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Abstract. The mode characteristics and the parameter sensitivity for a two-stage NGW spur 
planetary gear system are studied based on the principles of structure natural dynamical 
characteristics. Considering the influence of flexible structure including shaft, the planet carrier, 
and the ring-gear, the coupled lateral-torsional-axial vibration dynamical model of the planetary 
gear system is established under the generalized coordinate system using the shafting element 
method. With the model, the natural frequency and vibration mode are solved, and the results 
indicate that the flexibility of ring-gear has a greater effect on natural frequency. Several distinct 
types of vibration mode are summarized, such as planet torsional mode, sun-gear shaft axial mode, 
ring-gear axial mode and so on. However, the translational mode which is one of the modes in the 
coupled lateral-torsional lumped mass model is not found in this study. Within the scope of the 
time-varying, mesh stiffness mainly affects the planet torsional mode of corresponding stage. 
Furthermore, the variation of radial bearing stiffness will also do effect on axial vibration mode, 
and the variation of bearing stiffness not only affects the vibration modes of adjacent stage of 
planetary gear train, but also affects the nonadjacent stage. The results demonstrate the coupling 
characteristics of the system under the free vibration condition. 
Keywords: two-stage spur planetary gear system, shafting element method, mode characteristics, 
parameter sensitivity. 

1. Introduction 

Planetary gear transmission has many advantages, such as its compactness, light weight, heavy 
carrying capacity, large transmission ratio, and high-transmission efficiency. Hence, it is 
extensively used in both high-speed, large power, and low-speed, high-torque applications, such 
as automobiles, helicopters, marine main reducers, engineering machinery, lifting transportation, 
and other related machineries. The vibration and noise problems of multi-stage planetary gears 
are always the focus of attention by both academics and engineers [1]. And the prediction of 
natural modes, as one of the major issues in vibration field, has increasingly attracted extensive 
attention because of the desire to design a highly reliable, low-vibration planetary gear system.  

The early literature about the natural characteristics analysis of planetary gear is scarce. 
Cunliffe [2] studied the eigenvalue problem for a thirteen degree of freedom system and identified 
the natural frequencies and vibration modes in 1974, and Botman [3] investigated the vibration 
modes for a spur planetary gear with eighteen degrees of freedom in 1976, but they didn’t give 
general conclusions. Then, Lin and Parker [4, 5] formally identified and proved the vibration 
structure of planetary gears with equal/ unequal planet spacing. They analytically classified all 
planetary gears modes into exactly three categories, rotational modes, translational modes, and 
planet modes. Wang Shiyu [6] investigated the inherent property of planetary gear trains with 
equal planet spacing, and discovered the phenomenon of vague vibration mode when some 
parameters taking the particular values. Furthermore, the above rule of modes classification would 
no longer be applicative for the system with concentrated eigenvalue. Zhang Jun [7] revealed the 
deductive errors in Lin’s model, and proposed the modified dynamic model which can reveal the 
free vibration characteristics of the planetary gear system more accurately. Kahraman [8] 
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established a family of torsional dynamics models for compound planetary gears under different 
kinematic configurations. Kiracofe and Parker [9] developed a dynamic model of compound 
planetary gears of general description including translational degrees of freedom, which allows an 
infinite number of kinematic combinations. And it was mathematically proved that the modal 
characteristics of compound planetary gears were analogous to a simple, single-stage planetary 
gear system.  

According to the aforementioned models and vibration structure of planetary gears, many 
researchers concerned the sensitivity of the natural frequencies and vibration modes to system 
parameters. They investigated the effect of modal parameters such as mesh stiffness and planet 
bearing stiffness on natural frequencies and vibration modes of planetary gear. Parker [10, 11] 
mathematically analyzed the effects of design parameters on natural frequencies and vibration 
modes and the following conclusions were drawn: (1) Rotational modes are independent of the 
transverse support stiffnesses. (2) Translational modes are similarly independent of the rotational 
support stiffnesses. (3) Planet modes are insensitive to all carrier, ring, and sun support stiffnesses. 

