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Abstract. The present paper involves in the estimation and approximation of Eigen values and 
Eigen vectors of an Elliptical plate with a rectangular cut-out under simply supported boundary 
condition using Independent coordinate coupling method with an eight term deflection function. 
The study also investigates the effect of position and size of cut-out with rectangular shape on the 
natural frequencies of an elliptical plate. The variation of the natural frequencies with the change 
in position of cut-out along the axes of symmetry and along the radial line is studied. The present 
method ICCM utilizes independent coordinates separately for plate domain and hole domain. The 
deflection condition of plate and the hole is equated to derive the relationship between global axes 
and the local axes. The resulted transformation is useful in deriving the mass and stiffness 
matrices. The size and position of cut-out have been focused to investigate their effect on the 
natural frequency of an elliptical plate. 
Keywords: elliptical plate, plate with cut-outs, independent co-ordinate coupling method, 
Rayleigh-Ritz method, free vibration. 

1. Introduction 

Elliptical shaped plates have wide applications in the field of Aeronautics, Marine and civil 
Engineering, hence the knowledge of the vibration of an elliptical plate is essential. In engineering 
applications, a plate is often required to accommodate mountings or accessories, therefore a plate 
with holes is commonly occurring structure. Therefore, knowledge of free vibration of plates with 
different shaped cut-outs at different positions is essential. Rayleigh-Ritz method is one of the 
method to derive the frequencies if plate and the hole geometries are same, whereas it cannot be 
easily applied if the geometry of plate and the hole is different. Here the present ICCM is an 
effective tool to overcome this, and works well by matching the deflection condition between the 
plate and hole.  

The fundamental frequency parameters of an elliptical plate are obtained by several authors 
using different approaches that can be found in the references [1-8]. K. L. Prasad [1] provided 
reliable approximate formulae for simply supported and clamped elliptical plates by following the 
Rayleigh-Ritz method with a three-term deflection function. A. W. Leissa [2] worked on simply 
supported elliptical plates using Rayleigh-Ritz method to obtain accurate fundamental frequencies. 
Maurizi [3] derived an approximate expression for the fundamental frequency of vibration of 
elastic plates under clamped condition. K. Y. Lam [4] etc. Proposed a general numerical method 
to estimate the natural frequencies for elliptical plates by introducing a set of orthogonal plate 
functions as an admissible function in Rayleigh-Ritz method. Y. Shibaoka [5] investigated the 
fundamental normal mode of the transverse vibration of clamped elliptical plate using Mathieu 
functions and modified Mathieu functions in an exact manner. R. P. Mcnitt [6] worked on 
vibration of elliptical plate by assuming classical small-deflection theory is valid and computed 
the natural frequencies a clamped elliptical plate using an ordinary product solution and the 
Galerkin method. Moon K. Kwak, Sangbo Han, [8] investigated the Free vibration analysis of 
rectangular plate with a hole by means of Independent coordinate coupling method, in which the 
energies corresponding to the hole and plate were derived independently, and applied to circular 
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cut-outs effectively. K. Torabi, A. R. Azadi, [9] applied the Raleigh-Ritz method to find the 
transverse vibrations of rectangular plate with circular central hole having a point support. 
Paramasivam [10] applied the finite difference method in the analysis of a simply-supported and 
clamped rectangular plate with a rectangular hole. Hegarty and Ariman [11], Eastep and Hemmig 
[15] applied the point-matching method in the analysis of a rectangular plate with a circular  
cut-out. Aksu and Ali [12] also applied the finite difference method to analyze a rectangular plate 
with more than two holes. Rajamani and Prabhakaran [13] assumed that the effect of a hole is 
equivalent to an externally applied loading and carried out a numerical analysis based on this 
assumption for a composite plate. Rajamani and Prabhakaran [14] investigated the effect of a 
cut-out on the natural vibration characteristics of an isotropic and orthotropic plates under 
simply-supported and clamped boundary conditions.  

So far in the literature survey the authors came across the free vibration analysis of an elliptical 
plate with various approaches. But in the present paper the authors contributed their efforts to 
predict, how the natural frequency of an elliptical plate with cut-out is varying due to the change 
in position and size of the cut-out using a newly developed technique called independent 
coordinate coupling method, to the best of knowledge which is so far not discussed in the earlier. 
The analysis by varying the position of the cut-out along the axis of symmetry and along a radial 
line of the plate using the ICCM method is presented. 

2. Free vibration of an elliptical plate 

An elliptical plate is assumed which lies in an ݕ-ݔ plane, having dimensions of 2ܽ×2ܾ as 
shown in the figure. Semi-major axis ܽ in the ܺ-direction and semi minor axis ܾ in the ܻ direction. 
The analysis begins with applying the Raleigh’s method in which the maximum kinetic energy is 
equals to maximum potential energy of a vibrating structure. In the expressions of (ܧܭ)௠௔௫	 and (ܲܧ)௠௔௫	 the deflection function ܹ is assumed in such a manner that it has to satisfy the boundary 
condition of the plate. Using of non-dimensional variables leads to the geometrical limits of plate, 
‘0’ to ‘1’. In solving the equations, frequency parameter is obtained which relates the 
dimensionalized frequency to Non-dimensionalized frequency. It is as follows. 

