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Abstract. Gearbox, as a critical component to convert speed and torque to maintain machinery 
normal operation in the industrial processes, has been received and still needs considerable 
attentions to ensure its reliable operation. Direct sensing and indirect sensing techniques are 
widely used for gearbox condition monitoring and fault diagnosis, but both have Pros and Cons. 
To bridge their gaps and enhance the performance of early fault diagnosis, this paper presents a 
new virtual sensing technique based on extreme learning machine (ELM) for gearbox degradation 
status estimation. By fusing the features extracted from indirect sensing measurements (e.g. 
in-process vibration measurement), ELM based virtual sensing model could infer the gearbox 
condition which was usually directly indicated by the direct sensing measurements (e.g. offline 
oil debris mass (ODM)). Different state-of-the-art dimension reduction techniques have been 
investigated for feature selection and fusion including principal component analysis (PCA) and 
its kernel version, locality preserving projection (LPP) method. The effectiveness of the presented 
virtual sensing technique is experimentally validated by the sensing measurements from a spiral 
bevel gear test rig. The experimental results show that the estimated gearbox condition by the 
virtual sensing model based on ELM and kernel PCA well follows the trend of truth data and 
presents the better performance over the support vector regression based virtual sensing scheme. 
Keywords: gearbox condition monitoring, virtual sensing technique, feature fusion, extreme 
learning machine. 

1. Introduction 

Gearbox is one of the most important components in mechanical equipment during industrial 
process. Its health and safety are vital to the reliable operation and improved efficiency of relevant 
facilities in the whole system. However, gearboxes generally work under harsh operating 
environment, which may accelerate their degradation. Consequently, they are subject to different 
defect types such as gear fatigue crack, gear pitting, bearing defects, bent shaft, etc. Gearbox 
defects may even cause failure of the whole system, leading to significant economic losses, costly 
downtime and even catastrophic damage. Thus, fault diagnosis and prognosis of gearboxes are of 
great importance to achieve a high degree of availability, reliability, and operational safety. 

In gearbox condition monitoring, a variety of sensing techniques have been instrumented to 
acquire gearbox mechanical components’ conditions. According to the correlation between 
sensing parameters and gearbox mechanical components’ conditions, these sensing techniques can 
be categorized into direct sensing and indirect sensing methods [1]. Direct sensing techniques 
measure actual quantities that directly indicate gearbox mechanical components’ conditions (e.g. 
oil debris mass). Inductance type oil debris sensors have been used to monitor the health of 
gearbox mechanical components [2]. Inductance type, oil debris sensors count particles and 
approximate debris size and mass based on disturbances of a magnetic field caused by passage of 
a metallic particle. However, such direct sensing techniques usually involve high cost, and present 
some practical limitations during gearbox normal operations. Therefore, oil debris analysis is often 
performed offline or in the laboratory. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2016.17379&domain=pdf&date_stamp=2017-03-31
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On the contrary, indirect sensing techniques measure the auxiliary in-process quantities (e.g. 
vibration, acoustic emission, etc.) that indirectly indicate gearbox components’ conditions. At 
present, vibration sensors have been the most commonly used sensors in mechanical systems 
health monitoring applications. Therefore, some vibration analysis techniques have been 
developed for gearbox fault detection (e.g. the detection of gear tooth pitting and crack). In [3], a 
windowing and mapping strategy is proposed for gear tooth fault detection of a planetary gearbox 
when the fault symptom generated by the single cracked tooth may be very weak. In [4], it aims 
to model the vibration signals of a planetary gearbox for tooth crack detection when there are 
multiple vibration sources and the transmission path of vibration signals changes due to the 
rotation of the carrier in a planetary gearbox. In [5], Approximate Entropy based gearbox diagnosis 
model is proposed to quantify the regularities of vibration signals measured on rolling bearings. 
Comparing to direct sensing, indirect sensing methods are less costly and enable continuous 
detection of all changes to signal measurements. However, such indirect sensing techniques have 
some disadvantages such as low accuracy to indicate gearbox conditions and data redundancy 
caused by the increased amount of data samples. 