However, there are mainly three aspects of problem in the existing research literatures as 
following: (1) Most of the models were established using the lumped mass method, and the main 
shortcoming of the modeling approach is low-fidelity. (2) In the model of spur planetary gear 
system, only radial and torsional degrees of freedom were considered, and the axial freedom was 
ignored. This may lead to the loss of some coupling characteristics of the overall system. (3) Most 
of the current studies only referenced the method used for single-stage planetary gears to analyze 
the modal characteristics of multi-stage planetary gears, while the differences between these two 
types of planetary gears were ignored. In this paper, the coupled lateral-torsional-axial vibration 
dynamical model of a two-stage NGW spur planetary gear system is established under the 
generalized coordinate system using the shafting element method. The coupling relationship 
amongst different freedoms, system nodes, major structural components, and stages in the analysis 
of the planetary gear natural characteristics is fully considered in order to accurately and reliably 
understand the dynamic behavior in the multistage planetary gear system. Sensitivity of the natural 
frequencies and vibration modes to system parameters is studied, and it will provide important 
information for tuning resonances away from operating speeds, minimizing response, and 
optimizing the structural design. 

2. Shafting element method  

2.1. Division of multistage planetary gear system 

The multistage planetary gear system is composed of multiple connected components, and it 
is a nonlinear system with complex coupling factors. Only all the parts are taken into account, the 
real dynamic characteristics will be obtained [12]. Fig. 1 illustrates a typical multistage planetary 
gear transmission system consisting of the shaft, bearing, sun gear, planet gear, ring gear, planet 
carrier, and other related structural components.  

 
Fig. 1. Division of multistage planetary gear system 
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In order to formulate the equation of dynamic motion of the entire structure, the system can be 
divided into ݊  shafting elements, based on three categories, according to its structural 
characteristics: (1) Simple shafting element (SSE), to represent the actual shaft with the virtual 
equivalent shaft. (2) Shafting element of planet carrier (SEPC), to model the flexibility of the 
carrier. (3) Special shafting element of ring (SSER), to represent the flexibility of the ring gear. 

2.2. Simple shafting element 

Every simple shafting can be divided into many elastic shaft segments. And the gear shaft can 
be equivalent to virtual shaft element based on the modeling similarity principle and dynamic 
similarity theory [13, 14], as shown in Fig. 2. Assuming that both of the two nodes of the shaft 
segment would bear a bending moment, torque, and an axial force, then the stress condition of the 
shaft segment can be analyzed by employing the Euler-Bernouli beam element theory [15], as 
shown in Fig. 3. Four degrees of freedom are considered in the coupled lateral-torsional-axial 
vibration dynamical model of the planetary gear system. 

 
Fig. 2. Equivalent virtual shaft segment of gear shaft 

 
Fig. 3. Simple shafting element model 

Given that ܆௃ = ቄݔ௝, ,௝ݕ ,௝ݖ ,௭ೕߠ ,௝ାଵݔ ,௝ାଵݕ ,௝ାଵݖ ௭ೕశభቅ்ߠ
 is the displacement vector of the two 

nodes of Euler-Bernouli beam element ܬ in the local coordinate system, the free vibration equation 
of the element can be expressed in accordance to Eq. (1): ۻ௃܆ሷ ௃ + ۱௃܆ሶ ௃ + ۹௃܆௃ = 0, (1)

۹௃ =
ێێۏ
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In Eq. (1), ۻ௃ = diag ቄ ௝݉, ௝݉ , ௝݉ , ,௭ೕܫ ௝݉ାଵ, ௝݉ାଵ, ௝݉ାଵ, ௭ೕశభቅܫ  denotes the mass matrix, in 

which ௝݉ = ൫݉௃ + ݉௃ିଵ൯/2 and ܫ௭ೕ = ቀܫ௭಻ +  ௭಻ respectively denote the massܫ ,௭಻షభቁ/2, and ݉௃ܫ
and moment of inertia of the Euler-Bernouli beam element ܬ. The Euler-Bernouli beam element 
stiffness matrix has a 8×8 order form and can be formulated by using the related theory of elastic 
mechanics, as expressed by Eq. (2). 