 
Fig. 1. Elliptical plate 

The boundary of an elliptical plate is expressed as: ߦଶ + ଶߟ − 1,	 (1)

where, ߦ = ݔ ܽ⁄  and ߟ = ݕ ܾ⁄  are non-dimensional variables. 
The maximum kinetic energy and the maximum strain energy of an elliptical plate is expressed as: 

௠ܶ௔௫ = 12 	,ݕ݀ݔℎ߱ଶඵܹଶ݀ߩ
஺ 	

௠ܸ௔௫ = ඵܦ12 ൥ቆ߲ଶܹ߲ݔଶ ቇଶ + ቆ߲ଶܹ߲ݕଶ ቇଶ + ߴ2 ቆ߲ଶܹ߲ݔଶ ߲ଶܹ߲ݕଶ ቇ + 2(1 − (ߴ ቆ߲ଶܹ߲ݕ߲ݔቇଶ൩ 	ݕ݀ݔ݀
஺ .	
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Assuming simple harmonic motion and equating the maximum strain energy of the plate to its 
maximum kinetic energy, one obtains in terms of non-dimensional variables as: 

න න ൥ܭସ ቆ߲ଶܹ߲ߦଶ ቇଶ + ቆ߲ଶܹ߲ߟଶ ቇଶඥଵିకమ
ఎୀ଴

ଵ
కୀ଴				 	
ଶܭ+						 ൝2ߴ ቆ߲ଶܹ߲ߦଶ ߲ଶܹ߲ߟଶ ቇ + 2(1 − (ߴ ቆ߲ଶܹ߲ߟ߲ߦቇଶൡ − ߦ݀ߟଶ൩ܹ݀∗ߣ = 0,	 (2)

where frequency parameter ߣ = ∗ߣ√ = ܾ߱ଶඥߩℎ ⁄ܦ , aspect ratio ݇ = ܾ ܽ⁄ ℎଷܧ – flexural rigidity ,ܦ , 12(1 − ⁄(ଶߴ , ℎ is thickness of plate, ߩ = mass density, ߴ – Poisson’s ratio, ܧ  – Young’s 
modulus, ߱ – circular frequency 

For a simply supported elliptical plate, eight term deflection functions for ‘ݓ’ are chosen as: ݓ = (ܽଵ + ܽଶߦଶ + ܽଷߟଶ + ܽସߦଷ + ܽହߟଷ + ܽ଺ߦସ + ܽ଻ߟସ + 	.߶(ହߦ଼ܽ (3)

where ߶ = ଶߦ + ଶߟ − 1, the deflection function in the Eq. (3) satisfies the boundary condition 
with zero edge deflection along the boundary of the plate and (ܽଵ, ܽଶ, ܽଷ …଼ܽ) are Eigen vectors 
of a corresponding Eigen value which are used to plot the mode shape of the natural frequency. 

The number of terms in the deflection function will be varied according to the aspect ratio of 
the plate to be considered. A least upper bound on the frequency is obtained by minimizing Eq. (2) 
with respect to coefficients ܽ௜. Substituting Eq. (3) in to Eq. (2) and carrying out the differentiation 
with respect to ܽ௜ one obtains eight homogenous equations in ܽ௜, it can be formulated as: ൣܯ௣ − ௣൧ሼܽ௜ሽܭ∗ߣ = 0.	 (4)

For a non-trivial solution, the determinant of the coefficient matrix is equated to zero: หܯ௣ − ௣หܭ∗ߣ = 0.	 (5)

Here the matrices ܯ௣ and ܭ௣ are symmetric and both are of order eight with positive definite. 
The components of these matrices are presented in the Appendix A and Appendix B. 

The Eigen values of an elliptical plate can be derived using Eq. (5) and the corresponding 
Eigen vectors can be plotted using Eq. (3-4). The smallest root of the characteristic Eq. (5) gives 
the square of the fundamental frequency parameter. 

3. ICCM for an elliptical plate with a rectangular hole 

Let us consider an elliptical plate with a central rectangular hole as shown in the Fig. 2. 
Considering the non-dimensionalised coordinates as: ߦ௛ = ௖ݔ ܽ௖⁄ ௛ߟ					, = ௖ݕ ܾ௖⁄ 	 (6)

and the displacement inside the hole can be expressed as: ݓ௛(ߦ௛, (௛ߟ = ૖௛(ߦ௛, 	.௛ݍ	(௛ߟ (7)

Which is considered in the ܼ-direction of the plane while plotting the mode shape, where ૖௛൫ߦ௛,ߟ௛൯ = [߶௛ଵ		߶௛ଶ		߶௛ଷ …߶௛௠೓]  is the 1×݉௛  admissible function matrix and  ݍ௛ = ௛ଷݍ		௛ଶݍ		௛ଵݍ] ்[	௛௠೓ݍ	…  is the ݉௛×1  generalized coordinate vector. The admissible 
function with separation of variables is expressed as follows: 
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૖௛௜(ߦ௛, (௛ߟ = ߶௛௜(ߦ௛)Ψ௛௜(ߟ௛),				݅ = 1,2,3, … ,݉௛.	 (8)

where, ݉௛ is defined as number of terms required for the convergence of solution and ߶௛௜(ߦ௛) is 
the assumed deflection function as √2	 sin  in ܺ-direction in such a way that it has to satisfy 		ߦߨ݅
the boundary condition of rectangular plate under simply supported condition, similarly Ψ௛௜(ߟ௛)		is in ܻ-direction. And the conversion of non-dimensional variables between the global 
axes and the local axes will be discussed in the following sessions. 