To sum up, direct sensing measures direct indicators of gearbox conditions, but it is usually 
performed offline and thus interrupts normal machine operations. On the other hand, indirect 
sensing can continuously measure in-process parameters, but the obtained information is indirect 
indicators of gearbox mechanical components’ conditions. To bridge the gap between direct 
sensing and indirect sensing, virtual sensing, as a complement to physical sensing, has emerged 
as a viable, noninvasive, and cost-effective method to infer difficult-to-measure or  
expensive-to-measure parameters in dynamic systems based on computational models [6]. It has 
been investigated for active noise and vibration control [7], industrial process control [8], building 
operation optimization [9], lead-through robot programming [10], product quality of 
semiconductor industry [11], and tool condition monitoring [12, 13]. 

In the fields of safety inspection and intelligent diagnosis for mechanical equipment, the role 
of artificial intelligence models employed in the implementation of intelligent sensors systems is 
an essential one. These commonly investigated artificial intelligence models include artificial 
neural network (ANN) [14], and support vector regression (SVR), etc. In general, given the high 
cost and practical constraints to obtain data samples, SVR with good generalization capability 
attracts much research interest compared with ANN. However, it should be noted that in order to 
obtain as good performance as possible for SVR, long time effort has been made to find the 
appropriate parameters, which increases computational complexity in practical applications. 
Therefore, a new machine learning algorithm named extreme learning machine (ELM) is 
investigated and validated for machinery condition monitoring, which was originally proposed for 
the single hidden-layer feedforward neural networks (SLFNs). It can provide a unified learning 
platform with a widespread type of feature mappings and then is applied in regression and 
multiclass classification applications directly. In addition, through performance comparison of 
ELM and SVM in terms of running time and model accuracy in real application, it is found that 
the proposed ELM learning algorithm obtains better generalization performance than SVM 
learning algorithm. Moreover, the proposed ELM learning algorithm spent much less time on 
learning than SVM. The learning speed has dramatically been increased in ELM. Therefore, ELM 
can offer significant advantages such as fast learning speed, ease implementation, and minimal 
human intervention for real applications. 

When using in-process measurements to infer gearbox components’ conditions, the increased 
amount of data samples inevitably brings data redundancy problem. To address this issue, the 
paper presents a feature fusion based virtual sensing technique. Different dimension reduction 
methods including Principal Component Analysis (PCA) and kernel PCA, Locality Preserving 
Projection (LPP) have been investigated for feature selection and fusion. The fused features using 
the above methods are then fed into ELM model to infer the actual quantities of gearbox 
components’ conditions. The performance of the proposed virtual sensing scheme is validated 
using experimental studies on a spiral bevel gear test facility.  
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The rest of the paper is constructed as follows. After introducing the theoretical background 
of KPCA for dimension reduction and machine learning methods in Section 2, the details of ELM 
based virtual sensing method are discussed in Section 3. The effectiveness of presented technique 
is experimentally demonstrated and compared with SVR based virtual sensing scheme in Section 
4 based on direct and indirect sensing data acquired from a spiral bevel gear test facility. Finally, 
conclusions are drawn in Section 5. 

2. Theoretical framework 

2.1. Kernel principal component analysis  

Principal component analysis (PCA) allows linear dimensionality reduction. However, if the 
data has more complicated structures which cannot be well represented in a linear subspace, 
traditional PCA will not be very helpful. Fortunately, kernel principal component analysis  
(KPCA) allows us to generalize traditional PCA to nonlinear dimensionality reduction, which is 
a nonlinear version of PCA and has been widely used for feature selection and fusion applications. 
The key idea of KPCA is to define a nonlinear transformation ߶( ) which transforms the sample 
data into a high-dimensional data space. Then each data point ௜ܺ is projected to a point ߶( ௜ܺ). 
Next, we can perform traditional PCA in the new feature space [15]. It transforms a set of 
observations of possible correlated variables into a set of uncorrelated variables called principal 
components. The first principal component has the largest variance, and each succeeding principal 
component has comparative lower variance orthogonal to the preceding principal components. 
The first several principal components can represent the original data with minimal mean squared 
approximation error, and thus KPCA can be used in dimensionality reduction. 