In Eq. (2), ܣ  denotes the cross-sectional area of the beam element, ܧ  denotes the elastic 
modulus of materials, ݈ denotes the element length, ܩ denotes the shear modulus, ܬ denotes the 
torsional moment of inertia, ܽ௫ = ܽ௬ = ଷ/(1݈/ܫܧ12 + ߮)  and ܫ  denotes the cross-sectional 
moment of inertia, ߮ denotes the shear impact factor, and ߮ =  For the shear .(ଶ݈ܭܣܩ)/ܫܧ12
coefficient ܭ, it is assumed that for the circular section, ܭ = 6(1 + 7)/(ߤ +  and for the ,(ߤ6
rectangular section, ܭ = 10(1 + 12)/(ߤ + (ߤ11 [16]. In Eq. (1), the material damping ܥ௃  is 
assumed as classical damping, which can be derived from Eq. (4) as: ۱௃ = ߙ ⋅ ௃ۻ + ߚ ⋅ ۹௃, (3)

where ߚ ,ߙ denote the scale factors. 

2.3. Flexible model of planet carrier 

In the planetary gear system, the flexibility of the planet carrier may have an important 
influence on the gear meshing quality and reliability of both the internal and external gear pairs 
[17, 18]. Single-side plate-type and double-side plate-type are two common forms of the planet 
carrier. A single-side plate-type of a planet carrier can be seen as the substructure of the planet 
carrier with a double-side plate. Therefore, only the double-side plate-type carrier is analyzed, as 
shown in Fig. 4. 

 
Fig. 4. Shafting element of the planet carrier 

In simple terms, the shafting element of the planet carrier has an additional coupling matrix 
between the two side plates than the simple shafting element. The mass matrix, stiffness matrix, 
and damping matrix between the two side plates are defined as ۻ௦, ۹௦, ۱௦, respectively. Assume 
that there are ݌ pins and connecting plates, and there are 2݌ + 2 nodes between the two side plates 
labeled as 1 to 2݌ + 2. The pin is equivalent to the circular cross-section beam element whose 
stiffness matrix can be denoted as ۹௣. The nodes on both sides of the pin are respectively coupled 
with nodes 1 and 2݌ + 2 of the two side plates, and the corresponding coupling stiffness matrix 
is ۹௖ଵ . In the same way, the connection plate is approximately equivalent to the rectangular 
cross-section beam element whose stiffness matrix is represented by ۹௥, and the coupling stiffness 
matrix with side plates is ۹௖ଶ: ۹௣ = ൬ۯଵ ۰ଵ۰ଵ ۱ଵ ൰,     ۹௥ = ൬ۯଶ ۰ଶ۰ଶ ۱ଶ ൰. (4)
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௦ۻ = diag ቄ݉ଵ, ݉ଵ, ݉ଵ, ,௭భܫ … , ݉ଶ௣ାଶ, ݉ଶ௣ାଶ, ݉ଶ௣ାଶ, ௭మ೛శమቅܫ  represents the overall mass 
matrix. The forms of ۹௣ and ۹௥ are both consistent with ۹௃, which can be expressed as Eq. (4). 

The pin-side plate coupling is shown in Fig. 5 where ݎ௖ is the center distance between the pin 
and the side plate, and ߮௡ denotes the position angle of the pin (or planet gear). The coupling 
stiffness matrix between the pin and the side plate can be deduced in accordance to Eq. (5): 