 
Fig. 2. Elliptical plate with a rectangular hole with local axes 

The kinetic energy and the strain energy of a rectangular plate is expressed as: 

௠ܶ௔௫ = 12 ℎඵߩ ሶܹ ଶ݀ݔ	ݕ݀,	
஺ 			ܸ௠௔௫ = ඵܦ12 ൥ቆ߲ଶܹ߲ݔଶ ቇଶ + ቆ߲ଶܹ߲ݕଶ ቇଶ + ߴ2 ቆ߲ଶܹ߲ݔଶ ߲ଶܹ߲ݕଶ ቇ + 2(1 − ቇଶ൩ݕ߲ݔቆ߲ଶܹ߲(ߴ 	ݕ݀ݔ݀
஺ .	 (9)

Substituting the Eqs. (6), (7) in (9) and solving the following relations are obtained: 

௛ܶ = 12 ሶݍ ሶݍ௛ܯ் ,				 ௛ܸ = 12 	.ݍ௛ܭ்ݍ (10)

Hence the total kinetic and potential energies can be written as: 

௧ܶ௢௧௔௟ = 12 ሶݍ ሶݍܯ் − 12 				,ሶ௛ݍ௛ܯሶ௛்ݍ ௧ܸ௢௧௔௟ = 12 ݍܭ்ݍ − 	,௛ݍ௛ܭ௛்ݍ12 ௛ܯ(11) 	= ௛ܭ				,ഥ௛ܯ	ℎܾܽߩ	 = ଷܾܽܦ 	.ഥ௛ܭ (12)

In which: 

ഥ௛ܯ = න න ૖௛்૖௛	݀ߦ௛݀ߟ௛ଵ
଴

ଵ
଴ ,	 ഥ௛ܭ(13) = න න ቈ߲ଶ߶௛்߲ߦ௛ଶ ߲ଶ߶௛߲ߦ௛ଶ + ௖ସߙ ߲ଶ߶௛்߲ߟ௛ଶ ߲ଶ߶௛߲ߟ௛ଶ + ௖ଶߙߴ ቆ߲ଶ߶௛்߲ߦ௛ଶ ߲ଶ߶௛߲ߟ௛ଶ + ߲ଶ߶௛்߲ߟ௛ଶ ߲ଶ߶௛߲ߦ௛ଶ ቇଵ

଴
ଵ
଴ 								+2(1 − ௖ଶߙ(ߴ ߲ଶ߶௛்߲ߦ௛߲ߟ௛ ߲ଶ߶௛߲ߦ௛߲ߟ௛቉ 	,௛ߟ݀	௛ߦ݀

where ߙ௖ = ܽ௖ ܾ௖⁄ . 
And equating the maximum strain and kinetic energy gives the Raleigh’s quotient:  ഥ߱ = ߱ඥߩℎܽ௖ସ ⁄ܦ , where ഥ߱ is the non-dimensionalized natural frequency, having the relationship 

with the natural frequency. 
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Note that the definite integrals in Eq. (13) has distinctive advantage that it has an integral limit 
from 0 to 1 thus permitting closed form expressions. The displacement matching condition 
between the global and local coordinates should be satisfied inside the hole domain. Hence it can 
be expressed as: ݓ௛(ߦ௛, (௛ߟ = ,ߦ)ݓ 	.(ߟ (14)

The relationship between the non-dimensionalized global and local coordinates can be written 
as: 

ߦ = ௫ܽݎ + ܽ௖ܽ ߟ				,௛ߦ = ௬ܾݎ + ܾ௖ܾ 	.௛ߟ (15)

These relations will be used for the transformation in Eq. (8) as discussed in the earlier. 
Considering Eqs. (3), (7), (8) and inserting them in to Eq. (14) we can derive: 

෍૖௛௝(ߦ௛, ௠೓(ݐ)௛௝ݍ(௛ߟ
௝ୀଵ =෍߶௛௝(ߦ௛)߰௛௝(ߟ௛)ݍ௛௝(ݐ)௠೓

௝ୀଵ = ෍૖௞(௠
௞ୀଵ ,ߦ 	(ݐ)௞ݍ(	ߟ

						= ෍߶௞(ߦ)߰௞(ߟ)ݍ௞(ݐ)௠
௞ୀଵ .	 (16)

In the above mathematical expression, it is expressed that deflection of hole is equals to 
deflection of plate. Multiplying Eq. (16) by ߶௛௜(ߦ௛)߰௛௜(ߟ௛)	 and performing integration, we can 
derive: 

