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Abstract. According to time-temperature superposition (TTS) and WLF formula, the 
temperature-dependent and frequency-dependent kinetic parameters of the railpads of WJ-7 
fasteners were predicted based on the experimental results at a certain frequency and under the 
different temperatures. By combining the pseudo excitation method and symplectic mathematics 
scheme, the impact of railpads frequency-dependent and temperature-dependent stiffness on the 
random variation of the coupled vehicle-track system was investigated efficiently. The results 
suggest that, within the range of environment temperature and frequency-dependent extent of 
railpads in the railway, the PSD peak of the vertical random vibration acceleration of the wheelsets 
and rail gets the largest increase of 3.3 times at least, and the increment of their 1st dominant 
frequency also reaches up to 20.6 Hz or more. Therefore, in order to accurately analyze the random 
vibration responses of the vehicle-track coupled system, experiments must be conducted to obtain 
the accurate kinetic parameters of the polymer materials like railpads. 
Keywords: railpad, time-temperature superposition, frequency-dependent, temperature-
dependent, random vibration. 

1. Introduction 

When the vehicles are moving on the track, the track irregularity will directly acts on the 
vehicle and track structure, arouse their respective vibration and directly affect the safety, ride 
comfort, fatigue and noise of the vehicle and the line. Therefore, the random vibration analysis of 
vehicle and track structure, especially the calculation of the power spectrum density (PSD) of their 
dynamic response, plays a very important role in the calculation of railway transportation 
dynamics. 

In 1992, Zhai Wan-ming [1] firstly explored the vehicle and track structure as a whole system 
and established the vertical vehicle-track unified model by adopting the system engineering 
approach, laying a foundation for the vehicle-track coupled system dynamics. Later, Popp [2] and 
Dumitriu [3] together with many other scholars conducted more in-depth studies on this model, 
contributing to its wide recognition and rapid development. Thus, the vehicle-track coupled 
system dynamics also became a new research field to be explored. 

The difficulties for the random vibration analysis of the vehicle-track coupled system mainly 
lie in the large degree of freedom of the structure and the low computational efficiency of the 
traditional random vibration analysis method. When the finite element method is adopted to 
establish a finite-length track model, the track structure should include the length of dozens of 
sleepers at the front and back of the vehicle to basically eliminate the impact of the track boundary 
conditions. Thus, the random vibration analysis for a track model with such a large degree of 
freedom will require an unbearable computational effort. 
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As a continuous periodic support structure, the track structure can be regarded as a typical 
periodic chain structure. In the earlier time, the scholars carried out a fundamental research on the 
vibration characteristics of the periodic structure, which laid a solid foundation for the calculation 
of the dynamic response of the periodic structure. The calculation of the steady-state response for 
periodic chain structure under the waves’ free propagation and harmonic loading is becoming 
more and more mature, and the commonly used calculation methods include transfer matrix 
method [4], ܼ transformation method [5], wave vector method [6], spectral finite element method 
[7], substructure iteration method [8], etc. Among them, the symplectic mathematical method 
[9, 10] is successfully applied, providing an accurate and efficient calculation solution to the 
dynamic response of infinitely periodic chain structure under harmonic loading. Based on this, 
Lin Jia-hao combined the pseudo excitation method [11, 12] with the symplectic mathematical 
scheme and solved the random dynamic response PSD of infinitely periodic chain structure under 
stationary/non-stationary random excitation. LV Feng [13] et al. further applied these results in 
the random vibration analysis of the vehicle-track coupled system.  

Based on the research results of the above methods, the pseudo excitation method and the 
symplectic mathematical scheme are adopted to establish a model and find the solution to random 
vibration of the vehicle-track coupled system, and the accuracy and efficiency of the calculations 
are greatly improved. However, the frequency domain calculation results for the algorithms are 
not so satisfactory, which is possibly attributed to the problem of calculation parameters. 
Generally, the dynamic parameters of track pads (such as rail pads, under sleeper pads and bed 
pads) are just regarded as a constant in the above-mentioned models. However, the dynamic 
mechanical parameters of high polymer track pads actually have a close correlation with 
environment temperatures, exciting frequencies and exciting amplitudes [14-16]. Squicciarini  
et al. [17] performed a field measurement of the noise from passing trains at temperature of  
0-+35 °C. The test results show that there an increase of 3-4 dB. Smutny [18] performed some 
laboratory measurements of dynamic parameters of a single rail fastening by mechanical shock 
simulated with a hammer. Lin et al. [19] showed a simple experimental method to evaluate the 
frequency-dependent rubber mount stiffness and damping characteristics by utilizing the 
measured complex frequency response function from impact test and by least-squares polynomial 
curve fitting the data obtained from the test. Oregui et al. [20] proposed combining dynamic 
mechanical analysis and the time-temperature superposition principle to determine various railpad 
dynamic properties. Yet, the frequency-dependent and temperature-dependent features of 
dynamics parameters of these polymer damping materials are rarely taken into account in the 
dynamic analysis of the vehicle-track coupled system; instead, values are determined just in 
accordance with the measured dynamic stiffness values under the 3-5 Hz vibration conditions. 
Obviously, such simplification is not reasonable.  