Mathematically, given a set of input vectors ൫ ௜ܺ(1), ௜ܺ(2), … , ௜ܺ(݉)൯் , ݅  the ,݌ ,…,2 ,1 =
sample data ௜ܺ  is mapped into ߶( ௜ܺ)  via the nonlinear kernel function ߶( ) , i.e. With the 
assumption of centered data ଵ௣ ∑ ߶( ௜ܺ)௣௜ୀଵ = 0, the principal components are obtained by solving 
eigenvalue problem in KPCA: ߣ௜ݑ௜ = ௜, (1)ݑܥ

where ܥ is the sample covariance matrix of ߶( ௜ܺ), ߣ௜  is one of the eigenvalues of covariance 
matrix ܥ, and ݑ௜ is the corresponding eigenvector. The covariance matrix is constructed as: 

ܥ = ݌1 ෍ ߶( ௜ܺ)߶( ௜ܺ)்௣
௜ୀଵ . (2)

Define a Gram matrix ܭ with its elements as: ݇௜௝ = ߶( ௜ܺ)்߶൫ ௝ܺ൯ = ߶( ௜ܺ) ⋅ ߶൫ ௝ܺ൯, (3)

where ݔ௜ and ݔ௝ are the sample vectors. Assuming ݇( ) is a symmetric kernel function, the dot 
production in Eq. (3) can be replaced by a kernel function ݇( ) based on the Mercer’s theorem. 
Since the data points need to be centered in the feature space, the centered kernel matrix ܭ෩ is 
defined as [16]: ܭ෩ = ܭ − ܭ௣ܣ − ௣ܣܭ + ௣, (4)ܣܭ௣ܣ

where ܣ௣ is a ݌ × ௣൯௜௝ܣmatrix with ൫ ݌ = 1 ⁄݌ . The eigenvalue Eq. (1) can be rewritten as: 
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௜ݑ௜ߣ݌ = ௜. (5)ݑ෩ܭ

Then the ݊th kernel principal component is readily obtained by projecting the observations in 
the direction of the ݊th eigenvector [15]: 

)߶௡ݑ ௜ܺ) = ෍ ௡݇൫ݑ ௝ܺ, ௜ܺ൯௣
௝ୀଵ ,     ݅ = 1,2, … , (6) .݌

Since the number of eigenvectors is the same as the sample size in KPCA, it can deal with 
nonlinear problems which cannot be solved by PCA. By calculating the accumulated contribution 
rate (e.g., 95 %), the number of the most significant principal components can be selected for 
dimensionality reduction: ∑ ∑௞௤௞ୀଵߣ ௞௣௞ୀଵߣ ≥ 95 %. (7)

2.2. Support vector regression model  

Support vector regression (SVR) is the term used when Support vector machines (SVMs) are 
used to solve nonlinear regression estimation problems [17], which is based on statistics learning 
theory and has already been widely applied in most fields and made great results. Comparing with 
other data mining techniques such as artificial neural networks (ANN), it reveals good 
generalization capability and needs less training samples [18]. SVR transforms the original feature 
space into a higher dimensional space to determine an optimal hyperplane by maximizing the 
separation distances among the classes. Given an input training data set ݖ ∈ ߯, the transformed 
higher dimensional feature space can be obtained as: ݖᇱ = (8) ,(ݖ)߶

where ߶ is the transformation function. A hyperplane ݂(ݖ’) = 0 can be formulated as [18]: 

(′ݖ)݂ = ૌ்ݖ′ + ܾ = ෍ ௝߬ݖ௝ᇱ + ܾ௡
௝ୀଵ = 0, (9)

where ૌ is a ݊-dimensional vector and ܾ is a scalar. The vector ૌ and scalar ܾ are used to define 
the position of the separating hyperplane. The hyperplane is built to maximize the distance ܦ 
among the closest classes through the following optimization: max௩∈ோ೙,௕∈ோܦ,   subject to ݕ௜(ૌ்ݖ௜ᇱ + ܾ) ≥ (10) ,݅∀   ,ܦ

where ݕ௜ is the class labeler. For example, it is labeled as {–1, 1} for two classes. Taking into 
account the noise with slack variables ߦ௜ and error penalty ܥ, Eq. (10) can be rewritten as [18]: 