෍න න ߶௛௜(ߦ௛)߰௛௜(ߟ௛)߶௛௝(ߦ௛)߰௛௝(ߟ௛)	݀ߦ௛	݀ߟ௛	ݍ௛௝(ݐ)ଵ
଴

ଵ
଴

௠೓
௝ୀଵ 	
					= ෍න න ߶௛௜(ߦ௛)߰௛௜(ߟ௛)߶௞(ߦ)߰௞(ߟ)	݀ߦ௛	݀ߟ௛	ݍ௞(ݐ),ଵ

଴
ଵ
଴ 				௠

௞ୀଵ ݅ = 1,2, … ,݉௛.	 (17)

Using the orthogonal property of the Eigen functions of the uniform beam, Eq (17) can be 
rewritten as: 

(ݐ)௛௜ݍ = ෍න ߶௛௜(ߦ௛)߶௞(ߦ)݀ߦ௛ 	න ߰௛௜(ߟ௛)߰௞(ߟ)݀ߟ௛	ݍ௞(ݐ)ଵ
଴

ଵ
଴

௠
௞ୀଵ = ෍( ௛ܶ)௜௞ݍ௞(ݐ)௠

௞ୀଵ ,				݅ = 1,2, … ,݉௛.	 (18)

If we express Eq (18) in the matrix form, we can have: ݍ௛ = ௛ܶݍ.	 (19)

where ௛ܶ is the ݉௛×݉ transformation matrix between two coordinates. Inserting Eq. (19) in to 
Eq. (11), we can derive: 

௧ܶ௢௧௔௟ = 12 ሶݍ ሶݍ௣ܯ் − 12 ሶݍ ் ௛்ܶ ௛ܯ ௛ܶݍሶ = 	 12 ሶݍ ሶݍ௥ܯ் ,	
௧ܸ௢௧௔௟ = 12 ݍ௣ܭ்ݍ − ்ݍ12 ௛்ܶ ௛ܭ ௛ܶݍ = 	,ݍ௥ܭ்ݍ12 (20)
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where: ܯ௥ = ௣ܯ − ௛்ܶ ௛ܯ ௛ܶ,				ܭ௥ = ௣ܭ − ௛்ܶ ௛ܭ ௛ܶ.	 (21)

Above equations can be expressed in the form of non dimensionalized parameters: 

௥ܯ = ௥ܭ				,ഥ௥ܯℎܾܽߩ = ଷܾܽܦ 	,ഥ௥ܭ (22)

where: 

ഥ௥ܯ = ௣ܯ − ൫തܽ௖ തܾ௖൯ ௛்ܶ ഥ௛ܯ ௛ܶ,			ܭഥ௥ = ௣ܭ − തܾ௖തܽ௖ଷ ௛்ܶ ഥ௛ܭ ௛ܶ,	 (23)

where: തܽ௖ = ܽ௖ ܽ⁄  and 	ഥܾ௖ = ܾ௖ ܾ⁄ . 
Hence, the non-dimensionalized Eigen value problem can be expressed as: [ܭഥ௥ − ഥ߱ଶܯഥ௥]ܣ = 0.	 (24)

In deriving the mass and stiffness matrices, Eq. (23) for the Eigen value problem, we only 
needed the transformation matrix, 	 ௛ܶ ௣ܯ .  and ܭ௣  can be easily computed using the Eq. (5) 
Compared to the approach based on the global coordinates, the numerical integration for the 
transformation matrix, ௛ܶ, is easy because of the integral limits. The ICCM enables us to solve the 
free vibration problem of the elliptical plate with rectangular hole more easily. 

4. Numerical results 

Numerical calculation started with finding the Eigen values and Eigen vectors of an elliptical 
plate considering the aspect ratio ܾ ܽ⁄ = 0.5 with various terms until the convergence of solution 
is reached and the solutions are validated with the available literature. 

Table 1. Convergence of fundamental frequency parameter, ܾ߱ଶඥߩℎ ⁄ܦ   
for a simply supported elliptical plate with ܾ ܽ⁄ =	0.5 and ߭ = 0.25 

No. of terms in Eq. (3) Solution from Eq. (5)  Reference (1) % error 
5 3.3057   
6 3.2832   
7 3.2832   
8 3.2831 3.281 0.06 % 
9 3.2831   
11 3.2831   
12 3.2831   

The data from the Table 1 concludes that the solution is stable with eight terms of deflection 
function and the obtained solution is very much closer to the solution available in reference [1]. 
Whereas in the reference [4] a stable solution is obtained for 80 terms, which requires more 
computational time than the time required to compute 8 terms, hence it is evident that using the 
present ICCM method, computational time is reduced. 

Now the problem is extended to the title, by inserting a rectangular cut-out with a dimension 
of 0.2×0.1 located at the center of the plate. The independent coordinate coupling method is used 
for the analysis of free vibration under simply supported boundary condition by taking ߭ = 0.3. 