Thus, with the indispensable railpad in the railway traffic as the research object, the symplectic 
mathematical scheme and pseudo-excitation method are adopted for infinitely periodic 
substructure to establish a vehicle-track coupled model. The model was used to study the impact 
of railpads frequency-dependent and temperature-dependent stiffness on the random variation 
acceleration of the vehicle body, bogie, wheels and steel rail. Further, within the range of 
environment temperature and the frequency-dependent extent of the railpads of WJ-7 fastener, the 
change rules of random vibration response of the coupled vehicle-track system are discussed in 
frequency domain.  

2. The symplectic analysis model for vertical random variation of the coupled vehicle-track 
system 

Taking the type-B metro vehicle and the embedded sleeper ballastless track as objects, the 
pseudo-excitation method [11] and symplectic mathematical scheme [9] are adopted to establish 
the symplectic model for vertical random vibration of the vehicle-tack coupled system. 
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2.1. Equation of motion of the vehicle 

The metro vehicle can be modeled as a half-car system with two suspensions moving on the 
track. It can effectively reflect the ups and downs and nod movement of the vehicle body and 
front-and-rear bogies, as well as the vertical movements of four wheel sets, including 10 degrees 
of freedom (see Fig. 1).  

 
Fig. 1. Schematic drawings of the model of vehicle 

In the Fig. 1, ܯ௖, ܯ௧ and ܯ௪ are the mass of vehicle body, bogie and wheel set; ܬ௖ and ܬ௧ are 
the rotational inertia of vehicle body and bogie; ܭ௭ଵ and ܭ௭ଶ are the stiffness of the first and 
second suspension systems, and ܥ௭ଵ and ܥ௭ଶ are the damping of the first and second suspension 
systems respectively; ݈௧ is half of the distance between two axles of same bogie; ݈௖ is half of the 
distance between two bogie centers; and v is the vehicle speed.  

Therefore, it can be seen that the equation of motion (Eq. (1)) of the vehicle under the 
steady-state harmonic excitation is expressed as:  (ܭ௩ + ௩ܥ߱݅ − ߱ଶܯ௩)ݑ௩ = ௩ݑ௩ௗܭ = ௪݂௥, (1)

In Eq. (1), ܭ௩, ܥ௩, ܯ௩ are the stiffness matrix, damping matrix and mass matrix of the vehicle 
(see Table 1), respectively; ݑ௩  is the displacement vectors of the vehicle, ܭ௩ௗ  is the dynamic 
stiffness matrix of the vehicle, and ௪݂௥ is the load vector of the wheel-rail force.  

2.2. Equation of motion of the track 

The embedded sleeper track is the most common metro track, which can also be approximated 
as an infinite periodic structure (as shown in Fig. 2). Therefore, the symplectic mathematical 
scheme can be adopted to establish the equations of motion of the track. Where ܫܧ, ݉௥ is the 
bending stiffness and weight per meter of the rail, and ܭ௥, ܥ௥ is the railpad stiffness and damping. 

 
a) Whole structure 

 
b) Substructure 

Fig. 2. Schematic drawings of vertical whole structure and substructure of embedded sleeper tracks 