min௩,క∈ோ೙,௕∈ோ ൝12 ‖ૌ‖ଶ + ܥ ෍ ௜ேߦ
௜ୀଵ ൡ, 

subject  to  ߦ௜ ≥ (௜ݖ)߶்߬)௜ݕ    ,0 + ܾ) ≥ 1 − ௜,    ∀݅. (11)ߦ

The hyperplane can be determined as the following sign function ((ݐ)݊݃ݏ = 1 for ݐ ≥ 0, and (ݐ)݊݃ݏ = –1 for ݐ < 0). The linear decision function is given by: 
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(ݖ)݂ = sgn ቌ ෍ ((௝ݖ)߶(௜ݖ)்߶)௜ߙ௜ݕ + ܾே
௜,௝ୀଵ ቍ, (12)

where ߙ is the Lagrange multiplier. The hyperplane function can be determined by kernel function ܭ൫ݖ௜, ௝൯ݖ =  ௝൯ by computing the inner products without specifying the explicit form ofݖ൫߶(௜ݖ)்߶
the transformation function. Different kernels can be formulated such as linear, polynomial, 
Gaussian RBF, and Sigmoid kernel functions. Accordingly, the associated decision function for 
regression analysis is expressed as [19]: 

(ݖ)݂ = sgn ቌ ෍ ,௜ݖ)ܭ௜ߙ௜ݕ (௝ݖ + ܾே
௜,௝ୀଵ ቍ. (13)

2.3. Extreme learning machine model  

ELM [20–22] was originally proposed for the single hidden-layer feedforward neural networks 
(SLFNs) and was then extended to the generalized SLFNs where the hidden layer need not be 
neuron alike. ELMs have both universal approximation and classification capabilities; and they 
can also build a direct link between multiple theories (specifically, ridge regression, optimization, 
neural network generalization performance, linear system stability, and matrix theory). 
Consequently, ELMs, which can be biologically inspired, offer significant advantages such as fast 
learning speed, ease of implementation, and minimal human intervention. They thus have strong 
potential as a viable alternative technique for large-scale computing and machine learning. 

Compared with other machine learning methods including back-propagation (BP) and SVMs, 
the ELM methods have the following advantages. Firstly, since the support vectors obtained by 
SVM are much larger than the required hidden neurons in ELM, the testing time spent SVMs for 
the same testing data set is much longer than the ELM. In addition, ELM only needs to set the 
number of hidden neurons, and it does not need to adjust the input weights and the bias of hidden 
neurons during the implementation of the algorithm, which leads to producing a unique optimal 
solution. However, it should be noted that in order to obtain as good performance as possible for 
SVM, long time effort has been made to find the appropriate parameters for SVM. That means, 
after trained and deployed the ELM may react to new observations much faster than SVMs in such 
real application. 

The ELM for SLFNs shows that hidden nodes can be randomly generated. The input data is 
mapped to ܮ-dimensional ELM random feature space, and the network output is: 

௅݂(ݔ) = ෍ ௜ℎ௜௅ߚ
௜ୀଵ (ݔ) = ઺, (14)(ݔ)ܐ

where ઺ = ሾߚଵ, ,ଶߚ … ,  nodes ܮ ௅ሿ் is the vector of the output weights between the hidden layer ofߚ
and the output node and (ݔ)ܐ = ሾℎଵ(ݔ), ℎଶ(ݔ), … , ℎ௅(ݔ)ሿ is the output (row) vector of the hidden 
layer with respect to the input ݔ, and ℎ௜(ݔ) is the output of the ݅th hidden node. (ݔ)ܐ actually, 
maps the data from the ݀-dimensional input space to the ܮ-dimensional hidden-layer feature space 
(ELM feature space) ܪ, and thus, (ݔ)ܐ is indeed a feature mapping. 

Given ܰ training samples {(ݔ௜, ௜)}௜ୀଵேݐ , the ELM can resolve the following learning problem: થ઺ = લ, (15)

where ܂ = ሾݐଵ, ,ଶݐ … , ேሿ் are target labels, and ۶ݐ = ሾ்ܐ(ݔଵ), ,(ଶݔ)்ܐ … ,  .ሿ்(ேݔ)்ܐ
Different from traditional learning algorithms, ELM tends to reach not only the smallest 
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training error but also the smallest norm of output weights. According to Bartlett’s theory [23], 
for feedforward neural networks reaching smaller training error, the smaller the norms of weights 
are, the better generalization performance the networks tend to have. ELM is to minimize the 
training error as well as the norm of the output weights [20, 21]. 

