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Abstract. For the multi-dimensional chaotic mapping system with various forms of bifurcations, 
it is found that the spectral radius around the static bifurcation point is approximately equal to one 
and the convergence speed for traditional stability transformation method (STM) which is used to 
stabilize the unstable fixed points is fairly slow. In this paper, a modified STM is proposed to 
efficiently stabilize a 3D chaotic mapping system to stable fixed points. Firstly, according to the 
information of the fixed point, the stability matrix  is derived, demonstrating that it is 
unnecessarily an involutory matrix for STM that can also stabilize chaotic system to the fixed 
point. Then, the critical parameter  that satisfies convergence condition and the optimal 
parameter  corresponding to best performance for STM are determined respectively. 
Moreover, STM is combined with Newton method (NT) to overcome the disadvantage of slow 
convergence around the static bifurcation point without requiring a priori information of fixed 
point. It is indicated that the number of iterations, the absolute and relative errors between the 
convergent value and analytical fixed point for combined STM-NT decrease enormously 
comparing with that of traditional STM. Finally, numerical analysis verifies the high efficiency of 
modified STM proposed in this paper. 
Keywords: chaotic mapping system, modified stability transformation method, relaxes parameter, 
chaos control. 

1. Introduction 

Chaos is an intrinsically complex phenomenon for deterministic nonlinear dynamical system. 
Generally, there are two complementary attributes to define chaos in both the temporal and spatial 
aspects: exponentially sensitive dependence on initial conditions, and pattern structure of strange 
attractors [1]. Due to its theoretical significance and engineering applicability, the chaos control 
has been paid extensive attention in diverse fields. Chaos control can catch the desired fixed points 
or periodic orbits embedded in the chaotic attractor of nonlinear dynamical system through 
implementing the target guidance and position. A key issue for chaos control is how to determine 
the control variable varying with time in terms of the past or present state, and incorporate it into 
a feedback term to achieve the purpose of controlling unstable periodic orbits (UPOs). Therefore, 
it is necessary to detect the UPOs of chaotic system in advance. However, detecting the UPOs of 
nonlinear systems with both numerical calculation and experimental implementation is one of the 
most challenging problems for nonlinear dynamics. Owing to the inherent unstable nature of 
UPOs, the analytic expressions for every periodic orbit cannot be obtained, only if the chaotic 
system is a simple nonlinear polynomial with low degree and the period of concern is low. 

The most popular algorithm for detecting UPOs is Newton method (NT) [2], which has the 
second order convergence speed, but it is heavily dependent on the initial condition, as well as on 
the behavior of the partial derivatives. Further, the extended algorithms based on Newton method 
including relaxed Newton method [2, 3], parameter adjustment hybrid method [4] etc. have also 
local convergence. To overcome this limitation, the NT is combined with a global convergent 
method named stability transformation method (STM) to improve the convergent efficiency in 
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this paper. From another perspective, Pyragas, et al. proposed and subsequently developed 
time-delayed feedback control (DFC) in a series of papers [5-7] to detect UPOs by stabilizing 
continuous chaotic system to period orbit. In addition, Parsopoulos et al. [8, 9] applied the 
stochastic optimization method (say, particles warm optimization) to locate chaotic system to high 
periodic orbits. Because this algorithm does not need the detailed information of initial condition 
and partial derivatives, it is an efficient alternative. 

