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Abstract. Plate-like structures in real mechanical system is always simplified and modeled as an 
elastically restrained thin plate loaded with stiffness or mass. The dynamic model of the plate 
distinguished with previous classic model is complex vibrational characteristics and merely 
proposed by numerical method. Accordingly, identification of harmonic load acting on this plate 
becomes difficult for hardly obtaining inverse equations or matrix from its response functions 
directly. To solve this problem, dynamic model of the plate is established by numeric method and 
combined with particle swarm optimization (PSO) method to reconstruct harmonic load by 
minimizing total error between vibration responses in identification and test. Then, it is used to 
deal with acceleration responses tested in an elastically supported plate derived by a harmonic 
load. Parameters of the harmonic load are identified and found to agree with those of real source 
by their comparison. Thus, it is concluded that harmonic load driving on the plate linked with 
elastic boundary and attachment can be identified accurately by proposed numeric model of this 
paper. Furthermore, acceleration distribution of the plate at modal frequencies and responses at 
different test point, which are acquired from identification and test, are demonstrated and 
discussed. It is revealed that the numeric model proposed in this paper identifies parameters of 
harmonic load mainly through tendency of vibration distribution on the plate, and the accuracies 
of its reconstruction results at some locations are limited. 
Keywords: load identification, particle swarm optimization method, theory of thin plate. 

1. Introduction 

Plate-like structures widely exist and take important parts in mechanical system of spacecraft, 
ships and vehicles. Harmonic load on those structures cannot be measured or directly tested in 
some special environments, such as aerodynamic force on wings of flying vehicles. Meanwhile, 
those loads are often used as input sources for structural dynamic analysis and considered as 
important parameters in structural design or optimization stage [1-3]. Hence, it is essential to study 
an approach to identify harmonic load driving on those structures by using known results from 
vibrational test. 

Identification of harmonic load acting on structure belongs to an inverse problem of structural 
analysis and these topics have been widely studied in recently years [4-6]. All these researches 
about load identification can be divided into direct methods and optimization methods [6]. The 
direct methods mainly include inverse method [7-11], regularization method [12, 13] and other 
numeric method [14, 15]. They are always used to perfectly solve the identification problem, 
whose model can be modeled by analytic method or described exactly by a mathematic method. 
When the identification model merely described and established by complex numeric method, 
calculation efficiency of the direct method will decline greatly and the optimization methods are 
prefer to be applied to reconstruct load [16-20]. The main idea of the optimization method is using 
optimizations method to make reconstructed response of the numeric model approaching to 
response in measurement, in which the process of solution is independent on inverse or 
regularization expressions of the numeric model. Thus, the more complex the numeric model is, 
the more advantages the optimization methods have. 

The thin plate-like structure in engineering system is often simplified as an elastically 
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restrained thin plate loaded with stiffness and masses [21]. In the model, rational and rotational 
stiffness linked to boundary of the plate are used to simulate elastic boundary. The stiffness and 
masses connected on the surface of the plate are applied to model structure fixed on the plate. 
Because of the complex numeric expression of the model, it is difficult to obtain inverse function 
of the plate and suitable to apply optimizations method to reconstruct harmonic load working on 
the plate. Hence, PSO method is introduced and applied to establish numeric model, in which the 
difference between reconstruction responses of built model and measurement are minimized to 
identify harmonic load. Then, acceleration response of a thin plate linked with elastic supports are 
tested and input into the model to reconstruct parameters of driving force. To validate the numeric 
modal, identification results and values of real load are compared to each other latterly. At last, 
the acceleration distribution of the plate at modal frequencies and acceleration response at 
different test point, which are obtained from reconstruction analysis and test, are compared to 
discuss accuracy of the model. 