Minimize: ‖થ઺ − લ‖ଶ,   and  ‖(16) .‖ߚ

The minimal norm least square method instead of the standard optimization method was used 
for calculating the output weights ઺ in the original implementation of ELM [20, 21]: ઺ = றܶ, (17)ܪ

where ܪற is the Moore-Penrose generalized inverse of matrix ۶ [24, 25]. Different methods can 
be used to calculate the Moore–Penrose generalized inverse of a matrix: orthogonal projection 
method, orthogonalization method, iterative method, and singular value decomposition  
(SVD) [25]. 

The theoretical background of KPCA and machine learning methods discussed here, including 
SVR and ELM, forms the basis of virtual gearbox condition sensing model formulated in the next 
section. 

3. Virtual gearbox condition sensing framework 

It is recognized that indirect sensing techniques measure in-process auxiliary parameters 
during mechanical equipment operations. The indirect sensing parameters are less accurate to 
indicate gearbox components’ conditions, but the rugged senor design makes them more suitable 
for practical applications. On the other hand, direct sensing techniques measure actual quantities 
of gearbox components’ conditions and have a high degree of accuracy. Due to the practical 
limitations during gearbox normal operations, direct sensing techniques are commonly used for 
offline measurement or as laboratory techniques.  

 
Fig. 1. The rationale of developing virtual gearbox state sensing model 

Utilizing the advantage of indirect sensing, virtual sensing technique can model the nonlinear 
dependencies between in-process measurements and actual quantities of gearbox mechanical 
components’ conditions based on computational models. The accuracy of virtual sensing is 



2369. VIRTUAL SENSING FOR GEARBOX CONDITION MONITORING BASED ON EXTREME LEARNING MACHINE.  
JINJIANG WANG, YINGHAO ZHENG, LIXIANG DUAN, JUNYAO XIE, LAIBIN ZHANG 

1006 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2017, VOL. 19, ISSUE 2. ISSN 1392-8716  

expected to be comparable to direct sensing. The rationale of virtual sensing to bridge the gap 
between indirect sensing and direct sensing is described in Fig. 1. 

The developed virtual sensing model in this work mainly consists of four modules: (i) a data 
acquisition system capable of measuring vibration measurements from gearbox operating 
processes, (ii) a feature extraction module to extract gearbox condition indicators (CIs) by 
preprocessing raw noisy measurements, (iii) a feature fusion module to select and fuse the 
extracted features for dimension reduction, and (iv) an extreme learning machine based artificial 
intelligence model to infer gearbox mechanical components’ conditions from the fused features, 
as illustrated in Fig. 2. The proposed virtual sensing model is a complement to physical sensing, 
and can be used for gearbox condition monitoring and maintenance actions guidance.  
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Fig. 2. Diagram of developed virtual gearbox condition sensing model 

3.1. Data acquisition and feature extraction  

During operation process of mechanical equipment, online measurements can acquire the 
in-process parameters such as accelerometer and tachometer signals reflecting gearbox conditions. 
Due to low signal to noise ratio (SNR), it is usually difficult to model the relationship between 
raw measurement and gearbox condition. To tackle this problem, effective feature extraction 
techniques are usually performed to reduce data dimension without losing gearbox defect 
signatures. In this study, 21 features indictors or condition indictors (CIs) from time  
domain, frequency domain, and time-frequency domain are investigated. Time domain methods 
involve statistical features such as root mean square (RMS), Kurtosis (KT), crest factor (CF),  
peak-to-peak value (P2P). RMS is a measure for the magnitude of a varying quantity. It is also 
related to the energy of a signal. Kurtosis indicates the spikiness of a signal. Features from the 
frequency domain provide another perspective of gearbox mechanical components’ conditions, 
and reveal information that are not included in the statistical domain. In frequency domain, 
spectral skewness and spectral kurtosis are extracted, where ܵ( ௜݂) is the power spectrum density 
obtained using the Welch method. In time-frequency domain, wavelet transform can be used for 
signal denoising and feature extraction. The wavelet coefficient with higher energy is selected 
which is related to the bearing defect characteristic frequencies. Thus, the energy of the selected 
wavelet coefficient is also extracted as a feature. 