The obtained results are tabulated in Table 2 and validated using ANSYS, since the case of an 
elliptical plate with a rectangular hole cannot be easily handled by the Raleigh-Ritz method due 
to the geometry difference of plate and hole.  
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Table 2. The Frequency parameter, ܾ߱ଶඥߩℎ ⁄ܦ  for a simply supported elliptical plate (ܾ ܽ⁄ =	0.5)  
with a hole (0.2×0.1) at ߭ = 0.3 

Mode sequence number Solution from Eq. (24) Ansys (non-dimensional) % error 
1 3.2735 3.2768 0.1 
2 5.9195 5.9237 0.07 
3 9.5726 9.5741 0.015 
4 11.5228 11.524 0.01 
5 14.4224 14.4239 0.01 
6 15.6364 15.638 0.01 

The authors are also interested to know the variation of fundamental frequency due to the 
change in position of hole. In this regard, the position of a square hole of dimensions (0.1×0.1) is 
varied along the axis symmetry of plate and along the radial line of the elliptical plate as shown 
in the Fig. 3 and Fig. 4. The results are tabulated in the Table 3 and Table 4. The variation of 
fundamental frequency due to the change in position of hole along the axis of symmetry and along 
a radial line of the plate is plotted in the Fig. 5. 

 
Fig. 3. Elliptical plate with a square hole on major axis 

 
Fig. 4. Elliptical plate with a square hole on radial line 

Table 3. SSSS, Values of the frequency coefficients in the case of an Isotropic elliptical plate  
when the position of a cut-out is displaced along the axis of symmetry  

of the plate (ܾ ܽ⁄ =	0.5) with a hole (0.1×0.1) at ߭ = 0.3 
Hole position on major axis 

line, [ܽ௠ ܽ⁄ ] ഥ߱ଵ ഥ߱ଶ ഥ߱ଷ ഥ߱ସ ഥ߱ହ ഥ߱଺ 

0.15 3.2949 5.91424 9.599342 11.53104 14.39573 15.66805 
0.3 3.296872 5.905612 9.606326 11.5294 14.40476 15.67791 

0.45 3.299255 5.901504 9.58866 11.52981 14.42489 15.67627 
0.6 3.301391 5.90438 9.574692 11.53145 14.38792 15.67298 

0.75 3.302993 5.910131 9.582908 11.5331 14.37724 15.67586 
0.9 3.303856 5.913829 9.595233 11.53392 14.40559 15.67955 

Table 4. SSSS, Values of the frequency coefficients in the case of an Isotropic elliptical plate  
when the position of a cut-out is displaced along a radial line of the plate 

Hole position on radial line [	ܽௗ ܽ⁄ ] ഥ߱ଵ ഥ߱ଶ ഥ߱ଷ ഥ߱ସ ഥ߱ହ ഥ߱଺ 

0.1 3.2949 5.9171 9.592768 11.52365 14.41093 15.66394 
0.2 3.2964 5.9125 9.602217 11.5142 14.39696 15.66148 
0.3 3.2984 5.9093 9.604682 11.50968 14.40394 15.64546 
0.4 3.3004 5.9088 9.599752 11.51297 14.4175 15.63149 
0.5 3.3022 5.9117 9.595644 11.52036 14.41791 15.63724 
0.6 3.3036 5.9154 9.597698 11.52734 14.41298 15.65696 

To show how the fundamental frequency is varying due to the change in position of a cut-out 
along the axis of symmetry and along the radial line of plate, the Fig. 5 graph is plotted using the 
data from Table 3 and Table 4. 

Using Eq. (4) the mode shape is plotted to a known frequency, to show how the structure is 
vibrating for the corresponding frequency. The mode shapes obtained from analytical MATLAB 
and a software ANSYS are compared in the Fig. 6. 
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Fig. 5. the variation of fundamental frequency due to the positional change of hole along the axis of 

symmetry and along a radial line 

 
a) Modeshape 1 (ANSYS) 

 
b) Modeshape 1 (MATLAB) 

 
c) Modeshape 2 (ANSYS) 

 
d) Modeshape 2 (MATLAB) 

 
e) Modeshape 3 (ANSYS) 

 
f) Modeshape 3 (MATLAB) 

Fig. 6. Comparison of mode shapes plotted in ANSYS and MATLAB 
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By observing the analytical results obtained from the ICCM and results from a commercial 
software package, ANSYS it is clear that both the results are in good agreement with a 
considerable error hence ICCM gave a good convergence in the analysis of free vibration of 
elliptical plate with a rectangular cut-out.  

The same procedure is applied for a square hole by increasing its size, while keeping all the 
remaining parameters are constant, to observe the effect of hole size on the frequency of vibrating 
structure. The results obtained in this process were plotted in graph (non-dimensional frequency 
vs size of the hole) for the reader convenience as follows. 

 
Fig. 7. First five natural frequencies of SSSS elliptical plate with a concentric square hole 

5. Conclusions 

The free vibration analysis of an elliptical plate has been investigated to obtain the results with 
a stable convergence. The obtained results were validated with the available literature and 
tabulated in the Table 1. The Transformation of global axes of plate domain to the local axes of 
hole domain using deflection matching condition and deriving the kinetic and potential energies 
of hole in a closed form expression, considering it as a virtual free edge plate so that the energies 
of any shaped hole can be easily subtracted from the total energy of the plate, is described by the 
authors which is known as Independent coordinate coupling method. 