2. Theory of identifying harmonic load 

2.1. Ideas of identification 

In the problem of harmonic load identification，the structural parameters are always known 
or obtained previously. So, the dynamic model of the droved structure can be established by 
numerical method firstly. And the structural responses are calculated by suppositional input force ௫݂ at location (ݔி, ݕி) at different frequencies accordingly. Then, these results are compared with 
the tested results at same positions and frequencies to obtain total error, which is written as  
follows: 

௫,௬ߝ = ෍ ට∑ หݔ)ܣ௜, ,௜ݕ ߱) − ,௜ݔ)ܣ ,௜ݕ ߱)หଶ௡௜ୀଵ ඥ∑ ,௜ݔ)ܣ| ,௜ݕ ߱)|ଶ௡௜ୀଵ
ఠభ

௝ୀఠబ , (1)

where ߝ௫,௬ is total error between the calculated and tested results in rang of analysis frequencies. ݔ)ܣ௜, ,௜ݕ ߱) is acceleration tested at location (ݔ௜ ௜ݕ , ) with driving force ௦݂(߱), ݔ)ܣ௜, ,௜ݕ ߱) is 
acceleration response calculated from theoretic model with load ௫݂(߱) at same location. At last, 
the minimum of the total error is obtained by using optimal method and the corresponded 
parameters of suppositional load in dynamic model are considered as the real load acting on the 
structure. 
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Fig. 1. Sketch map of plate with arbitrary boundary and load 

2.2. Dynamic theory of the thin plate linked with elastic supports and attachments  

In real engineering system, the plate-liked structures are always connected to the other 
structures’ elastic boundary and jointed with mass or other elastic bodies. This situation can be 
simplified and shown as Fig. 1, in which harmonic load driving on plate is force ݂݁௝ఠబ௧ at location 
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 :The governing equation of the plate is written as .(ிݕ ,ிݔ)

ܦ ߲ସݔ)ݓ, ݔସ߲(ݕ + ܦ2 ߲ଶݔ)ݓ, ݕଶ߲ݔଶ߲(ݕ + ܦ ߲ସݔ)ݓ, ݕସ߲(ݕ  
       − ൮ߩℎ߱ଶ − ෍ ݇௜ ௜ܷ௞(ݔ, (ݕ + ߱ଶ ෍ ݉௜ே೘

௜ୀଵ
ேೖ
௜ୀଵ ௜ܷ௠(ݔ, ൲(ݕ ,ݔ)ݓ  (ݕ

       − ෍ ௜ܭ ߲ቀ ௜ܷ௄(ݔ, ,ݔ)ݓ(ݕ ே಼ݔቁ߲(ݕ
௜ୀଵ = ݔ)ߜ݂ − ,ிݔ ݕ −  ,(ிݕ

(2)

where ݇௜, ݉௜, ܭ௜ are the tensional stiffness, mass and torsional stiffness acting on plate separately; ௜ܷ௞(ݔ, ,ݔ)௜ܷ௠ ,(ݕ ,ݔ)௜ܷ௄ ,(ݕ  ℎ are bending ,ߩ ,ܦ ;are their distribution functions accordingly (ݕ
stiffness ,density and thickness of the plate; ݔி, ݕி is position of load and ݂ is value of driving 
force. 

The elastic boundary conditions are simplified and built as follows: 

۔ە
ݓ௫଴݇ۓ = ܳ௫, ௫଴ܭ ݔ߲ݓ߲ = ,௫ܯ− ݔ = 0,݇௬଴ݓ = ܳ௬, ௬଴ܭ ݕ߲ݓ߲ = ,௬ܯ− ݕ = ۔ە    ,0

ݓ௫௔݇ۓ = −ܳ௫, ௫௔ܭ ݔ߲ݓ߲ = ,௫ܯ ݔ = ݈௔,݇௬௕ݓ = −ܳ௬, ௬௕ܭ ݕ߲ݓ߲ = ,௬ܯ ݕ = ݈௕, (3)

where, ݇௫଴, ܭ௫଴ are the tensional and torsional stiffness at location where ݔ is equal to 0, ݇௫௔, ܭ௫௔ 
are those parameters at location where ݔ is equal to ݈௔; ݇௬଴, ܭ௬ are the tensional and torsional 
stiffness locating at y equal to 0; ݇௬௕, ܭ௬௕ are those stiffness locating at y equal to ݈௕; ܳ௫, ܳ௬, ܯ௫, ܯ௬ are shear force and bending moment in ݕ ,ݔ direction separately; ݈௔, ݈௕ are length and width 
of the plate. 