3.2. Feature selection and fusion 

There are an overwhelming number of features extracted from the raw measurements. In 
general, the extracted features can be viewed as a high-dimensional multivariate matrix composed 
of several feature vectors. It is not feasible to input the above matrix to a virtual sensing model 
without dimension reduction because of the curse of dimensionality and the high correlation 
between vectors. For improved computational efficiency in virtual sensing model, a proper feature 
selection and fusion strategy is needed to lower the dimension of a feature space.  
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By implementing feature selection and fusion algorithms, the complexity of modeling process 
could be reduced and new feature vectors are reconstructed. Different representative dimensional 
reduction techniques are investigated for feature selection and fusion, including KPCA, PCA and 
LPP algorithms. Generally, it is difficult to determine which feature is more sensitive to gearbox 
conditions. The goal of feature selection and fusion is to preserve as much of the relevant 
information as possible by removing redundant or irrelevant information in acquired sensory 
signals. The top ranked features of these three schemes (e.g. KPCA, PCA, LPP, etc.) are then 
selected and fused into the computational model to infer the actual quantities of gearbox 
mechanical components’ conditions. Afterwards, their performance is evaluated by comparing the 
predicted gearbox conditions with actual offline measurement in terms of model accuracy. 

3.3. ELM based virtual sensing model 

Given the complex relationship between fused features and actual quantities of gearbox 
mechanical components’ conditions, it is difficult to describe it in an explicit analytic form. By 
exploiting the underlying structure of data measurements, the paper utilizes a novel machine 
learning tool-ELM model, which has significant advantages such as fast learning speed, ease of 
implementation, and minimal human intervention compared with ANN and SVM in real 
applications. Thus, in this paper, the ELM model is used to investigate the dependency between 
fused features and gearbox conditions.  

As previously mentioned, the parameters of ELM model mainly involve a tunable parameter 
of hidden neurons compared with SVR algorithm. In general, the proper hidden neurons number 
is obtained through a lot of artificial experiments or cross validation (CV) method. In this paper, 
the CV method is adopted to find the optimal hidden neurons number. Additionally, in order to 
validate the effectiveness of ELM method, SVR based virtual sensing scheme is investigated and 
compared in terms of model accuracy. And the selection of parameters and kernel functions in 
SVR model is determined using grid search algorithm whose evaluation of model performance 
follows leave-one-out cross-validation method. 

4. Experimental studies 

4.1. Experimental setup and data collection 

In this chapter, data from a spiral bevel gear case study conducted on the spiral bevel gear test 
facility are used to validate the presented method. And the experimental analyses of different 
virtual sensing schemes on three data sets are carried out in MATLAB 7.11.0 environment running 
in Intel(R) Xeon(R) E5-2650 v2, 2.60-GHZ CPU with 64-GB RAM. 

Vibration data from experiments performed on the spiral bevel gear test facility was 
reprocessed for this analysis. A more detailed description of the test rig and test procedure is given 
in [2]. The rig is used to quantify the performance of gear materials, gear tooth design and 
lubrication additives on the fatigue strength of gears. During this testing, vibration condition 
indictors (CIs) and oil debris monitoring were used to detect pitting damage on spiral bevel gears. 

The tests consisted of running the gears under load through a “back to back” closed loop torque 
regenerative system. Accelerometers were installed on the right and left side of the gearbox per 
Fig. 3. Vibration data was collected once per minute using a sampling rate of 100 kHz for 
2 seconds duration. Shaft speed was measured by an optical sensor once per each gear shaft 
revolution, generating time synchronous averages (TSA) on the gear shaft (36 teeth). The pinion, 
on which the damage occurred, has 12 teeth. The tests were performed for a specific number of 
hours or until surface fatigue occurs. In this paper, data collected from three gears were used for 
performance comparison of virtual sensing schemes based on different feature selection and fusion 
methods. At test completion, destructive pitting could be observed on the teeth of the pinions (see 
Fig. 3). 
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a) 

 
b) 

 
c) 