۹௖ଵ =
ێێۏ
ێێێ
ۍێێ

݇క 0 0 0 −݇కcos߮௡ −݇కsin߮௡ 0 00 ݇ఎ 0 0 ݇ఎsin߮௡ −݇ఎcos߮௡ 0 00 0 ݇௭ 0 0 0 −݇௭ 00 0 0 ݇ఏ௭ 0 0 0 0−݇కcos߮௡ ݇కsin߮௡ 0 0 ݇క 0 0 0−݇ఎsin߮௡ −݇ఎcos߮௡ 0 0 0 ݇ఎ 0 00 0 −݇௭ 0 0 0 ݇௭ 00 0 0 0 0 0 0 ݇ఎݎ௖ۑۑے
ۑۑۑ
(5) ,ېۑۑ

where ݇௜ (݅ = ,ߦ ,ߟ ,ݖ  denotes the coupling stiffness values with four degrees of freedom. The (ݖߠ
derivation methods for ۹௖ଶ is identical which can be expressed as: ۹௖ଶ = ൬۾ହ ଼۾଺۾ ଻൰. (6)۾

 
Fig. 5. Schematic diagrams of the pin-side plate coupling 

The overall stiffness matrix ۹௦ can then be expressed in accordance to Eq. (7), and the form 
of ۱௦ is consistent with ۹௦: 

۹௦ =
ێێۏ
ێێێ
ଵ۾)݌ۍێێ + (ହ۾ ଶ۾ ⋯ ଺۾ ସ۾⋯ ଵۯ + ଷ۾ ۰ଵ۰ଵ ۱ଵ + ଵ۾ ⋮ଶ۾ ⋱ ଼۾⋮ ଶۯ + ଻۾ ۰ଶ۰ଶ ۱ଶ + ହ۾ ⋮଺۾ ⋱ ସ۾⋮ ⋯ ଼۾ ⋯ ଷ۾)݌ + ۑۑے(଻۾

ۑۑۑ
(7) .ېۑۑ

The planet gear and pin are coupled through the bearing element, and the coupling stiffness 
matrix ۹௣௣ can be expressed as: 

۹௣௣ = ൬ ۹௕ −۹௕−۹௕ ۹௕ ൰, (8)
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where ۹௕ = diag൛݇కక, ݇ఎఎ, ݇௭௭, ݇ఏ௭ఏ௭ൟ denotes the stiffness matrix of the bearing element only 
with the main item retained. Similarly, the form of the damping matrix ۱௕ is consistent with ۹௕. 

2.4. Flexible model of ring gear 

Many prior studies have shown that the flexibility of the ring gear can be a major influence on 
the dynamic performance of the planetary gear system [19, 20]. And the transmission reliability 
and service life might be influenced. Therefore, given these discrepancies, it is desirable that the 
dynamic performance of the system can be more accurately determined when considering the 
flexibility of the ring gear. 

The ring gear can be equivalent to virtual shaft element first similarly with gear shaft, as shown 
in Fig. 6. And then the special shafting element of the ring can be divided into ܰ discrete shaft 
segments as shown in Fig. 7. ܰ = ܿ ⋅  ܿ denotes the tooth number of the ring gear, and ݖ where ,ݖ
is defined as the flexibility coefficient. Usually, ܰ is also equal to an integer number of times of 
the planet gear number to ensure the symmetry of the system’s structure. Furthermore, every shaft 
segment can be approximated as a rectangular beam element, and the coupling stiffness of adjacent 
nodes can be calculated by employing the Euler-Bernoulli rectangular beam element theory. 

 
Fig. 6. Equivalent virtual shaft segment of ring gear 

 
Fig. 7. Special shafting element of ring gear 

2.5. Overall system model 

As shown in Fig. 8, three types of coordinate systems are included in the generalized 
coordinate system: (1) the static coordinate system ܱܻܼܺ, (2) the moving coordinate system ݖݕݔ݋ 
rotating with the carrier, and (3) the moving coordinate system ݖߟߦ݋ rotating with the carrier, 
where ߦ is in the radial direction and ߟ is in the tangential direction [21].  