In order to locate chaotic system (including both discrete and continuous system) to an 
arbitrary UPO, Schmelcher and Diakonos [10-12] proposed the stability transformation method 
(STM), which does not require the specific information of target UPOs and has a global 
convergence. Meanwhile, it is worth noting that Kawai and Tsubone [18] developed a new control 
algorithm based on STM and DFC to control the UPOs by a simple circuit implementation. The 
author and partner [13] applied STM to stabilize a novel 3D autonomous chaotic system to multi-
equilibrium. It is found that STM can be regarded as a special form of speed feedback control 
method, which facilitates the practical implementation of STM. In the subsequent paper [14], we 
further evaluated and compared the generality, efficiency and applicability of several popular 
chaos control approaches, and revealed the essential connections among these approaches. 
Recently, STM has been utilized to control the nonlinear iterative solution of First Order 
Reliability Method (FORM) [15-17]. Meng and Li [18] further expanded STM to the 
reliability-based design optimization which indicates that STM can greatly improve the 
optimization efficiency. Although STM has been widely used in chaos control, structure reliability 
and optimization design, the convergence speed is very slow when stabilized fixed points are 
around the static bifurcation points of chaotic system. In addition, the choices of stability matrix 
and relax parameter have direct influence on the performance of STM, and how to determine the 
optimal relax parameter and stability matrix that make STM be the fastest convergence speed 
remains to be further studied. Therefore, in this paper a novel modified STM is proposed to 
efficiently stabilize a 3D chaotic mapping system with various forms of bifurcations to stable fixed 
points. 

Focusing on these problems aforementioned, this paper provides some new insights on 
stabilizing and controlling the unstable periodic fixed points of a 3D chaotic mapping system with 
various forms of bifurcations by modified STM. According to the information of unstable periodic 
fixed orbits, the stability matrix , critical relax parameter  and optimal relax parameter  
are derived respectively when STM satisfies given convergence condition. In order to overcome 
the disadvantage of slow convergence around the static bifurcation point, this paper combines 
STM with NT to stabilize chaotic system to any unstable periodic fixed point. Finally, the 
efficiency of improved STM is verified by numerical simulation. The aim of this work is to deepen 
the understanding for STM and promote its practical application. 

2. Review of stability transformation method 

In order to detect any UPO of chaotic system, Schmelcher and Diakonos [12] suggested an 
appropriate linear transformation to modify the eigenvalues of Jacobian matrix of dynamical 
system, and stabilize the original system to the unstable periodic fixed points without changing 
their value and location. The detailed introduction about STM can be referred to the literature [12].  

The expression of STM for controlled system is written as: = + ( ( ) − ), (1)

in which,  is a relaxation parameter that has closely relationship with the eigenvalue of Jacobi 
matrix of original chaotic system and 0 < < 1, and the stability matrix  here is taken as ×  
dimensional involutory matrix (namely, only one element in each row and each column in this 
matrix is 1 or –1, and the others is 0). Nevertheless, the later analysis in Section 5 indicates that 
non-involutory matrix can also achieve the objective of detecting unstable periodic fixed point. 
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According to feedback control strategy, the corresponding block diagram for STM is displayed in 
Fig. 1. 

From Eq. (1), it is easy to know that the STM neither requires the detail information of the 
target periodic fixed points nor calculates the Jacobian matrix of the system, namely the local 
information on the derivative of periodic fixed points. Therefore, it is a global convergent method 
and has low requirement for initial condition.  

 
Fig. 1. Control block diagram of STM 

3. Stabilize unstable periodic fixed points of chaotic mapping system by STM 

Consider the following 3D mapping system [19]: = + + ,= − ,= .  (2)

where = 0.05, = 0.25, = 0.12, = 4.0, = 2.15, 0.4  ≤ ≤ 1.2. Practically, the 
mapping system Eq. (2) can be viewed as a kind of nonlinear iterative procedure expressed as = ( ), which is adopted in many iterative algorithms for structural reliability assessment 
[15-17] and optimal deign [18]. The mapping system Eq. (2) does not always converge to some 
fixed point, and yield the phenomena of periodic oscillation, bifurcation and chaos with the control 
parameter  varying in the interval [0.4, 1.2], which is indicated in Fig. 2(a). In order to clearly 
verify the type of the attractor, the three Lyapunov exponents (named ,  and ) of the 
mapping system are also displayed in Fig. 2(b). It is demonstrated from Fig. 2(b) that when the 
control parameter < 0.544, ,  and  are less than zero, then the mapping system is stable 
and convergent to a fixed point. When the parameter ∈ [0.544, 0.683), the Lyapunov exponents = 0, < 0 and < 0, the attractor of the mapping system will change from a fixed point to 
a series limit cycles and then emerge a two-dimensional torus. However, the attractor will become 
a chaos while > 0, < 0 and < 0, especially become a super chaos with more than two 
Lyapunov exponents greater than zero.  