According to reference [21], the numerical solution of the plate constrained with arbitrary 
conditions and different load is obtained as: 

,ݔ)ݓ (ݕ = ෍ ෍ ௔௠ஶߣ௠௡cosܣ
௡ୀ଴

ஶ
௠ୀ଴  ݕ௕௡ߣcosݔ

       + ෍ ൭ߦ௕௟ (ݕ) ෍ ܿ௠௟ cosߣ௔௠ݔ +ஶ
௠ୀ଴ ௔௟ߦ (ݔ) ෍ ݀௡௟ஶ

௡ୀ଴ cosߣ௕௡ݕ)൱ସ
௟ୀଵ . (4)

The detail definition of the equation can be reached in reference [21]. Substitute the Eq. (4) 
substituted into Eq. (3) and multiplies ∑ ∑ cosߣ௔௠ݔcosߣ௕௡ݕஶ௡ୀ଴ஶ௠ୀ଴  at its both sides. Then, the 
equation is integrated from 0 to ݈௔ and 0 to ݈௕ with ݕ ,ݔ variable at both sides and described in 
matrix form as: 

቎۳௭(۹ܦ − (ۻℎ߱ଶߩ + ෍(݇௜۵௜௞) − ෍(݉௜߱ଶ۵௜௠) + ෍(ܭ௜۵௜௄)ே಼
௜ୀଵ

ே೘
௜ୀଵ

ேೖ
௜ୀଵ ቏ ܉ = (5) ,(ி܂)݂

where, ۹ = ۹ + ۰۶ିଵۿ, ۻ  = ۻ + ۴۶ିଵۿ,  ۵௜௠ = ܉௜௠ۻ + ۴௜௠ܘ,  ۵௜௞ = ܉௜௞ۻ + ۴௜௞۵  ,ܘ௜௄ = ܉௜௄ۻ + ۴௜௄۳ .ܘ௭ is ܰܯ×ܰܯ diagonal matrix and ܂ி is 1×ܰܯ matrix. The cell elements in 
above matrices are written as follows: 
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۳௭(௠ேା௡,௠ேା௡) = ݈௔݈௕4 ௜,(௠ேା௡,௜ேା௝)௞ۻ , = න න ௜ܷ௞(ݔ, ௟್଴(ݔ௔௜ߣcosݔ௔௠ߣcos)(ݕ
௟ೌ଴ ൫cosߣ௕௡ݕcosߣ௕௝ݕ൯݀ݕ݀ݔ, 

۔ۖەۖ
۴௜,(௡ெା௠,௟)௞ۓ = ௡௟ߚ ෍ ෍ න න ௜ܷ௞(ݔ, ௟್଴(ݔ௔௜ߣcosݔ௔௠ߣcos)(ݕ

௟ೌ଴ (cosߣ௕௡ݕcosߣ௕௝ݕ)݀ݕ݀ݔே
௝ୀ଴

ெ
௜ୀ଴ ,

۴௜,(௠ேା௡,௟ାସ)௞ = ௠௟ߙ ෍ ෍ න න ௜ܷ௞(ݔ, ௟್଴(ݔ௔௜ߣcosݔ௔௠ߣcos)(ݕ
௟ೌ଴ ൫cosߣ௕௡ݕcosߣ௕௝ݕ൯݀ݕ݀ݔ,ே