The SSE with the sun gear node included, and the SEPC with the planet gear node included, 
are coupled by external gearing. Similarly, the SEPC with the planet gear node included, and the 
SSER with the ring gear node included, are coupled by internal gearing. The projection vector ܄ 
along the mesh line along the action direction transformed at various degrees of freedom of the 
meshing pair can be expressed in accordance to Eq. (9): 

܄ = ቊሾcosߚsin߶, ∓cosߚcos߶, 0, ߚ௦cosݎ∓ − cosߚsinߙ, ±cosߚcosߙ, 0, ,ߙsinߚሿ,ൣcosߚ௣cosݎ∓ ±cosߚcosߙ, 0, ߚ௣cosݎ± − cosߚsin߶, ∓cosߚcos߶, 0, ൧, (9)ߚ௥cosݎ∓
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where ݎ௦, ݎ௣, ݎ௥ denote the base circle radii of the sun gear, planet gear, and ring gear respectively, ߶ is the angle between the normal direction of the meshing line and the positive ݔ-axis which can 
be expressed as ߶ = ߙ ± ߮௡. The plus or minus sign changes as the sun gear direction of rotation 
alters [22]. And ߙ denotes the meshing angle, ߮௡ denotes the installation phase angle of the planet 
gear. Subsequently, the stiffness matrix of the meshing coupling element can be expressed as ۹௠ = ݇௠܄்܄, where ݇௠ is the normal synthetic meshing stiffness.  

Under the overall generalized coordinate system, vibration equations of ݊ shafting elements in 
the multistage spur planetary gear system can be directly lumped, according to the rules shown in 
Fig. 9, to form the free vibration equation of the system as: ܆்ۻሷ ் + ሶ܆۱் ் + ்܆۹் = 0, (10)

where ۹் ,۱் ,்ۻ are the total mass, damping, and stiffness matrices, respectively.  

 
Fig. 8. The generalized coordinate system 

 
Fig. 9. Schematic diagram of the assembly rules 

3. Mode characteristics analysis  

3.1. Model of a two-stage spur planetary gear system 

For the computational study, a two-stage spur planetary gear system is considered with the 
essential parameters given in Table 1. The mesh stiffness and bearing stiffness are shown in 
Table 2 and 3, respectively. And the 3D model is shown in Fig. 10. 

Table 1. Two-stage planetary gear system data 
 Sun gear Planet Ring gear 

Number of teeth 1st stage 12 47×3 108 
2nd stage 54 26×3 108 

Module (mm) 1st stage 1.25 2nd stage 

Pressure angle (deg) 1st stage 25.0 2nd stage 

Table 2. Mesh stiffness 
 External meshing (N·m-1) Internal meshing (N·m-1) 

1st stage 4.8×108 8.0×108 
2nd stage 6.3×108 6.9×108 

As shown in Fig. 11, the two-stage planetary gear system can be divided into five types of 
model according to the degree of discretization.  

Model 1 is the traditional lumped mass model, which has 12 nodes. Model 2 takes the 
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flexibility of shaft segment into account, and it is the primary model based on the shafting element 
method. Furthermore, model 3 considers the flexibility of the planet carrier on the basis of  
model 2. Similarly, model 4 considers the flexibility of gear ring based on model 2. Model 5 is a 
complete model of shafting elements, which fully considers the flexibility of different  
components. The whole system is divided into five shafting elements according to its structural 
characteristics, including the simple input shafting element, the special shafting element of the 1st 
ring, the intermediate shafting element of the planet carrier, the special shafting element of the 
2nd ring, and the output shafting element of the planet carrier. The gear meshing elements coupled 
all the shafting elements to form the overall system model of which there are totally 113 nodes. 

Table 3. Bearing stiffness 

Shaft bearing (N·m-1) Input shaft 5.0×107 
Output shaft 5.0×107 

Planet bearing (N·m-1) 1st stage 5.0×107 
2nd stage 5.0×107 

 
Fig. 10. 3D model of two-stage planetary gear system 

 
a) Model 1: lumped mass model b) Model 2: considering flexibility of shaft segment 

c) Model 3: considering flexibility of planet carrier 
 

d) Model 4: considering flexibility of ring gear 

 
e) Model 5: complete model based on shafting element 

Fig. 11. The simplified model of two-stage planetary gear system 

3.2. Natural frequencies and vibration modes 

Inherent characteristic is the inherent property of multiple-degree-of-freedom system [23]. The 
free vibration equation of the system can be expressed as Eq. (11) without taking the damping into 
account: 
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ሷ܆்ۻ ் + ்܆۹் = 0. (11)

The corresponding eigenvalue problem is shown in the following equation: (۹் − ߱ଶ܆(்ۻഥ = 0, (12)

where ܆ഥ is ݊ order nonzero vector, which reflects the vibration modes, ߱ is vibration angular 
frequency, and ߱/2ߨ is the corresponding natural frequency. 