 
a) 

 
b) 

Fig. 2. a) Bifurcation plot of component  versus parameter ;  
b) Lyapunov exponents versus  for three-dimensional mapping system 
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3.1. Periodic-  fixed points and bifurcation forms 

Let: 

= ,     ( ) = + +− . (3)

The periodic-  iterative mapping system can be written as: = ( )( ). (4)

If Eq. (4) has fixed points, let = = , and substitute it to Eq. (3) and Eq. (4) 
respectively, and then all the analytical solutions of periodic-  fixed points are obtained. 
Consequently, the explicit expression of the periodic-1fixed point with respect to parameter  
can be derived: 

( ) = − 1 − + ( − − 1) − 4 ( − 1)2 , 
( ) = − ( ) − ,     ( ) = − ( ) − . 

Similarly, the implicit expression of the periodic-2 fixed points with respect to  is also 
achieved: ( )( ( )) + ( )( ( )) + ( )( ( )) + ( ) ( ) + ( ) = 0, ( ) = − ( ) ,     ( ) = ( ( )) + − ( ) + , (5)

in which: ( ) = , ( ) = 2 , ( ) = − 2 − 2 + 2        − + + , ( ) = 2 ( − 1) − + 2 − 2 + 2 + 1       − ( ) = − 2 + − + + − . 
The Jacobi matrix of mapping system at the fixed point  is expressed as: 

= ( ) = = + 2 00 0 −0 0 . (6)

The eigenvalues , ,  of Jacobi matrix for mapping system with parameter  can be 
obtained according to Eq. (6), which is displayed in Fig. 3. It is indicated from Fig. 3 that the 
module of eigenvalues are respectively equal or greater than one at the parameter = 0.544 and 
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0.605, and then the mapping system will emerge bifurcations. When = 0.544 (see Fig. 2(a)), 
the eigenvalues of Jacobi matrix at periodic-1 fixed point are gained: = 0.5113 + 0.8563 ,     = 0.5113 − 0.8563 ,     = −0.9727. 

Then it is easy to get ⋅ = 0.9978 ≈ 1 , and the two conjugate complex roots of 
eigenvalues will pass through unit circle as shown in Fig. 4, which implies that the mapping 
system produces Naimark-Sacker quasi-period bifurcation (see Fig. 2). Similarly, the eigenvalues 
of Jacobi matrix at periodic-1fixed point are obtained when = 0.605: = 0.5249 + 0.8799 ,     = 0.5249 − 0.8799 ,     = −0.9999. 

Hence, the negative real eigenvalue  will pass through unit circle, demonstrating that the 
mapping system presents period-doubling bifurcation. Meanwhile, the solid line in Fig. 5 displays 
analytical solutions of periodic-2 fixed points for mapping system, which indicates that  = 0.605 is the static bifurcation point of the mapping system.  

 
Fig. 3. Eigenvalue curves  

of mapping system 

 
Fig. 4. The forms of eigenvalues passing  

through unit circle 

3.2. Stabilize unstable periodic fixed points by STM  

With regard to periodic-  fixed points of original mapping system, the control form of STM 
can be formulated as: = + ( )( ) − . (7)

Taking periodic-2 fixed points as example, all the analytical solutions of periodic-2 fixed 
points for mapping system are obtained from Section 3.1, as solid lines shown in Fig. 5. It is 
indicated that the number of analytical solutions for periodic-2 fixed point change from one to 
three with the parameter , i.e. static bifurcation emerges. In order to detect all the periodic-2 
points with STM, it is required to choose different involutory matrix  (i.e. the different stability 
transformation systems) and initial points in the basin of chaotic attractor. The system parameter 

 changes in the interval [0.4, 1.2]. As for every stability transformation system with appropriate 
relaxation parameter , an initial point is suitably selected in the chaotic attractor and the STM is 
performed. Then the th iterative solution is compared with the exact periodic-2 point, as dashed 
lines displayed in Fig. 5. From Fig. 5, some interesting conclusions are obtained as follows: 