Fig. 3. a) The bevel gear test rig and bevel gears in [2], b) damaged spiral bevel gear  
in experiment 1, c) damaged spiral bevel gear in experiment 3 

4.2. Data processing 

TSA data was processed with gear CI algorithms presented in [26] and [27] to compute the 
following CIs:  

(1) TSA: RMS, Kurtosis (KT), Peak-to-Peak (P2P), Crest Factor (CF); (2) Residual RMS, KT, 
P2P, CF; (3) Energy Operator RMS, KT; (4) Energy Ratio; (5) FM0; (6) Sideband Level factor; 
(7) Narrowband (NB) RMS, KT, CF; (8) Amplitude Modulation (AM) RMS, KT; (9) Derivative 
AM KT; (10) Frequency Modulation (FM) RMS, KT. However, not all the CIs generated from 
TSA data were good candidates for virtual sensing model. For the purpose of prognostics, one is 
interested in selecting the CIs that have shown a good trending correlation. In order to select the 
best CIs, correlation coefficients of the CIs with the time index were computed. The following 6 
CIs with correlation coefficients over 0.5 were selected for virtual sensing model: (1) residual 
RMS, (2) energy operator RMS, (3) FM0, (4) narrowband kurtosis, (5) amplitude modulation 
kurtosis, and (6) frequency modulation RMS. Next, different dimensional reduction techniques 
including KPCA, PCA and LPP are performed to exploit the 6 features by fusing the extracted 21 
features. In all feature selection and fusion algorithms, the reduced dimensions are set: ݇ = 4 by 
calculating the accumulated contribution rate (e.g. 95 %), and kernel functions are optimized using 
grid search algorithm, respectively. 

4.3. Performance evaluation 

The selected and fused features obtained by KPCA, PCA and LPP are fed into the ELM model 
to infer the gearbox mechanical components’ conditions from the in-process vibration signals. 
And its parameter, hidden neurons number, is optimized by a 10-fold cross validation process. 
Afterwards, the performance of the proposed virtual sensing scheme is compared with SVR based 
virtual sensing scheme, in which two hyperparameters, the cost parameter ܥ and the Gaussian 
kernel parameter ߛ, are selected using grid search method in the cross validation process to prevent 
overfitting. A total of three sets of gearbox life test data (e.g. Y1, Y2, and Y3, etc.) are available. 
Take dataset Y1 as example. The predicted spiral bevel gear ODM using different virtual sensing 
schemes including KPCA, PCA and LLP algorithms with SVR and ELM models are illustrated in 
Figs. 4-6, respectively. To compare their performance, the actual spiral bevel gear ODM measured 
offline is also included. It is found that the predicted spiral bevel gear ODM by the virtual sensing 
model follows the trend of the truth data well. 
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Fig. 4. Performance comparison of different virtual sensing schemes based on PCA method 
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Fig. 5. Performance comparison of different virtual sensing schemes based on LPP method 
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Fig. 6. Performance comparison of different virtual sensing schemes based on KPCA method 

To quantitatively evaluate the performance of the proposed virtual sensing model, different 
criteria are investigated including Pearson Correlation coefficient (PCC), Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). PCC is a 
statistical measure of independence of two or more random variables which is defined as: 

ܥܥܲ = ∑ ௜ݔ) − ො௜ݔ)(ݔ̅ − ∑ො̅)௜ඥݔ ௜ݔ) − ଶ(ݔ̅ ∑ ො௜ݔ) − ො̅)ଶ௜௜ݔ , (18)
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where ݔ is the actual spiral bevel gear ODM, and ݔො is the predicted spiral bevel gear ODM using 
the virtual sensing model. The model with the highest correlation coefficient is considered as the 
one of the best. RMSE is defined as the square root of the average of the square of all difference 
between estimated spiral bevel gear ODM ݔො and actual spiral bevel gear ODM ݔ: 

ܧܵܯܴ = ඨ1ܰ ෍ ො௜ݔ) − ௜)ଶே௜ୀଵݔ . (19)

MAE is defined as the mean of all absolute difference between estimated spiral bevel gear 
ODM ݔො and actual spiral bevel gear ODM ݔ: 

ܧܣܯ = 1ܰ ෍ ௜ݔ| − ො௜|ே௜ୀଵݔ . (20)