In each planet stage, the free vibration of the time-invariant representation is considered. The 
planets are assumed identical and equally spaced. All planet bearing stiffness’s are equal, all 
sun-planet mesh stiffness’s are equal, and all ring-planet mesh stiffness’s are equal. The carrier 
speed is assumed to be small and the gyroscopic terms is neglected. Then the natural frequency of 
the 5 types of models are obtained as Table 4. 

In Table 4, the shadow represents that the multiplicity of natural frequency is 2, which can be 
denoted as ݉ = 2. The natural frequencies solved by model 2 are the same with or smaller than 
model 1. This suggests that the natural frequency may reduce slightly after considering the 
flexibility of the shaft segment. Furthermore, the result solved by model 3 has a slight difference 
with model 1 and model 2, and the orders with ݉ = 2 basically have no change. Compared with 
model 1 to 3, the number of orders with ݉ = 2 reduced greatly solved by model 4. What’s more, 
the natural frequencies of each order have a much greater difference between model 4 and the first 
3 models. The comparison results demonstrate that the ring gear flexibility has a more significant 
influence on the natural frequencies of the system than the planet carrier flexibility. In addition, 
the result of model 5 is relatively close to that of model 4. This can also help to prove the above 
conclusion. 

Table 4. Comparison of natural frequency of different models 

Order Natural frequency (Hz) 
Model 1 Model 2 Model 3 Model 4 Model 5 

1 14.5 14.5 14.3 14.5 14.3 
2 15.2 15.2 15.1 15.2 15.1 
3 15.2 15.2 15.1 15.2 15.1 
4 22.4 22.4 22.4 22.4 22.4 
5 239.1 238.8 229.4 227.5 219.3 
6 239.1 238.8 229.4 235.2 226.2 
7 375.5 356.1 343.1 353.1 340.5 
8 408.0 407.7 394.7 377.6 366.3 
9 408.0 407.7 394.7 397.8 385.5 
10 595.1 595.0 566.7 552.3 552.3 
11 620.0 620.0 606.7 552.3 552.3 
12 620.0 620.0 606.7 593.2 565.2 
13 636.9 636.9 620.0 636.9 606.7 
14 636.9 636.9 620.0 636.9 606.7 
15 696.4 696.1 670.0 657.3 639.0 
16 696.4 696.1 670.0 671.3 651.2 
17 819.3 819.0 780.4 775.3 745.0 
18 819.3 819.0 800.5 775.5 753.1 
19 826.3 826.2 800.5 826.2 780.4 
20 920.2 913.3 896.8 873.2 857.7 
21 1095.4 1094.8 1080.8 988.3 974.2 
22 1095.4 1094.8 1080.8 1041.7 1026.2 
23 1272.2 1257.1 1243.7 1197.3 1184.0 
24 1455.2 1436.4 1426.4 1418.5 1407.1 
25 1455.2 1436.4 1426.4 1430.3 1419.8 
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Several distinct types of vibration mode are summarized, such as planet torsional mode, 
sun-gear shaft axial mode, ring-gear axial mode and so on, as shown in Fig. 12. The natural 
frequency and vibration modes of model 5 are shown in Table 5. 

