 
experiment results of varying pre-training epochs (nn.epoch1 = 1 to 10), where nn.epoch2 = 100. 
As shown in Table 11, when nn.epoch1 is equal to 1, good classification accuracy can be obtained. 
If the pre-training epochs get longer, better results cannot be obtained. 

Fig. 9 and Fig. 10 present the convergence process of error rate for data set I and data set II, 
respectively. For data set I, after only 20 epochs of fine-tuning, the error becomes very small. 
Fig. 9 shows that the error rate is lower than 0.1 after 50 epochs of fine-tuning for data set II. 
Compared with the FFNN starting from random initialization (FFNNScheme1~5), Fig. 9 and Fig. 10 
also show DNN (DBN, DBM, RBM and SAE) obviously reduce “overfitting” phenomenon for 
gearbox fault diagnosis. nn.epoch1 and nn.epoch2 are set to 1 and 100 for the following experiment 
evaluations, respectively. 

 
Fig. 9. The error rate on data set I for different classifiers 

 
Fig. 10. The error rate on data set II for different classifiers 

6.2. Performance evaluations 

Table 12 presents the classification accuracy by using 8 different classifiers for data set I and 
II. Compared with FFNN, DBN, DBM, RBM and SAE have better classification performance, 
especially for data set II.  

One or two test cases cannot reflect the reliability and robustness of an algorithm. To further 
evaluate the performance of DNN, we constructed data set III. Firstly, we consider these data sets 
(#1-#20), where each one has 12 kinds of different condition patterns (CP = 12, where CP 
expresses the number of condition patterns included in a data set). Table 13 indicates experiment 
results by using 8 different classifiers for them. As shown in Table 13, the least classification 
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accuracy among the four DNNs is 92.8 % of SAE for the 15th data set; each of the mean 
classification accuracy is larger than 98.0 %.  

To further challenge the proposed classifiers, we add fault condition pattern included in a data 
set. Table 14 and 15 present the experiment results of 20 data sets, respectively. Each data set has 
20 and 30 kinds of condition patterns respectively (CP = 20 or 30). More condition patterns mean 
that it is more difficult to obtain good results. As shown in Table 14 and 15, DBN, DBM, RBM 
and SAE still have good performance for these cases.  

Among test cases of 21st-40th data set, DBN, DBM, RBM and SAE have larger than 90 % of 
mean classification accuracy; the least one is 77.6 % of DBN for the 35th data set. Among test 
cases of 41st-60th data set, DBN, DBM, RBM and SAE have larger than 84% of mean 
classification accuracy; the least one is 54.6 % of DBN for the 48th data set.  

Table 12. Classification accuracy of Data Set I and II  
Data set DBN DBM RBM SAE FFNNScheme1 FFNNScheme2 FFNNScheme4 SVM 

I 100 % 99.94 % 99.89 % 99.55 % 99.66 % 100 % 98.33 % 98.6 %
II 98.73 % 99.06 % 99.04 % 99.13 % 95.46 % 94.71 % 96.17 % 96.5 %

Table 13. Classification accuracy of data set with 12 kinds of condition patterns (CP = 12) 
No. #1 #2 #3 #4 #5 #6 #7 #8 

FFNNScheme1 63.9 % 99.0 % 98.7.0 % 79.0 % 98.7 % 98.7 % 51.8 % 98.7 % 
FFNNScheme2 61.8 % 99.4 % 98.7 % 62.5 % 98.8 % 99.1 % 55.0 % 98.0 % 
FFNNScheme4 57.3 % 99.4 % 99.0 % 67.0 % 98.9 % 99.2 % 61.8 % 99.2 % 

SVM 73.8 % 96.9 % 97.8 % 95.7 % 98.1 % 97.4 % 94.2 % 97.0 % 
SAE 97.6 % 99.2 % 98.9 % 99.1 % 99.0 % 99.1 % 99.2 % 99.4 % 
RBM 97.3 % 99.4 % 98.9 % 99.2 % 99.2 % 99.2 % 99.3 % 99.4 % 
DBM 97.9 % 99.4 % 99.0 % 99.0 % 99.2 % 99.2 % 98.5 % 99.4 % 
DBN 95.5 % 99.4 % 98.9 % 99.1 % 99.3 % 99.2 % 99.2 % 99.5 % 
No. #9 #10 #11 #12 #13 #14 #15 #16 