௝ୀ଴
ெ

௜ୀ଴
 

௜,(௠ேା௡,௜ேା௝)௠ۻ = න න ௜ܷ௠(ݔ, ௟್଴(ݔ௔௜ߣcosݔ௔௠ߣcos)(ݕ
௟ೌ଴ ൫cosߣ௕௡ݕcosߣ௕௝ݕ൯݀ݕ݀ݔ, 

۔ۖەۖ
۴௜,(௡ெା௠,௟)௠ۓ = ௡௟ߚ ෍ ෍ න න ௜ܷ௠(ݔ, ௟್଴(ݔ௔௜ߣcosݔ௔௠ߣcos)(ݕ

௟ೌ଴ (cosߣ௕௡ݕcosߣ௕௝ݕ)݀ݕ݀ݔே
௝ୀ଴

ெ
௜ୀ଴ ,

۴௜,(௠ேା௡,௟ାସ)௠ = ௠௟ߙ ෍ ෍ න න ௜ܷ௠(ݔ, ௟್଴(ݔ௔௜ߣcosݔ௔௠ߣcos)(ݕ
௟ೌ଴ ൫cosߣ௕௡ݕcosߣ௕௝ݕ൯݀ݕ݀ݔ,ே

௝ୀ଴
ெ

௜ୀ଴
 

௜,(௠ேା௡,௜ேା௝)௄ۻ = න න ߲ ௜ܷ௄(ݔ, ݔ߲(ݕ (cosߣ௔௠ݔcosߣ௔௜ݔ)௟್଴
௟ೌ଴ ൫cosߣ௕௡ݕcosߣ௕௝ݕ൯݀ݕ݀ݔ, 

۔ۖەۖ
۴௜,(௡ெା௠,௟௠)௄ۓ = ௡௟ߚ ෍ ෍ න න ߲ ௜ܷ௄(ݔ, ݔ߲(ݕ (cosߣ௔௠ݔcosߣ௔௜ݔ)௟್଴

௟ೌ଴ ൫cosߣ௕௡ݕcosߣ௕௝ݕ൯݀ݕ݀ݔ,ே
௝ୀ଴

ெ
௜ୀ଴۴௜,(௠ேା௡,୪୬)௄ = ௠௟ߙ ෍ ෍ න න ߲ ௜ܷ௄(ݔ, ݔ߲(ݕ (cosߣ௔௠ݔcosߣ௔௜ݔ)௟್଴

௟ೌ଴ (cosߣ௕௡ݕcosߣ௕௝ݕ)݀ݕ݀ݔே
௝ୀ଴

ெ
௜ୀ଴ (௠௡)۴܂ ,  = cos(ߣ௔௠ ݔி)cos(ߣ௕௡ݕி), 

and ߙ௠௟ ௡௟ߚ ,  .are the same as those in reference [21] ܉ ,ܘ ,۴ ,۰ ,ۻ ,۹ ,
The harmonic response of the plate at (ݔ௟, ݕ௟) position can be expressed in matrix form and 

written as: ݔ)ݓ௟, (௟ݕ = ଵܘ · ۻ · (6) ,܉

where, ܘଵ is 1×ܰܯ matrix, ݌ଵ,఑ = cos(ߣ௔௠ݔ௟)cos(ߣ௕௡ݔ௟), ߢ = ܯ݊ + ݉. 
Set ۱ = ۳௭(۹ܦ − (ۻℎ߱ଶߩ + ∑ (݇௜۵௜௞) − ∑ (݉௜߱ଶ۵௜௠) + ∑ ே಼௜ୀଵே೘௜ୀଵே೔௜ୀଵ(௜۵௜௄ܭ) , Eq. (6) can be 

simplified by combing the Eqs. (6) and (7) as: ݔ)ݓ௟, (௟ݕ = ݂ ⋅ ଵܘ ⋅ ۻ ⋅ (ܥ)ݒ݊݅ ⋅ ி. (7)܂