Table 5. Natural frequency and vibration modes of model 5 
Vibration mode Multiplicity Natural frequency (Hz) 

Overall torsional mode (Fig. 12(a)) ݉ = 1 340.5/857.7/1184.0 

Planet torsional mode (Fig. 12(b)) ݉ = 1 219.3/226.2/366.3/385.5/5656.2/639.0/651.2/ 
745.0753.1/974.2/1026.2/1407.1/1419.8 ݉ = 2 15.1 

Sun-gear shaft axial mode (Fig. 12(c)) ݉ = 1 22.4 
Ring-gear axial mode (Fig. 12(d)) ݉ = 2 552.3 

Planet axial mode (Fig. 12(e)) ݉ = 2 606.7 
Planet + planet carrier axial mode  

(Fig. 12(f)) ݉ = 1 14.3/780.4 

In Fig. 12, the dashed lines represent the non-vibration state of each component. Orange solid 
line represents the sun gear, and green solid line represents the ring gear, and blue solid line 
represents the planet gear, and purple solid line represents the planet carrier. The axial vibration 
modes are illustrated with the right-side view. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 12. Classify of vibration modes 

4. Study of parameter sensitivity  

4.1. Sensitivity to mesh stiffness 

The normal synthetic mesh stiffness of gears can be solved using the Ishikawa equation [24]. 
Take the external meshing for instance, ݇1݌ݏ and ݇2݌ݏ denote the sun-planet mesh stiffness of the 
1st stage and the 2nd stage planetary gear system, respectively. The curves of the time-varying 
mesh stiffness are shown in Fig. 13. The variation of one mesh stiffness is considered within a 
range between the maximum and minimum values in a mesh period, while the others are assumed 
as constant mean value. The sensitivity of natural frequencies to mesh stiffness is shown in Fig. 14. 

As shown in Fig. 14, the mesh stiffness of the 1st stage has more important effect on the 24th 
and 25th order natural frequencies than the other orders, and to a lesser extent, the 27th and 28th 
orders are also influenced. However, the four orders are all planet torsional vibration mode of the 
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1st stage of the planetary gear system. In the meanwhile, the mesh stiffness of the 2nd stage has 
little influence on all the natural frequencies. But in the zoomed view, it is obvious that the 8th 
and 9th orders, and the 21st and 22nd orders are influenced at a certain extent. In addition, the 
four orders are all planet torsional vibration mode of the 2nd stage of the planetary gear system. 
In general, the change of mesh stiffness in the time varying range has little influence on the natural 
frequencies, and it mainly affects the planet torsional vibration mode of the corresponding stage 
of planetary gear system to different degrees. 

 
a) The 1st stage 

 
b) The 2nd stage 

Fig. 13. Time-varying mesh stiffness 

 
a) The 1st stage 

 
b) The 2nd stage 

Fig. 14. Change of natural frequencies influenced by different mesh stiffness 

It can be observed that veering phenomena (A, B, C and D) occur when two planet torsional 
mode frequency loci approach each other, but then abruptly veer away. And the phenomenon 
occurs when the stiffness is approximately equal to the mean value. It just goes to show that 
multiple meshing pairs of the same stage taking the same mesh stiffness is the cause of ݉ = 2 for 
the number of planets is 3. 

4.2. Sensitivity to bearing stiffness 

The bearing stiffness is assumed to change within the range of 1×107-9×107 N·m-1. The 
sensitivity of natural frequencies to bearing stiffness of input/output shaft is shown in Fig. 15. The 
sensitivity of natural frequencies to planet bearing stiffness of the 1st/2nd stage is shown in  
Fig. 16. 

Fig. 15 shows that the change of bearing stiffness of input shaft has evident effect on the 
sun-gear shaft axial vibration mode dominated by the 1st stage and the planet torsional vibration 
mode dominated by two stages together. Besides, the change of bearing stiffness of output shaft 
mainly affects the planet and planet carrier axial vibration mode dominated by the 2nd stage and 
the planet torsional vibration mode dominated by two stages together. It can be concluded that the 
variation of bearing stiffness of the input/output shaft not only affects the vibration modes of the 
adjacent stage of the planetary gear system, but also affects the nonadjacent stage. Moreover, it 
can be observed that the loci veering phenomena occur at A-Q points similar to what is shown  
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in Fig. 14. 
Fig. 16 shows that the change of planet bearing stiffness of the 1st stage can make significant 