1) The required iterative number  will decrease with relax parameter , but less unstable 
fixed points can be detectable by STM. Taking the stability matrix =  and initial condition  

(–3,1,0), when = 0.1, the = 2000th iterative value of  component always converge to 
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the upper branch of analytical fixed points (see red dashed line in Fig. 5(a)). However, while  = 0.6, the = 500th iterative value of  component jump from the upper branch to the lower 
one with system parameter  increasing in the interval [0.4, 1.2]. Especially, when > 1.144, 
the iterative value of  component will generate oscillation and could not converge to the 
corresponding analytical fixed points (see red dashed line in Fig. 5(b)). 

2) Keeping the initial points unchanged, STM can stabilize the mapping system to the same or 
distinct analytical fixed points by choosing different stability matrix. Taking the initial point  

(–3, 1, 0) and = 0.6, when the stability matrix = , the iterative value of  component 
converges to the upper branch of analytical fixed points with  varying in the interval [0.4, 0.98], 
but to the lower branch with  varying in the interval [0.98, 1.144] (see the red dashed line in 
Fig. 5(b)). However, when the stability matrix = [0 1 0; –1 0 0; 0 0 1], the iterative value of  
component converges to the lower branch of analytical fixed points with  varying in the whole 
interval [0.4, 1.2] (see the blue dot dashed line in Fig. 5(b)). 

3) Keeping stability matrix  unchanged, STM can stabilize the mapping system to distinct 
analytical fixed points by choosing different initial points. Adopting stability matrix =  and 
relax parameter = 0.1, when the initial points are taken as (0,0,0) and (–3,1,0), the 
iterative value of  component respectively converges to the lower and upper branch of analytical 
fixed points with  varying in the interval [0.4, 1.2] (see blue dotted and red dashed lines in 
Fig. 5(a)). 

 
Fig. 5. STM control of period-2 fixed points for mapping system when  varying in the interval [0.4, 1.2] 

a) = , = [0 0 0;0 1 0;1 0 0], = (0,0,0); b) = [0 1 0; –1 0 0;0 0 1], = (–3,1,0)  

4. Convergence analysis for STM 

The essence of STM is to introduce an appropriate linear transformation to modify the 
eigenvalues of Jacobian matrix for original chaotic system, and stabilize to the unstable periodic 
fixed points without changing their value and location. The Jacobi matrix ∗  of STM for 
transformed system is expressed as: ∗ = + ( – ), (8)

in which  is the Jacobi matrix of the original mapping system. As for periodic-2 mapping system, 
the Jacobi matrix  can be attained: 

= ( )( ) = + 2 − − 2 + 2− 0 0+ 2 0 . (9)

It is known from Eq. (8) that, if the spectral radius of matrix ∗ is less than 1 (i.e., ( ∗) < 1), 
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STM will converge to periodic fixed point of original system. However, in contrast if the spectral 
radius of matrix ∗ is more than 1 (i.e., ( ∗) > 1), STM does not converge and will generate 
undesired oscillation. Fig. 6 demonstrates three eigenvalue curves of Jacobian matrix for different 
stability transformation systems which coincides well with the convergence property of the curves 
in Fig. 5. In addition, it is found that when the parameter = 0.605, the spectral radius of the 
Jacobi matrix for STM is always close to 1 (i.e., ( ∗) ≈ 1) no matter how the parameter  and 
matrix  are selected. This implies that = 0.605 is a critical parameter that corresponds to the 
static bifurcation point of original mapping system. 

 
a) 

 
b) 

 
c) 

Fig. 6. Eigenvalue curves of stability transformation system  
when a) = , = ; b) = , = ; c) = , =  