The corresponding acceleration at (ݔଵ, ݕଵ) point is: ݔ)޿ଵ, ,ଵݕ ߱) = ݂ ⋅ ଵܘ ⋅ ۻ ⋅ (۱)ݒ݊݅ ⋅ ி܂ ⋅ ߱ଶ. (8)

2.3. Application of particle swarm optimization method 

It is obviously seen that the object function of optimization depends on acceleration test results 
of an elastically supported thin plate by using Eq. (1). While, many uncertain factors, like errors 
of test system or differences between real and designed test system, could make measurement 
results having some uncertain properties. Then, the stochastic characteristics are transferred into 
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object function through Eq. (1) and the optimization becomes an uncertain searching problem. 
Because deterministic optimization algorithm is always used to solve certain optimal problem, it 
is unsuitable for stochastic optimization in this paper and an evolutionary optimization algorithm 
should be selected to search minimum value of the object function. 

The PSO method is a stochastic evolutionary optimization algorithm and was originally 
proposed by Kennedy and Eberhart [22], based on the social behavior of collection of animals. It 
is applied to solve many optimization problems in identification related area with advantages of 
high efficiency and fast convergence [23-24]. Even for above mentioned applications, it has been 
reported that the PSO performs better than other evolutionary optimization algorithms in terms of 
success rate and solution quality [23-25]. In addition, it easiness of implementation makes it more 
convenient as it does not required specific domain knowledge information, internal transformation 
of variables or other manipulations to handle constraints. Furthermore, it is a population-based 
algorithm, so it can be efficiently parallelized to reduce the total computational effort [26]. Thus, 
the optimal method used to reconstruct parameters of load is selected as PSO technique and 
introduced into comparison between responses of numerical model and measurement. In this  
paper, the processes of optimization are executed as follow: 

(1) Chaotic initialization. According to a typical chaotic system, each component values in the ܰ-dimensional vector is ۲ଵ = (݀ଵଵ, ݀ଵଶ, … , ݀ଵ௡), in which elements ݀ଵ௡ locate between 0 and 1. 
They are generated by Logistic Mapping iterative formula and shown as: ݀௜ାଵ,௝ = ௜,௝൫1݀ߤ − ݀௜,௝൯, ߤ = 4, (9)

where ݅ = 1, 2,…, ܰ, ݆ = 1, 2,…, ܰ. Through solution of Eq. (9), ܰ vectors are obtained and 
transferred to each parameter vectors of load ܢ௜ inside their boundary. It can be written as: ݖ௜௝ = ௝ݐ + ൫ݏ௝ − ௝൯݀௜௝, (10)ݐ

where, ݖ௜௝  is ݆ th parameters value of load, ݐ௝ ௝ݏ ,  are top and bottom limits of the ݆ th load 
parameters which are need to be identified. All those parameters are substituted into Eq. (8) to 
obtain structural acceleration response ݔ)ܣ௜, ,௜ݕ ߱) latterly. Then, the total error of every particle 
can be calculated by comparing analytic results ݔ)ܣ௜, ,௜ݕ ߱) with measurement results ݔ)ܣ௜, ,௜ݕ ߱) 
and summarized in a matrix. From those results in the matrix, ܯ solutions which are performed 
best in minimization of the errors ߝ௫,௬ are chosen as initial vector of location for optimization. 
Accordingly, ܯ initial velocity vector ܞ୧, ݅  .are generated randomly ܯ ,…,2 ,1 =

(2) Assign values of ݅th parameters vector ܢ௜ to optimal positions of the individual particles 
vector ܠ܊ܘ௜  which presents local optimization value of load identification parameters. Then, 
substitute them into the Eq. (8) to calculate acceleration responses. Through comparing 
acceleration of calculation and test by Eq. (1), the total errors ߝ௫,௬ are acquired and set as the 
individual particle extreme value vector ܎܊ܘ . Also, the global extreme value ܾ݂݃  and its 
corresponding reconstruction results ܾ݃ݔ  are obtained from particle extreme and position by 
searching the minimum total error. 