FFNNScheme1 97.4 % 99.2 % 98.7 % 98.7 % 41.2 % 98.5 % 96.8 % 98.2 % 
FFNNScheme2 98.8 % 99.4 % 94.5 % 98.9 % 41.9 % 97.3 % 94.3 % 99.0 % 
FFNNScheme4 96.1 % 99.4 % 99.3 % 99.2 % 37.1 % 98.9 % 96.8 % 99.0 % 

SVM 96.3 % 96.7 % 97.8 % 96.5 % 94.3 % 97.8 % 96.8 % 98.0 % 
SAE 98.6 % 99.4 % 98.8 % 99.4 % 92.3 % 98.6 % 97.7 % 99.3 % 
RBM 98.9 % 99.2 % 99.2 % 99.4 % 95.5 % 98.7 % 98.2 % 99.4 % 
DBM 96.4 % 99.3 % 98.8 % 99.5 % 95.8 % 99.1 % 98.1 % 99.4 % 
DBN 98.9 % 99.3 % 99.4 % 99.4 % 94.2 % 99.1 % 97.5 % 99.4 % 
No. #17 #18 #19 #20 Mean Std. Least Most 

FFNNScheme1 98.4 % 93.3 % 92.0 % 68.0 % 88.5 % 17.8 % 41.3 % 99.2 % 
FFNNScheme2 99.0 % 93.7 % 95.2 % 81.5 % 88.34 17.8 % 41.9 % 99.4 % 
FFNNScheme4 99.2 % 93.7 % 95.0 % 72.7 % 88.5 % 18.4 % 37.1 % 99.4 % 

SVM 95.5 % 96.3 % 93.5 % 96.7 % 95.3 % 5.71 % 71.7 % 98.1 % 
SAE 99.2 % 97.1 % 94.7 % 98.9 % 98.3 % 1.7 % 92.8 % 99.4 % 
RBM 99.2 % 95.3 % 95.1 % 99.1 % 98.5 % 1.4 % 95.1 % 99.4 % 
DBM 99.1 % 96.8 % 98.9 % 98.8 % 98.3 % 1.5 % 93.9 % 99.5 % 
DBN 99.1 % 96.7 % 96.1 % 99.3 % 98.4 % 1.5 % 94.2 % 99.5 % 

6.3. Comparison and analysis 

To verify Y. Bengio’s opinion [17, 18] that the gradient-based training of supervised 
multi-layer neural networks (starting from random initialization) gets easily stuck in “apparent 
local minima or plateaus”, three multi-layer neural networks (FFNNScheme1, FFNNScheme2, 
FFNNScheme4) are used to classify the same data set for gearbox fault diagnosis. Their classification 
results are also indicated in Table 13, 14 and 15, respectively. In addition, SVM is employed to 
compare with the proposed approaches. The algorithm SVM is applied by using the LibSVM [33]. 



2476. VIBRATION-BASED GEARBOX FAULT DIAGNOSIS USING DEEP NEURAL NETWORKS.  
ZHIQIANG CHEN, XUDONG CHEN, CHUAN LI, RENÉ-VINICIO SANCHEZ, HUAFENG QIN 

2492 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716  

The parameters for SVM are chosen as ܥ = 1 and core (kernel) given by a radial basis function 
where ߛ = 0.5. These parameters were found through a cross search, aiming at the best model for 
the SVM. 

As shown in Table 13, among 20 test cases CP = 12, three FFNN-based classifiers 
(FFNNScheme1, FFNNScheme2, and FFNNScheme4) have 5 test cases with bad classification accuracy, 
even smaller than 70 % for them (#1, #4，#7, #13 and #20), although it is effective for other 14 
test cases whose classification accuracies are larger than 90 %. Table 14 indicates that FFNNScheme1, 
FFNNScheme2, and FFNNScheme4

 have 4 test cases with bad classification accuracy (#29, #33, #34 
and #35). Table 15 indicates that FFNNScheme1, FFNNScheme2, and FFNNScheme4 have 5 test cases 
(#48, #53, #54, #55 and #57) is bad. This also verifies the negative observations that 
gradient-based training of multi-layer neural networks (starting from random initialization) gets 
easily stuck in “apparent local minima or plateaus” in some cases. They don’t have good 
robustness for gearbox faults diagnosis. Corresponding to the four DNN-based classifiers, they 
are able to obtain good classification accuracy for 62 data sets. So, we can draw the following 
conclusions that the DNN-based classifiers are able to avoid falling into “apparent local minima 
or plateaus” and are reliable and robust for gearbox fault diagnosis. Compared with FFNN-based 
classifiers and SVM, DBN, DBM, RBM and SAE have overwhelming superiority in the items of 
reliability and robustness for gearbox fault diagnosis. 