An elliptical plate with an aspect ratio (ܾ/ܽ) equal to 0.5 having a rectangular hole of size 
0.2×0.1 at the center of a plate is considered and analyzed under the simply supported boundary 
condition with ߭ = 0.3. The comparison of theoretical ICCM values with a commercial ANSYS 
software in the Table 2, reveals that the results are in good agreement with a negligible error, and 
states that ICCM is a valid tool in the analysis of elliptical plate with a rectangular hole.  

The variation of natural frequency of an elliptical plate with the change in position of cut-out 
along the axis of symmetry and along a radial line is presented in Fig. 5 and the values are 
tabulated in Table 3 and Table 4 respectively. From the Fig. 5 it can be clearly observed that as 
the position of hole is moving towards the center of plate, the fundamental natural frequency value 
is decreasing either in the variation of position of hole along the axis of symmetry or in the 
variation of position of hole along a radial line. The reason behind this phenomenon is, having 
more stiffness at the circumference of plate due to the applied boundary conditions than the 
stiffness at the center of the plate, with a constant mass.  

To study the effect of size of cut-out on the natural frequency of an elliptical plate, a plate with 
Central Square cut-out of various sizes are assumed and analyzed. The results are plotted in the 
Fig. 7 which concludes that the increase in size of the hole will lead to increase in the frequency 
of the plate, in the range of 0.1 ≤ ܽ௖ ܽ⁄ ≤ 0.2  and then decreases in the range of  
0.2 ≤ ܽ௖ ܽ⁄ ≤ 0.3  

Hence it is clear that the position and size of hole is having a significant effect on the 
fundamental natural frequency of the plate. And as the Plate geometry is symmetric about the axes 
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it is also noticed that the same values are obtaining on the other side of the symmetric axis of the 
plate. 
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Appendix 