(3) The particles move along the search space and exchange information with other particles 
to renew ݅th variable and load identification results, in accordance with the following equations: 

ቊݒ௜,௞ାଵ = ௜,௞ݒ߬ + ߮ଵݎଵ൫ܠ܊ܘ௜,௞ − ௜,௞൯ݖ + ߮ଶݎଶ൫ܠ܊܏௞ − ௜,௞ାଵݖ,௜,௞൯ݖ = ௜,௞ݖ + ,௜,௞ାଵݒ  (11)൜ݒ௜,௞ାଵ = ௜,௞ାଵݒ     ,୫ୟ୶ݒ > ௜,௞ାଵݒ,୫ୟ୶ݒ = ௜,௞ାଵݒ     ,୫୧୬ݒ < ,୫୧୬ݒ  (12)

where ݅ ݇ ;ܯ ,…,2 ,1 = = 1, 2,…, ݊; ߬ is weight factor, ߮ଵ and ߮ଶ are search parameters; ݎଵ and ݎଶ are two random numbers with uniform distribution in the range [0, 1]; [ݒ௠௜௡, ݒ௠௔௫] are the 
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upper and lower limits of the parameter changes in each iteration.  
(4) Substitute renewed load parameter ܢ௜  into Eq. (8) to obtain structural acceleration response. 

Then, the total errors between simulation and measurement are calculated with Eq. (1) and 
transferred into ݅th value of vector ܎ܕ௜ . If ܎ܕ௜ < ௜܎܊ܘ , load parameters ܢ௜  replace the optimal 
position of the individual particles ܠ܊ܘ௜ and value of ܎ܕ௜ is assigned to ܎܊ܘ௜. Accordingly, all 
load parameter and errors are updated. Otherwise that of individual particles will not be updated. 

(5) The global extreme value ܾ݂݃ is found out by comparing extreme individual particles ܎܊ܘ 
and its corresponding location ܾ݃ݔ, which represents identification parameters of load, is obtained 
as same time. 

(6) In iterations of optimization, repeat steps (3)-(5). The flow chart of optimization procedure 
is shown as Fig. 2. 

 
Fig. 2. Flow chart of optimization procedure 

3. Certification experiment and discussions 

To validate accuracy of the numeric model, a test system is built to measure vibration 
responses of a thin plate supported by elastic boundary with one harmonic driving load. Length 
and width of the steel thin plate, which is 2 mm thickness, are 0.5 m and 0.48 m separately. The 
whole plate is surrounded and supported by four rubber bars to simulate elastic boundary and the 
vibration exciter is connected to driving point which locates at (0.19 m, 0.07 m) in coordinate 
system of the plate. For measuring structural vibration distribution, the plate is divided into 
twenty-five blocks and every center of blocks is test by a B&K4384 accelerator. The origin of 
coordinate on the plate locates at its bottom left corner and the number of test point is graded in ܵ 
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order around its surface, which is drawn in Fig. 3. With considering the effect of accelerator 
masses on the test, only three accelerators are used in measurement. Two accelerators move 
around the plate to test acceleration of every block at different test times and the other one is used 
to normalize tested results of these two accelerator. At the exaction point, an impedance head is 
used to connect vibration exciter and the plate to measure input force. The whole experimental 
sets are shown in Fig. 4. 

 
Fig. 3. Numbering of test point on the plate 

 
Fig. 4. Photo of measuring acceleration response in the plate 

The vibration energy of the plate is calculated from accelerations at different point and shown 
as Fig. 5. It is clearly seen that there are four peaks in the figure at rang of 30 and 230 Hz. Since 
the vibration energy of structure always reach peak at their modal frequencies, it is found that 
modal frequencies of the plate are 42, 98, 156, 192 Hz in the scale of test frequency. Loss factor 
of those modes are also obtained as 0.01, 0.007, 0.0025, 0.002 separately with half-power 
bandwidth method. Input force is also measured by impedance head and drawn with tested 
frequencies in Fig. 6. 