effects on the planet torsional vibration mode, the planet axial vibration mode, and the planet and 
planet carrier axial vibration mode dominated by the 1st stage, and the planet torsional vibration 
mode dominated by the 2nd stage. Besides, the change of planet bearing stiffness of the 2nd stage 
does a relatively obvious influence on the planet torsional vibration mode dominated by the 2nd 
stage, and the overall torsional vibration mode dominated by two stages together. All the results 
mentioned above demonstrate that the variation of planet bearing stiffness of the 1st/2nd stage not 
only affects the vibration modes of its corresponding stage of the planetary gear system, but also 
affects other stages. Furthermore, the variation of radial bearing stiffness will also do effect on 
axial and torsional vibration modes. And the results demonstrate the coupling characteristics of 
the system under the free vibration condition. However, this is not in accord with the conclusion 
of existing literature. According to the author’s knowledge, this issue is worth continuing to 
explore, and the research in this area should get more attention. Moreover, it can also be observed 
that the loci veering phenomena occur similar to what is shown in Fig. 14 and Fig. 15. 

 
a) Input shaft 

 
b) Output shaft 

Fig. 15. The influence of bearing stiffness of input/output shaft on natural frequencies:  
◆ – sun-gear shaft axial mode dominated by the 1st stage, ▲ – planet torsional mode dominated  

by two stages together, ☆ – planet and planet carrier axial mode dominated by the 2nd stage 

 
a) The 1st stage 

 
b) The 2nd stage 

Fig. 16. The influence of planet bearing stiffness of the 1st/2nd stage on natural frequencies:  
◇ – planet torsional mode dominated by the 2nd stage, ▲ – planet torsional mode dominated by the 1st 

stage, ☆ – planet and planet carrier axial mode dominated by the 1st stage, ■ – planet axial mode 
dominated by the 1st stage, × – overall torsional mode dominated by two stages together 
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4.3. Sensitivity to mass of different structures 

The sun gear, planet gear, ring gear, and planet carrier are the key components in a planetary 
gear transmission system besides the coupling shaft segments and bearings. Assumed that the 
mass of each structure is doubled, and then the change of the natural frequencies of the system is 
shown in Fig. 17. 

As shown in Fig. 17, in the 1st stage, the curves of the mass changes of the sun gear and the 
planet carrier are basically coincident with that of the original mass. And the mass change of the 
ring gear appears to have a small impact on partial orders, such as the 10th and 28th order. And 
the mass increase of the planet gear has no effect on the first few natural frequencies, but it makes 
the higher order natural frequencies become lower obviously. In the 2nd stage, only the mass 
change of the ring gear causes a relatively great effect on partial orders, such as the 10th and 21st 
order. And the rest structures almost have no effect on the natural frequencies. In addition, 
similarly to the variation of mesh stiffness and bearing stiffness, the mass changes of different 
structures do not change the fundamental frequency of the system as well. 

 
a) The 1st stage 

 
b) The 2nd stage 

Fig. 17. Natural frequency affected by mass changes of different structures 

5. Conclusions 

In this study, the coupled lateral-torsional-axial dynamical model of the planetary gear system 
is established using the shafting element method. The mode characteristics and the parameter 
sensitivity are studied, and the specific conclusions are: 

1) The ring-gear flexibility has a larger effect than other flexible effects on natural frequency. 
And almost all natural frequencies are distinct because of the loss of complete structural 
cycle-symmetry. 

2) Distinct types of vibration mode are summarized, such as overall torsional mode, planet 
torsional mode, and even several axial modes though this is a spur gear system.  

3) The variation of bearing stiffness of the input/output shaft not only affects the vibration 
modes of adjacent stage, but also affects the nonadjacent stage. The variation of planet bearing 
stiffness not only affects the vibration modes of its corresponding stage, but also affects other 
stages. The variation of radial bearing stiffness will also do effect on axial and torsional vibration 
modes. And the results demonstrate the coupling characteristics of the system under the free 
vibration condition. However, this is not the same with the conclusion of existing literatures. 
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