Table 14. Classification accuracy of data set with 20 kinds of condition patterns (CP = 20) 
No. #21 #22 #23 #24 #25 #26 #27 #28 

FFNNScheme1 90.6 % 93.9 % 70.0 % 87.1 % 90.2 % 78.2 % 88.4 % 77.7 % 
FFNNScheme2 93.4 % 94.0 % 78.3 % 91.0 % 95.2 % 81.6 % 96.2 % 85.1 % 
FFNNScheme4 93.2 % 96.6 % 80.0 % 88.4 % 94.0 % 84.5 % 96.4 % 85.4 % 

SVM 91.2 % 90.9 % 89.0 % 88.4 % 92.2 % 90.3 % 92.9 % 85.6 % 
SAE 95.7 % 95.8 % 90.3 % 93.3 % 96.3 % 83.2 % 96.6 % 86.9 % 
RBM 95.3 % 96.3 % 92.3 % 94.5 % 96.6 % 85.4 % 97.1 % 88.7 % 
DBM 95.5 % 96.4 % 92.7 % 93.9 % 96.2 % 85.7 % 96.9 % 88.4 % 
DBN 94.2 % 96.8 % 90.4 % 93.8 % 96.4 % 85.1 % 96.6 % 87.4 % 
No. #29 #30 #31 #32 #33 #34 #35 #36 

FFNNScheme1 67.2 % 86.9 % 87.9 % 73.3 % 57.2 % 59.2 % 45.9 % 75.7 % 
FFNNScheme2 70.7 % 86.0 % 94.8 % 91.0 % 57.6 % 76.6 % 52.1 % 83.4 % 
FFNNScheme4 78.0 % 88.8 % 96.3 % 82.3 % 64.9 % 74.4 % 62.1 % 82.9 % 

SVM 76.8 % 88.2 % 91.6 % 88.1 % 78.3 % 90.4 % 59.4 % 79.5 % 
SAE 84.8 % 91.5 % 97.2 % 93.3 % 83.9 % 90.1 % 80.4 % 84.5 % 
RBM 84.6 % 91.8 % 97.0 % 93.8 % 91.7 % 89.5 % 80.2 % 85.6 % 
DBM 86.9 % 91.9 % 97.1 % 93.2 % 89.7 % 89.4 % 81.7 % 84.2 % 
DBN 86.4 % 92.3 % 96.7 % 93.1 % 81.7 % 88.1 % 77.6 % 85.2 % 
No. #37 #38 #39 #40 Mean Std. Least Most 

FFNNScheme1 71.2 % 87.4 % 80.6 % 85.2 % 77.7 % 12.9 % 45.9 % 93.9 % 
FFNNScheme2 79.6 % 89.7 % 88.9 % 89.4 % 83.7 % 12.0 % 52.1 % 96.2 % 
FFNNScheme4 84.4 % 93.7 % 84.2 % 94.0 % 85.2 % 9.9 % 62.1 % 96.6 % 

SVM 84.6 % 90.3 % 85.9 % 92.9 % 86.3 % 7.92 % 59.4 % 92.9 % 
SAE 87.8 % 95.5 % 91.6 % 95.0 % 90.7 % 5.2 % 80.4 % % 97.2 % 
RBM 90.4 % 95.8 % 91.4 % 96.0 % 91.7 % 4.8 % 80.2 % 97.1 % 
DBM 90.9 % 95.9 % 91.1 % 96.4 % 91.7 % 4.6 % 81.7 % 97.1 % 
DBN 90.7 % 95.7 % 91.3 % 94.9 % 90.7 % 5.4 % 77.6 % 96.8 % 

As for the comparison between SAE, RBM, DBM and DBN, Fig.11 indicates the mean 
classification accuracy data set with different kinds of condition patterns (CP = 12, 20 and 30) for 
SAE, RBM, DBM and DBN, respectively. As shown in Fig. 11, four deep neural networks have 
almost equal classification accuracy for the data set with CP = 12; in the case of CP = 20 and 30, 
RBM and DBM are slightly better than SAE and DBN. However, the classification accuracy of 
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SAE, RBM, DBM and DBN need to be further enhanced for the data set that includes condition 
patterns more than 20 kinds. 