 
Fig. 5. Vibration energy of steel plate 

 
Fig. 6. Test and reconstruction results of driving force 

In process of the identification, the particle swarm optimization method is selected and used 
to search information of load and number of variable should be confirmed firstly. In this paper, 
the two degree locations of load (ܺ, ܻ) are set as two variables. Because the driving force is varied 
with frequencies, it is needed to be dispersed into serials points in analyzed frequencies and every 
point is considered as a variable. Accordingly, the values of force at 51 different frequencies with 
same iteration, which range from 30 Hz to 230 Hz, are assigned to 51 variables in the optimization. 
The numbers of variables are added and equal to 53. The quantity of initial vector of chaos system ܰ is set as 20 and the mount of particle ܯ with the best performance is equal to 10. All of ߮ଵ, ߮ଶ 
are equal to 2. The upper and lower limits of the particle velocity are 0.5 and –0.5. Number of 
iteration is set as 150 and the value of ߬ declines from 1 to 0.4 in iterating process. The longitudinal 
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stiffness of rubber strip is 1×109 N/m and transfer to the value of boundary stiffness in the numeric 
model. Also, average value of the modal loss factors in the experiment is used in prediction model. 

After 150 iterations of calculation in optimal process, location of the deriving force is 
recognized as (0.2 m, 0.06 m) and the values of deriving force are identified in scale between 
0.2 N and 2.3 N. To clarify the differences between forces predicted in optimization and actual 
value, four characteristic parameters are introduced to comparisons in Table 1, such as mean, 
standard deviation of force. These values are calculated by using follows equations [27]: 

݂ = ∑( ఠ݂)ఠܰ , (13)

where, ݂  stands for the average value of forces in range of tested frequencies, ఠ݂  is force at 
selected frequency, ఠܰ represents number of sampling points in tested frequencies: 

ௗݏ = ඨ∑൫ ఠ݂ − ݂൯ఠܰ , (14)

where, ܵௗ is standard deviation. Those characteristic parameters obtained from identification and 
test results are compared and written in Table 1. It is revealed that location and mean value of 
reconstructed and real force agree with each other. Meanwhile, values of standard deviation, 
maximum and minimum in reconstruction and actual situation have some differences. Thus, it is 
concluded that reconstruction results are similar to actual test results at most frequency, and 
numerical values of actual force fluctuate around average value greater than those in prediction. 
To demonstrate force’s values varied with frequency, the values of driving force are drawn with 
corresponding frequencies in Fig. 5. It is seen that the tendency of two curves are the same in 
Fig. 5. But, some differences exist between curves’ amplitude of identification and test results, 
especially at frequency ranging from 190 Hz to 230 Hz. In author’s knowledge, those great 
distinctions are mainly caused by reasons which are detailedly shown as follows: 

(1) Reconstructed and tested natural frequency distinguishes with each other greatest at 
frequency ranging from 190 Hz to 230 Hz, which is clearly shown in Table 2. It would brings 
clear shift of peak and valley in acceleration and force predicted curve, and leads to obvious 
distinction between results derived from reconstruction and test at that range of frequency. 

(2) Loss factors used in optimization is set as 0.006, which is calculated by averaging the value 
of test results at every mode. Therefore, the deviation of loss factor in reconstruction and test reach 
greatest value at natural frequency locating from 190 Hz to 230 Hz. Because amplitude of 
structural vibrational response is always sensitive to the value of structural loss factor at high 
frequency, it could lead to forecast smaller amplitude of acceleration response and reconstruct 
higher values of force at those frequencies by comparing with test data. So, values of predicted 
forces at those frequencies are seemed to depart obviously from actual values. 