2.2.1. Symplectic mathematical scheme of infinite periodic chain substructure [9] 

The infinite periodic chain substructure is shown as Fig. 3. 
It includes the substructure sub* under the external load ݂(ݐ) and the substructure sub without 

external load. When the substructure sub* is under a harmonic load with a specific circular 
frequency of ߱, its equations of motion can be arranged as below: 
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ܭ) + ܥ߱݅ − ߱ଶܯ) ൝ݑ௔ݑ௕ݑ௜ ൡ = ቎ܭ௔௔଴ ௔௕଴ܭ ௕௔଴ܭ௔௜଴ܭ ௕௕଴ܭ ௜௔଴ܭ௕௜଴ܭ ௜௕଴ܭ ௜௜଴ܭ ቏ ൝ݑ௔ݑ௕ݑ௜ ൡ = ൝ ௜݌௕݌−௔݌ ൡ + ቐ ௔݂݂௕݂௜ ቑ, (2)

where ݑ௔, and ݑ௕ are the displacement vectors at the left- and right-hand interfaces and ݑ௜ is the 
internal displacement vector and; ݌௔, ݌௕ and ݌௜ are the corresponding nodal force vectors; where ௔݂ , ௕݂  and ௜݂  are the external harmonic load vectors; ܭ௔௔଴  et al. are the nine sub-blocks of the 
dynamic stiffness matrix. 

 
Fig. 3. Schematic drawing of infinite periodic chain structures 

For non-loaded substructure, the internal degree of freedom in Eq. (2) can be eliminated and 
the following equation can thus be obtained:  ൤ܭ௔௔ ௕௔ܭ௔௕ܭ ௕௕൨ܭ ቄݑ௔ݑ௕ቅ = ቄ ௕ቅ, (3)݌−௔݌

where ܭ௔௔ = ௔௔଴ܭ − ௔௜଴ܭ ௜௔଴ܭଵି(௜௜଴ܭ) , ௔௕ܭ  = ௔௕଴ܭ − ௔௜଴ܭ ௜௕଴ܭଵି(௜௜଴ܭ) , ௔௕ܭ  = ,௔௕்ܭ  and  ܭ௕௕ = ௕௕଴ܭ − ௕௜଴ܭ ௜௕଴ܭଵି(௜௜଴ܭ) . Thus, Eq. (2) can be further transformed into a form of state space 
vector:  ቄݑ௕݌௕ ቅ = ܵ ቄݑ௔݌௔ ቅ = ൤ܵ௔௔ ܵ௔௕ܵ௕௔ ܵ௕௕൨ ቄݑ௔݌௔ ቅ = ߤ ቄݑ௔݌௔ ቅ, ܵ௔௔ = ௔௔,   ܵ௔௕ܭ௔௕ିଵܭ− = ௔௕ିଵ,   ܵ௕௔ܭ = ௕௔ܭ− + ௔௔,   ܵ௕௕ܭ௔௕ିଵܭ௕௕ܭ = ௔௕ିଵ. (4)ܭ௕௕ܭ−

where ܵ  is the wave propagation transformation matrix. ߤ  is the propagation coefficient and 
eigenvalues of ܵ , and so is 1/ߤ . In addition, ߶  is defined as the corresponding eigenvector. 
Therefore, 2݊ eigenvectors can constitute the following matrix equation:  Φ = [߶ଵ ߶ଶ ⋯ ߶௡] = ൤ܺ௔ ܺ௕௔ܰ ௕ܰ൨. (5)

௔ܲ  and ௕ܲ  are the dynamic stiffness matrixes of the left- and right-hand interfaces of the 
substructure, which can be obtained from the characteristic vector matrix Φ: 

௔ܲ = − ௕ܰܺ௕ି ଵ, ௕ܲ = ௔ܰܺ௔ି ଵ.  (6)

The degrees of freedom ݑ௔ and ݑ௕ in Eq. (2) be expressed in mode space as:  ݑ௔ = ܺ௕ܾ,   ݑ௕ = ܺ௔ܽ, (7)

where ܽ and ܾ are coefficient vectors. By eliminating the internal degree of freedom ݑ௜ in Eq. (2), 
the equation about the undetermined coefficients ܽ and ܾ can be expressed as below:  ൤ܭ௔௔∗ ∗௕௔ܭ∗௔௕ܭ ∗௕௕ܭ ൨ ቄܾܽቅ = ቄ݌௘௔݌௘௕ቅ, (8)
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where ܭ௔௔∗ = ௔௔ܭ) + ௔ܲ)ܺ௕, ܭ௔௕∗ = ∗௕௕ܭ ,௔௕ܺ௔ܭ = ௕௕ܭ) + ௕ܲ)ܺ௔, and ܭ௕௔∗ = ௘௔݌ ,௕௔ܺ௕; in additionܭ = ௔݂ − ௔௜଴ܭ ଵି(௜௜଴ܭ) ௜݂, and ݌௘௕ = ௕݂ − ௕௜଴ܭ ଵି(௜௜଴ܭ) ௜݂.  
After getting the vectors ܽ and ܾ through the above equation, the required responses ݑ௞, ݌௞ at 