 
Fig. 11. Comparison between SAE, RBM, DBM and DBN 

Table 15. Classification accuracy of data set with 30 kinds of condition patterns (CP = 30) 
No. #41 #42 #43 #44 #45 #46 #47 #48 

FFNNScheme1 84.1 % 79.9 % 65.7 % 72.8 % 63.6 % 70.9 % 86.3 % 68.3 % 
FFNNScheme2 85.6 % 88.7 % 85.7 % 69.6 % 83.2 % 82.3 % 65.1 % 33.9 % 
FFNNScheme4 75.9 % 87.3 % 87.8 % 66.6 % 73.9 % 88.3 % 77.0 % 36.0 % 

SVM 87.9 % 85.2 % 84.2 % 56.5 % 86.9 % 85.0 % 80.6 % 62.0 % 
SAE 86.6 % 89.2 % 87.7 % 82.5 % 85.0 % 92.6 % 85.8 % 69.0 % 
RBM 89.6 % 91.6 % 86.8 % 82.2 % 86.6 % 93.3 % 87.5 % 70.8 % 
DBM 88.5 % 91.4 % 87.8 % 81.9 % 86.8 % 92.8 % 89.0 % 69.5 % 
DBN 90.8 % 92.3 % 86.5 % 77.4 % 86.8 % 92.6 % 84.7 % 54.6 % 
No. #49 #50 #51 #52 #53 #54 #55 #56 

FFNNScheme1 51.0 % 78.5 % 85.0 % 61.2 % 38.8 % 48.6 % 30.4 % 54.4 % 
FFNNScheme2 80.9 % 41.6 % 88.7 % 70.0 % 83.4 % 86.0 % 74.3 % 85.5 % 
FFNNScheme4 76.8 % 53.4 % 87.2 % 71.8 % 83.2 % 87.4 % 68.6 % 88.3 % 

SVM 84.2 % 56.6 % 90.0 % 80.9 % 82.0 % 86.6 % 73.4 % 89.5 % 
SAE 88.6 % 73.0 % 90.8 % 85.0 % 89.6 % 88.5 % 83.6 % 90.4 % 
RBM 90.0 % 71.6 % 92.8 % 84.9 % 90.2 % 91.2 % 83.4 % 91.3 % 
DBM 89.6 % 76.9 % 92.4 % 86.1 % 91.3 % 90.0 % 83.5 % 90.8 % 
DBN 88.9 % 65.4 % 90.9 % 86.5 % 90.9 % 90.8 % 79.4 % 90.0 % 
No. #57 #58 #59 #60 Mean Std. Least Most 

FFNNScheme1 57.3 % 82.1 % 65.4 % 76.2 % 66.0 % 15.7 % 30.4 % 86.3 % 
FFNNScheme2 39.4 % 64.2 % 55.7 % 71.7 % 71.8 % 17.1 % 33.8 % 88.7 % 
FFNNScheme4 86.4 % 77.4 % 64.2 % 78.5 % 75.8 % 13.4 % 36.0 % 88.3 % 

SVM 85.2 % 88.3 % 67.1 % 83.9 % 79.8 % 10.7 % 55.5 % 90.0 % 
SAE 92.6 % 84.5 % 73.3 % 89.0 % 85.4 % 6.5 % 69.0 % 92.6 % 
RBM 93.7 % 86.6 % 73.1 % 90.1 % 86.4 % 7.0 % 70.8 % 93.7 % 
DBM 93.3 % 86.4 % 70.5 % 91.3 % 86.5 % 6.9 % 69.5 % 93.3 % 
DBN 93.0 % 87.5 % 68.4 % 87.4 % 84.2 % 10.3 % 54.6 % 93.0 % 

Xudong Chen coded for DBM algorithm; Chuan Li coded for SAE algorithm; René-Vinicio 
Sanchez collected the vibration signals from the gearbox fault digressions experiment platform; 
Huafeng Qin extracted the features of the vibration signals. 

7. Conclusions 

In this paper, based on 62 data sets corresponding to the various health conditions of two 
rotating mechanical systems, four deep learning algorithms including RBM, DBM, DBN and SAE 
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are extensively evaluated for vibration-based gearbox fault diagnosis. Some interesting findings 
from this study are given below:  

1) Multi-layer feed-forward neural network with one or two hidden layers performs better than 
deeper net architectures for gearbox fault diagnosis, and they are prone to be stuck in “apparent 
local minima or plateaus” in the test cases. As a result, they don’t show good robustness for 
gearbox faults diagnosis. 

2) The testing results demonstrate that the deep learning algorithms, RBM, DBM, DBN and 
SAE, are efficient, reliable and robust in gearbox fault diagnosis. These classifiers have a good 
potential to provide helpful maintenance guidelines for industrial systems. With these methods, 
different types of component faults at different severity levels (e.g., initial stage or advanced stage) 
could be well classified. Furthermore, it is also shown that vibration signals usually carry rich 
information in fault detection, control and maintenance planning of rotating machines. 
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