A1. The components of mass matrix ‘ࡼࡹ’ in the Eq. (5) are as follows 11ܯ = ߨ2 + ସܭߨ2	 + 12ܯ  ,ଶ߭ܭߨ4 = ߨ 2⁄ + ସܭߨ3 2⁄ + 13ܯ  ,ଶ߭ܭߨ2 = ߨ3 2⁄ + ସܭߨ 2⁄ + 14ܯ  ,ଶ߭ܭߨ2 = 16 15⁄ + ସܭ64 15⁄ + ଶ߭ܭ16 3⁄ 15ܯ  , = 64 15⁄ + ସܭ16 15⁄ + ଶ߭ܭ16 3⁄ 16ܯ  , = ߨ 4⁄ + ସܭߨ5 4⁄ + ଶ߭ܭߨ3 2⁄ 17ܯ  , = ߨ5 4⁄ + ସܭߨ 4⁄ + ଶ߭ܭߨ3 2⁄ 18ܯ  , = 64 105⁄ + ସܭ128 35⁄ + ଶ߭ܭ64 15⁄ 21ܯ  , = ߨ 2⁄ + ସܭߨ3 2⁄ + 22ܯ  ,ଶ߭ܭߨ2 = ߨ 4⁄ + ଶܭߨ2 3⁄ + ସܭߨ21 4⁄ + ଶ߭ܭߨ3 2⁄ 23ܯ  , = ߨ 4⁄ + ଶܭߨ2 3⁄ + ସܭߨ 4⁄ + ଶ߭ܭߨ 2⁄ 24ܯ  , = 64 105⁄ + ଶܭ64 35⁄ + ସܭ576 35 +⁄ ଶ߭ܭ64 15⁄ 25ܯ  , = 64 105⁄ + ଶܭ64 35⁄ + ସܭ16 35 +⁄ ଶ߭ܭ16 15⁄ ,  
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26ܯ = ߨ5 32⁄ + ଶܭߨ 2⁄ + ସܭߨ163 32⁄ + ଶ߭ܭߨ5 4⁄ 27ܯ  , = ߨ5 32⁄ + ଶܭߨ 2⁄ + ସܭߨ3 32⁄ + ଶ߭ܭߨ 4⁄ 28ܯ  , = 128 315⁄ + ଶܭ256 189⁄ + ସܭ4864 315 +⁄ ଶ߭ܭ128 35,⁄ 31ܯ   = ߨ3 2⁄ + ସܭߨ 2⁄ + 32ܯ  ,ଶ߭ܭߨ2 = ߨ 4⁄ + ଶܭߨ2 3⁄ + ସܭߨ 4⁄ + ଶ߭ܭߨ 2⁄ 33ܯ  , = ߨ21 4⁄ + ଶܭߨ2 3⁄ + ସܭߨ 4⁄ + ଶ߭ܭߨ3 2,⁄ 34ܯ   = 16 35⁄ + ଶܭ64 35⁄ + ସܭ64 105 +⁄ ଶ߭ܭ16 15⁄ 35ܯ  , = 576 35⁄ + ଶܭ64 35⁄ + ସܭ64 105 +⁄ ଶ߭ܭ64 15,⁄ 36ܯ   = ߨ3 32⁄ + ଶܭߨ 2⁄ + ସܭߨ5 32⁄ + ଶ߭ܭߨ 4⁄ 37ܯ  , = ߨ163 32⁄ + ଶܭߨ 2⁄ + ସܭߨ5 32⁄ + ଶ߭ܭߨ5 4,⁄ 38ܯ   = 64 315⁄ + ଶܭ256 189⁄ + ସܭ128 315 +⁄ ଶ߭ܭ64 105,⁄ 41ܯ   = 16 15⁄ + ସܭ64 15⁄ + ଶ߭ܭ16 3⁄ 42ܯ  , = 64 105⁄ + ଶܭ64 35⁄ + ସܭ576 35 +⁄ ଶ߭ܭ64 15⁄ 43ܯ  , = 16 35⁄ + ଶܭ64 35⁄ + ସܭ64 105 +⁄ ଶ߭ܭ16 15⁄ 44ܯ  , = ߨ5 32⁄ + ଶܭߨ9 16⁄ + ସܭߨ185 32⁄ + ଶ߭ܭߨ5 4⁄ 45ܯ  , = 1 3⁄ + ଶܭ3 2⁄ + ସܭ 3 +⁄ ଶ߭ܭ2 3⁄ 46ܯ  , = 128 315⁄ + ଶܭ512 315⁄ + ସܭ5888 315 +⁄ ଶ߭ܭ128 35⁄ 47ܯ  , = 16 63⁄ + ଶܭ128 105⁄ + ସܭ64 315 +⁄ ଶ߭ܭ16 35⁄ 48ܯ  , = ߨ7 64⁄ + ଶܭߨ15 32⁄ + ସܭߨ381 64⁄ + ଶ߭ܭߨ35 32⁄ 51ܯ  , = 64 15⁄ + ସܭ16 15⁄ + ଶ߭ܭ16 3⁄ 52ܯ  , = 64 105⁄ + ଶܭ64 35⁄ + ସܭ16 35 +⁄ ଶ߭ܭ16 15⁄ 53ܯ  , = 576 35⁄ + ଶܭ64 35⁄ + ସܭ64 105 +⁄ ଶ߭ܭ64 15⁄ 54ܯ  , = 1 3⁄ + ଶܭ3 2⁄ + ସܭ 3 +⁄ ଶ߭ܭ2 3⁄ 55ܯ  , = ߨ185 32⁄ + ଶܭߨ9 16⁄ + ସܭߨ5 32⁄ + ଶ߭ܭߨ5 4⁄ 56ܯ  , = 64 315⁄ + ଶܭ128 105⁄ + ସܭ16 63 +⁄ ଶ߭ܭ16 35⁄ 57ܯ  , = 5888 315⁄ + ଶܭ512 315⁄ + ସܭ128 315 +⁄ ଶ߭ܭ128 35⁄ 58ܯ  , = 2 15⁄ + ଶܭ + ସܭ 5 +⁄ ଶ߭ܭ 3⁄ 61ܯ  , = ߨ 4⁄ + ସܭߨ5 4⁄ + ଶ߭ܭߨ3 2⁄ 62ܯ  , = ߨ5 32⁄ + ଶܭߨ 2⁄ + ସܭߨ163 32⁄ + ଶ߭ܭߨ5 4⁄ 63ܯ  , = ߨ3 32⁄ + ଶܭߨ 2⁄ + ସܭߨ5 32⁄ + ଶ߭ܭߨ 4⁄ 64ܯ  , = 128 315⁄ + ଶܭ512 315⁄ + ସܭ5888 315 +⁄ ଶ߭ܭ128 35⁄ 65ܯ  , = 64 315⁄ + ଶܭ128 105⁄ + ସܭ16 63 +⁄ ଶ߭ܭ16 35⁄ 66ܯ  , = ߨ7 315⁄ + ଶܭ128 105⁄ + ସܭ16 63 +⁄ ଶ߭ܭ16 35⁄ 67ܯ  , = ߨ3 64⁄ + ଶܭߨ3 10⁄ + ସܭߨ3 64 +⁄ ଶ߭ܭߨ3 32⁄ 68ܯ  , = 1024 3465⁄ + ଶܭ1024 693⁄ + ସܭ2048 99 +⁄ ଶ߭ܭ1024 315⁄ 71ܯ  , = ߨ5 4⁄ + ସܭߨ 4⁄ + ଶ߭ܭߨ3 2⁄ 72ܯ  , = ߨ5 32⁄ + ଶܭߨ 2⁄ + ସܭߨ3 32⁄ + ଶ߭ܭߨ 4⁄ 73ܯ  , = ߨ163 32⁄ + ଶܭߨ 2⁄ + ସܭߨ5 32⁄ + ଶ߭ܭߨ5 4⁄ 74ܯ  , = 16 63⁄ + ଶܭ128 105⁄ + ସܭ64 315 +⁄ ଶ߭ܭ16 35⁄ 75ܯ  , = 5888 315⁄ + ଶܭ512 315⁄ + ସܭ128 315 +⁄ ଶ߭ܭ128 35⁄ 76ܯ  , = ߨ3 64⁄ + ଶܭߨ3 10⁄ + ସܭߨ3 64 +⁄ ଶ߭ܭߨ3 32⁄ 77ܯ  , = ߨ2043 320⁄ + ଶܭߨ 2⁄ + ସܭߨ7 64⁄ + ଶ߭ܭߨ35 32⁄ 78ܯ  , = 64 693⁄ + ଶܭ512 693⁄ + ସܭ128 1155 +⁄ ଶ߭ܭ64 315⁄ 81ܯ  , = 64 105⁄ + ସܭ128 35⁄ + ଶ߭ܭ64 15⁄ 82ܯ  , = 128 315⁄ + ଶܭ256 189⁄ + ସܭ4864 315 +⁄ ଶ߭ܭ128 35⁄ 83ܯ  , = 64 315⁄ + ଶܭ256 189⁄ + ସܭ128 315 +⁄ ଶ߭ܭ64 105⁄ 84ܯ  , = ߨ7 64⁄ + ଶܭߨ15 32⁄ + ସܭߨ381 64⁄ + ଶ߭ܭߨ35 32⁄ 85ܯ  , = 2 15⁄ + ଶܭ + ସܭ 5 +⁄ ଶ߭ܭ 3⁄ 86ܯ  , = 1024 3465⁄ + ଶܭ1024 693⁄ + ସܭ2048 99 +⁄ ଶ߭ܭ1024 315⁄ 87ܯ  , = 64 693⁄ + ଶܭ512 693⁄ + ସܭ128 1155 +⁄ ଶ߭ܭ64 315⁄ ,  
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88ܯ = ߨ21 256⁄ + ଶܭߨ175 384⁄ + ସܭߨ1781 256	⁄ 	+ ߨ63 ଶ߭ܭ 64⁄ ,  
A2. The components of stiffness matrix ࡼࡷ in the Eq. (5) are as follows: 11ܭ = ߨ 6⁄ 12ܭ , = ߨ 48⁄ 13ܭ , = ߨ 48⁄ 14ܭ , = 32 945⁄ 15ܭ , = 32 945⁄ 16ܭ , = ߨ 160⁄ 17ܭ , = ߨ 160⁄ 18ܭ , = 128 10395,⁄ 21ܭ  = ߨ 48⁄ 22ܭ , = ߨ 160⁄ 23ܭ , = ߨ 480⁄ 24ܭ , = 128 10395,⁄ 25ܭ  = 32 10395,⁄ 26ܭ  = ߨ 384⁄ 27ܭ , = ߨ 1920⁄ 28ܭ , = 256 45045⁄ 31ܭ , = ߨ 48⁄ 32ܭ , = ߨ 480⁄ 33ܭ , = ߨ 160⁄ 34ܭ , = 32 10395⁄ 35ܭ , = 128 10395⁄ 36ܭ , = ߨ 1920⁄ 37ܭ , = ߨ 384⁄ 38ܭ , = 128 13513,⁄ 41ܭ  = 32 945⁄ 42ܭ , = 128 10395⁄ 43ܭ , = 32 10395⁄ 44ܭ , = ߨ 384⁄ 45ܭ , = 1 720⁄ 46ܭ , = 256 45045,⁄ 47ܭ  = 32 45045⁄ 48ܭ , = ߨ 768⁄ 51ܭ , = 32 945⁄ 52ܭ , = 32 10395⁄ 53ܭ , = 128 10395⁄ 54ܭ , = 1 720⁄ 55ܭ , = ߨ 384⁄ 56ܭ , = 32 45045⁄ 57ܭ , = 256 45045⁄ 58ܭ , = 1 2520⁄ 61ܭ , = ߨ 160⁄ 62ܭ , = ߨ 384⁄ 63ܭ , = ߨ 1920⁄ 64ܭ , = 256 45045⁄ 65ܭ , = 32 45045⁄ 66ܭ , = ߨ 768⁄ 67ܭ , = ߨ 8960⁄ 68ܭ , = 2048 675675,⁄ 71ܭ  = ߨ 160⁄ 72ܭ , = ߨ 1920⁄ 73ܭ , = ߨ 384⁄ 74ܭ , = 32 45045⁄ 75ܭ , = 256 45045⁄ 76ܭ , = ߨ 8960⁄ 77ܭ , = ߨ 768⁄ 78ܭ , = 128 675675,⁄ 81ܭ   = 128 10395⁄ 82ܭ , = 256 45045⁄ 83ܭ , = 128 13513⁄ 84ܭ , = ߨ 768⁄ 85ܭ , = 1 2520⁄ 86ܭ , = 2048 675675,⁄ 87ܭ  = 128 675675⁄ 88ܭ , = ߨ3 4096⁄ . 
A3. Simply supported boundary condition in ANSYS: under simply supported boundary 

Condition the displacement and bending moment must be zero. 
If ܥ is the boundary of the plate as shown in Fig. 8 Then, we require one of the following 

conditions on ܥ: 
Either ܯక = 0 or ߲ݓ ⁄ߦ߲  is prescribed where ߦ denotes the normal to the plate	boundary.	
Either ܳక కആܯ߲	+ ⁄ߟ߲ = 0	or ݓ is prescribed, where ߟ denotes the tangent to the boundary. 
From the above, we have the following boundary conditions for a plate under Simply 

supported boundary condition ܹ = 0 and ܯక = 0 on ܥ. 
Note: For more information regarding boundary conditions please refer reference [16], page 

number 100. 

 
Fig. 8. Position of path ܥ with normal and tangent 
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