When the system parameter = 0.605 (i.e. the static bifurcation point of original system), 
the spectral radius of stability transformation system ( ( ∗)) ≈ ( ∗( ∗)) ≈ 1 and therefore the 
convergence speed of STM is very slow around the static bifurcation point. It is supposed that the 
iteration of STM stops when the absolute error of sequential iterative values satisfies ‖ − ‖ ≤  10-5. Fig. 7(a) displays the required iterative number when STM satisfies 
convergence condition with different relax parameter . It is indicated from Fig. 7(a) that the 
maximum iterative number by STM occurs around the static bifurcation point = 0.605, which 
is consistent with the theoretical analysis. Furthermore, the smaller the parameter  is, the more 
iterative number required by STM is. When → 0, the required iterative number → ∞. In 
addition, Fig. 7(b) and Fig. 7(c) respectively demonstrate the absolute errors and relative errors 
between iterative solution and periodic fixed point when STM (initial point  and stability 
matrix ) satisfies convergence condition (≤ 10-5) with relax parameter = 0.01. It is observed 
that the maximum absolute and relative errors happen at the bifurcation point = 0.605. 
Specifically, when the relax parameter = 0.01, the maximum absolute error  ‖ − ∗‖ =  0.2337×10-5 and the maximum relative error

∗∗ × 100 % =  10.17 %. 
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Therefore, it is worth noting that detecting unstable periodic fixed points of chaotic system 
requires careful concern on the bifurcation point owing to the slow convergence of STM.  

 
a) 

 
b) 

 
c) 

Fig. 7. a) Iterative numbers; b) absolute error between iterative solution and fixed point;  
c) relative error between iterative solution and fixed point for STM with varying  

5. Determination of stability matrix  and relaxation parameter  

5.1. Choice of stability matrix  

With regarding to the chaotic mapping system, the spectral radius ( ) of the eigenvalues of 
the Jacobi matrix  is larger than 1. The purpose of introducing the stability matrix for STM is to 
make the spectral radius ( ∗) of the transformation system less than 1 under the condition of 
small enough parameter  without changing the location of unstable periodic fixed point. Pingel 
et al. [12] have determined the minimal set of stability matrix for a two- and three-dimensional 
system separately by using geometrical and topological arguments. Herein, we try to derive the 
stability matrix in light of the information of the eigenvalues at periodic fixed point.  

Let  be an arbitrary ×  invertible matrix which has  distinct eigenvalues , ,…,  
and the corresponding eigenvectors are , , …, . Then, there exists an invertible matrix  = ( , , … , ) satisfying = : = , , … , . 

Thus, perform the multiplicative operation of Jocobian matrix ∗  Eq. (8) of stability 
transformation system: ∗ = [ + ( − )] = + ( − )        = + ( − ) = + ( − ) = + ( − ), (10)

where = , and the stability matrix  can be obtained from the following three 
circumstances: 
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1) If all the eigenvalues of ( – ) have negative real parts, i.e. ( – 1) < 0 ( = 1, 2,…, ), 
let = , and then = = = .  

2) If all the eigenvalues of ( – ) have positive real part, i.e. ( – 1) > 0 ( = 1, 2,…, ), let =– , then = =– =– . 
3) If ( – )  has the eigenvalues with both negative and positive real part, let  = diag , , … ,  be a diagonal matrix, in which: = 1,        ( − 1) < 0,−1,     ( − 1) > 0, (11)

then the stability matrix = ˗ . However, in some situation the stability matrix  is 
unnecessarily taken as an involutory matrix depending on the Jacobian matrix of original 
dynamical system, which sheds a new light on the development of STM. 

From the above processing, the matrix ∗ has become a diagonal matrix, and the next step is 
to choose a suitable parameter , such that all the eigenvalues of the matrix ∗ have absolute value 
less than one i.e. | ∗| = |1 + ( − 1)| < 1 ( = 1, 2,…, n). According to the stability theory, 
Eq. (7) will converge to some periodic fixed point. 