MAPE is defined as the mean of all absolute percentage differences between estimated spiral 
bevel gear ODM ݔො and actual spiral bevel gear ODM ݔ: 

ܧܲܣܯ = 1ܰ ෍ ௜ݔ| − ௜ே௜ୀଵݔ|ො௜ݔ . (21)

 

0.9739

0.9723

0.9748
0.9741

0.9771

0.9754

0.969
0.97

0.971
0.972
0.973
0.974
0.975
0.976
0.977
0.978

ELM SVR

PC
C

PCA LPP KPCA
1.9816

1.9967

1.9525

1.9866

1.9156 1.9219

1.86

1.88

1.9

1.92

1.94

1.96

1.98

2

2.02

ELM SVR

RM
SE

PCA LPP KPCA

1.3277
1.489

1.284
1.4415

1.2051 1.2886

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ELM SVR

M
AE

PCA LPP KPCA

0.0418
0.048

0.0402

0.047

0.0381 0.0406

0

0.01

0.02

0.03

0.04

0.05

0.06

ELM SVR

M
A
PE

PCA LPP KPCA

Fig. 7. Performance comparison of different virtual sensing schemes using different criteria 

Next, three different virtual sensing schemes with SVR and ELM models are quantitatively 
evaluated according to different criteria including PCC, RMSE, MAE, and MAPE. The 
performance of these three virtual sensing schemes is compared as shown in Fig. 7. In general, 
the larger the PCC value, the better the model performance, while the less the RMSE/MAE/MAPE 
value, the better the model performance. From the perspective of estimation accuracy, it is found 
from Table 1 that the predicted gearbox conditions using KPCA model follows the trend of the 
truth data best compared with other feature selection and fusion methods. In addition, ELM based 
virtual sensing scheme can obtain better prediction performance in comparison with SVR based 
virtual sensing scheme. 
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Table 1. Performance comparison of virtual sensing schemes based  
on different feature selection and fusion methods using different criteria 

Methods Prediction models PCC RMSE MAE MAPE 

PCA ELM 0.9739 1.9816 1.3277 0.0418 
SVR 0.9723 1.9967 1.489 0.048 

LPP ELM 0.9748 1.9525 1.284 0.0402 
SVR 0.9741 1.9866 1.4415 0.047 

KPCA ELM 0.9771 1.9156 1.2051 0.0381 
SVR 0.9754 1.9219 1.2886 0.0406 

Jinjiang Wang proposed the innovative idea, and was responsible for the writing of the paper. 
Yinghao Zheng performed the experiment, collected and processed data in the whole process, 
which was very important for finishing paper. Lixiang Duan offered guiding opinions for 
framework design of the paper. Junyao Xie provided constructive comments for data analysis and 
interpretation in the whole process of finishing paper. Laibin Zhang revised the paper critically 
for important intellectual content. 

5. Conclusions 

Gearboxes are key components in mechanical facilities, and gearbox defects would badly 
threaten safety of the whole system. Therefore, keeping gearbox running reliably is the guarantee 
of mechanical equipment safety. Taking advantages of advanced sensing and signal processing 
methods in artificial intelligence, which are critically needed for effective fault diagnosis and 
condition monitoring, the proposed virtual gearbox condition sensing framework utilizes 
in-process sensory measurements to infer the actual gearbox mechanical components’ conditions 
on an ELM model basis. According to the results obtained, the following conclusions can be  
drawn:  

1) Virtual sensing technique bridges the gap between direct sensing and indirect sensing for 
gearbox condition monitoring and prediction.  

2) Different dimension reduction techniques including KPCA, PCA and LPP algorithms have 
been investigated for feature selection and fusion in gearbox condition monitoring, and 
experimental results show that KPCA performs best.  

3) The effectiveness of the proposed virtual sensing model is validated using the data from a 
spiral bevel gear case study. The results have shown that its performance is comparable to the 
costly offline instrumentation. Moreover, the proposed ELM based virtual sensing scheme 
outperforms SVR based virtual sensing scheme in terms of model accuracy through quantitative 
comparison using different criteria. 

For future work, a variety of experimental tests will be performed to evaluate the robustness 
of the proposed method in our next-step research. 
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