Table 1. Comparison between identification results and real loads  

Condition Force (N) Location 
Mean Standard deviation Max Min ܺ (m) ܻ (m) 

Test 1.6 0.46 2.7 0.29 0.19 0.07 
Identification 1.7 0.31 2.3 0.23 0.2 0.06 

Table 2. Comparisons of natural frequency and loss factor in prediction and test 

Condition Natural frequency (Hz) Loss factor 
1st mode 2nd mode 3rd mode 4th mode 1st mode 2nd mode 3rd mode 4th mode 

Test 42 98 156 192 0.01 0.007 0.0025 0.002 
Identification 41 99 158 199 0.006 0.006 0.006 0.006 



2415. IDENTIFICATION OF HARMONIC LOAD ACTING ON AN ELASTICALLY SUPPORTED THIN PLATE LINKED WITH ATTACHMENTS.  
HE YE XIAO, ZHI JUN ZHAO, BAI BING CHEN, HUI PING ZHANG 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2017, VOL. 19, ISSUE 3. ISSN 1392-8716 1649 

From above discussions, it is summarized that reconstructed results which are obtained from 
optimization process are close to real parameters of harmonic load. Therefore, it is proved that the 
numeric model proposed in this paper is accurate and can be applied to solve reconstructed 
problem of harmonic load working on the elastically supported plate. Furthermore, the total errors 
varied with iteration are drawn as Fig. 7. It is revealed that value of total errors converted to 
constant value after 80 iteration steps, which demonstrates that the PSO method is suitable for 
searching the parameters of load with finite iteration steps.  

 
Fig. 7. Total error varied with iterative steps 

 
a) Test results 

 
b) Identification results 

Fig. 8. Vibration distributions of test and identification results at 156 Hz 

 
a) Test results 

 
b) Identification results 

Fig. 9. Vibration distributions of test and identification results at 192 Hz 

To obtain more information from identification and test results, acceleration distribution of the 
plate derived from reconstruction and test at the mode of 156 Hz and 192 Hz are drawn in Fig. 8 
and Fig. 9 separately. Meanwhile, acceleration response in identification and measurement at 7th 
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and 20th test point is chosen as typical location and compared in Fig. 10. Though comparison 
between acceleration distribution in reconstruction and test, it is concluded that reconstructed and 
tested acceleration distribution are similar to each other. Viewed from acceleration response at 
different test point, it is reveal that acceleration responses at 20th test point in reconstruction and 
test are almost same and those at 7th test point is extraordinary different at frequencies higher than 
130 Hz. In author’s opinion, it is mainly caused by differences between parameters used or elastic 
boundary modeled in numeric model and that existing in real structure. Also, it partially caused 
by the system errors in test system, such as error in size measurement of the plate or location test 
of accelerator linked point. Through above discussions, it is summarized that the model proposed 
in this paper identifies parameters of load through tendency of vibration distribution on the plate 
and the accuracies of reconstructed response at some locations are limited. 

 
a) 7th test point 

 
b) 20th test point 

Fig. 10. Test and identification results at different test points 

4. Conclusions 

The idea of load identification in this paper is executed by continuously comparing 
acceleration responses derived from its numeric model and measurement until differences between 
them reach the minimum. And the virtual load in numeric model is considered as equaling to real 
load. To rapidly approach the minimum of the differences, PSO method is introduced in 
comparing process to identify parameters of load. Based on above considerations, dynamic model 
of an elastically supported thin plate which carries stiffness or mass is established firstly in this 
paper. The total errors between results of dynamic model and test are calculated and set as object 
function of optimization. Then parameters of load, such as location and value of driving force, are 
confirmed as variables of PSO optimization. Through the process of minimizing the total error 
between responses in reconstruction and test, parameters of load are identified and compared with 
those of real source. At last, acceleration distributions of the plate at modal frequencies and 
responses at different test points, which are derived from identification and test, are compared 
with each other. From comparisons and discussions, it is concluded that harmonic load acting on 
an elastically restrained plate linked with attachments can be identified accurately by the proposed 
numeric model in this paper. 
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