5.2. Determination of critical parameter  and optimal parameter  

The prominent advantages of STM as compared with other chaos control algorithms are the 
global convergence property, the low requirement for initial point and fast speed convergence to 
linear domain of periodic fixed point. However, the rate of convergence will be slow when 
iterative values are located in linear domain of periodic fixed point. To overcome this limitation, 
in terms of whether the information of periodic fixed points are known or not in advance, this 
paper will improve the performance of STM from two aspects as followings 

For the information of periodic fixed points to be stabilized is known in advance, increase 
relax parameter  and the convergence speed will be faster. However, STM will not converge 
sometimes if  is too large. Hence, we should determine an optimal that makes STM converge 
fastest to periodic fixed point. 

For the unknown information of periodic fixed points, we can combine STM with NT to 
improve the computational efficiency of STM.  

As aforementioned, the relax parameter  of STM is closely related to the stability property of 
the periodic fixed points. As for a periodic fixed point, there exists a critical parameter  which 
make the controlled system be at the boundary of stability and instability, namely the module of 
the maximum eigenvalue of the Jacobi matrix ∗ be equal to 1. It is obtained from Eq. (9): | ∗| = |1 + ( − 1)| ≤ 1,     = 1,2, … . , . (12)

Let = +  and substitute it into Eq. (12) and the following module is achieved: | ∗| = |1 + ( − 1) + | ≤ 1 ⇒ [1 + ( − 1)] + ≤ 1,     = 1,2, … , , (13)

in which 0 < < 1,  is presented in Eq. (11). From Eq. (13), the formula of parameter  is 
further attained: 

⇒ ≤ inf, ⋯, −2 ( − 1)( − 1) + = inf, ⋯, 2| − 1|( − 1) + . 
Accordingly, the critical value  is written as: 
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= inf, ⋯, 2| − 1|( − 1) + . (14)

Again, take periodic-2 fixed points of controlled mapping system as an example. It is seen 
from Fig. 5(b) and Fig. 6(a) that when = , = 0.6, the module of the maximum eigenvalue 
of Jacobi matrix ∗  of transformed system Eq. (7) with system parameter = 1.144 is 
approximate equal to 1. That is to say, = 0.6 is the critical value of STM at the system parameter = 1.144. On the other hand, when the mapping system parameter = 1.144, the analytical 
periodic-2 fixed point for mapping system can be acquired form implicit expression Eq. (5) and 
then substituted into Eq. (9), so the corresponding eigenvalues of Jacobi matrix ∗ are obtained: ∗ = 0.5984 + 1.0846 ,     ∗ = 0.5984 − 1.0846 ,     ∗ = −1.1944. 

In terms of Eq. (14) the critical value  is calculated: 

= inf, , 2| − 1|( − 1) + = 0.6005. 
Which is in agreement with predefined value = 0.6. 
Clearly, the convergence speed of STM becomes very slow when  is close to the critical 

parameter , and the transformed system is at the boundary of stability and instability. Fig. 8 
illustrates the required iterative number when STM (in which = 1.144, =  and (–3,1,0)) 
satisfies convergence condition with relax parameter  varying in the interval (0, ). It is 
demonstrated from Fig. 8 that the iterative number versus  presents approximately an U-type 
curve, and when the relaxation parameter  is close to zero or critical value  respectively, the 
required iterative number tends to infinity, i.e. theoretically ( ∗) = 1. Therefore, there exists an 
optimal value  for the parameter  in the interval 0 < <  which makes the required 
iterations be the least. It is seen that the U-type curve changes slightly nearby = /2 = 0.3, 
thus here the optimal parameter  is set as: 

≈ 2 = inf, ⋯, | − 1|( − 1) + . (15)

 
Fig. 8. Iterative numbers for STM when  varying in the interval (0, ) 

Nevertheless, in most instances the information of periodic fixed points are unknown in 
advance, and the exact optimal parameter  could not be determined. For this situation, this 
paper combines STM with NT to stabilize periodic fixed points. Firstly, a small enough parameter 

 is taken and a set of initial points and involutory matrix  are chosen. Next, STM is conducted 
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until the absolute error of sequential iterative points satisfies a given value ‖ − ‖ ≤   
( ≈ 0.01~0.1). In this way, the iterative value has been in linear domain of periodic fixed point. 
Given the fact that Newton method has the second order convergence speed at the linear domain 
of initial condition, the iterative value  of STM can be taken as the initial point of Newton 
method and continue to conduct the iteration until satisfying the convergent condition. It is pointed 
out that in order to enlarge the linear domain, a relaxation factor can be introduced for NT, i.e. the 
relaxed Newton method can be taken as an alternative [14]. In practice, the NT is written as: = − ( ) ⋅ ( ) = − ( ̅ − ) ⋅ ( ( ) − ), (16)

where,  is the th iterative point of STM which satisfies the given convergent condition, and ( ) = ( )˗ , ̅ = ( )/ , ( ) = ̅ − . The iterative value will converge to 
the desired periodic fixed point in a high precision with a small number of iterations. Fig. 9(a) 
shows the required iterative number versus system parameter  by the combination of STM and 
NT. Compared with Fig. 7(a), the efficiency is improved considerably. Meanwhile, the 
corresponding absolute and relative errors between iterative solution and fixed point are displayed 
in Fig. 9(b) and Fig. 9(c). When the relax parameter = 0.01, the maximum absolute error ‖ − ∗‖ =  0.1298×10-5 and the maximum relative error 

∗∗ × 100 % =  0.56 % 
which are remarkably decreased compared with those in Fig. 7(b) and Fig. 7(c). However, the 
most iterative number, the maximum absolute and relative errors still happen at the static 
bifurcation point of original mapping system. 

 
a) 

 
b) 

 
c) 

Fig. 9. a) Iterative numbers; b) absolute error between iterative solution and fixed point; c) relative error 
between iterative solution and fixed point when converging to fixed point using STM-NT 

6. Conclusions 

For deeply understanding the numerical performance of STM for chaos control of nonlinear 
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dynamical system and convergence control of engineering iterative systems, several associated 
issues of STM is thoroughly studied.  

Firstly, a 3D chaotic mapping system with various forms of bifurcations is taken as an example 
in this paper and the effects of three factors of STM such as initial condition, stability matrix  
and relaxation parameter  on the capability of control algorithm are investigated in detail. It is 
found that the required iterative number  will decrease with relax parameter , but less unstable 
fixed points can be detectable by STM. Especially, the stabilized periodic fixed point by STM will 
jump from one branch to another of analytical fixed point even if selecting the same relax 
parameter, initial condition and stability matrix (as red dashed line shown in Fig. 5(b)). The other 
detailed conclusions can be seen in Section 3.2. 

Next, the eigenvalue curves of Jacobian matrix for different stability transformation systems 
are investigated. It is revealed that the maximum iterative number for STM occurs around the 
static bifurcation point, and thus the convergence speed of STM is very slow and hard to converge. 
Meanwhile, the absolute and relative errors between iterative solution and periodic fixed point 
with different relax parameter  are demonstrated respectively when STM satisfies convergence 
condition (≤ 10-5). It is observed that the maximum absolute and relative errors happen at the 
bifurcation point. 

At last, according to the information of unstable periodic fixed point, the stability matrix of 
STM is derived for three different cases. However, in some situation the matrix  is unnecessarily 
taken as involutory matrix depending on the Jacobian matrix of original dynamical system, which 
sheds a new light on the development of STM. Meanwhile, the critical parameter  on the basis 
of stability matrix  in STM are determined. It is found that the iterative number versus  presents 
approximately a U-type curve, and the smaller or the closer to the critical parameter  the relax 
parameter  is, the slower the rate of convergence of STM is. Moreover, the optimal parameter 

 in the interval (0, ) that makes the required iterations by STM be the least is obtained. 
When a priori information of the periodic fixed point is unknown in advance, STM is combined 
with NT to overcome the disadvantage of slow convergence around the static bifurcation point. 
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