the ݇th interface of the periodic structure can be obtained in accordance with Eq. (9):  ݑ௞௥ = ܺ௔ߤ௞ܽ,   ݌௞௥ = ௔ܲݑ௞௥,   ݇ ≥ 0, (9a)ݑ௞௟ = ܺ௕ିߤ௞ܾ,   ݌௞௟ = − ௕ܲݑ௞௟,   ݇ ≤ 0, (9b)

where the subscripts ݈ and ݎ of ݑ௞, ݌௞ mean the left- and right-hand interfaces of the substructure; 
positive ݇ is to the right of the loaded substructure and negative ݇ is to its left, with the zeroth 
interface being between the loaded substructure and the one to its right for ݇ > 0 and to its left for ݇ < 0.  

2.2.2. The symplectic model of embedded long sleeper ballastless track 

The track is regarded as a periodic structure in which the substructure consists of the pair of 
rails between neighboring sleepers, and the pair of rails is represented by a single Bernoulli-Euler 
beam. 

The track has four degrees of freedom, including the vertical and rotational degrees of freedom 
 at each of its two interfaces of the beam. When the track subjected to (௨ଶߠ ௨ଶ andݖ ,௨ଵߠ ,௨ଵݖ)
steady-state harmonic excitation, its equation of motion is expressed as:  (ܭ௥ + ௥ܥ߱݅ − ߱ଶܯ௥)ݑ௥௜ = ௥௜ݑ௥ௗܭ = ௥௜݌ − ௪݂௥௜ ௥ܰ௜, (10)

where ܭ௥, ܥ௥, ܯ௥ are the stiffness matrix, damping matrix and mass matrix of the track; ݑ௥௜ is the 
displacement response of the ݅ th substructure; ܭ௥ௗ  is the dynamic stiffness matrix of the 
substructure; ݌௥ are the corresponding nodal force vectors; ௪݂௥௜ is the wheel-rail force; ௥ܰ௜ is the 
shape function column vector of the Bernoulli-Euler beam element.  

Then, Eq. (10) can be expressed as:  

൤ܭ௥,௔௔∗ ∗௥,௕௔ܭ∗௥,௔௕ܭ ∗௥,௕௕ܭ ൨ ൜ܾ௥௜ܽ௥௜ൠ = ∗௥ܭ ൜ܾ௥௜ܽ௥௜ൠ = − ௪݂௥௜ ௥ܰ௜. (11)

Thus, the displacements of the left- and right-hand interfaces of the ݅th substructure caused by 
the wheel-rail force ௪݂௥௜ can be obtained through Eq. (10), as shown below:  ݑ௟,௜ = ܺ௔ߤ௞ିଵܽ௥௜,   ݑ௥,௜ = ܺ௔ߤ௞ܽ௥௜,   ݇ ≥ 1, (12a)ݑ௟,௜ = ܺ௕ିߤ௞ܾ௥௜,   ݑ௥,௜ = ܺ௕ିߤ௞ିଵܾ௥௜,   ݇ ≤ −1, (12b)

where ݇ represents the number of interfaces between the center of the ݆th substructure and the ݅th 
interaction force and; ݇ ≥ 1 suggests the right substructure and ݇ ≤ −1  represents the left 
substructure; ݑ௟,௜  and ݑ௥,௜  are the displacements of the left- and right-hand interfaces at the ݅th 
contact position, respectively. 

2.3. Vehicle-track vertical coupled relations 

Assuming that the vehicle and the track are connected through linear Hertz contact spring  ݇௛ [21], the wheel-rail force can be thus expressed as: 

௪݂௥௜ = ݇௛(ݑ௥௜ + ௜ݎ − ௪௜), (13)ݑ

where ݑ௥௜ is the displacement of the rail at the ݅th wheel-rail contact point, ݎ௜ is the pseudo track 



2507. STATIONARY RANDOM VIBRATION ANALYSIS OF VEHICLE-TRACK COUPLED SYSTEM WITH NONLINEAR TEST PARAMETERS OF RAILPADS.  
PING WANG, FAN YANG, KAI WEI, CHANGSHENG ZHOU 

2936 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716  

irregularity, ݑ௪௜ is the displacement of the ݅th wheel set.  
For a single carriage, there are four contact points between wheel and rail. The left- and 

right-hand displacement vectors of the ݅th substructure, ݑ௟,௜ and ݑ௥,௜, can be obtained as the sum 
of the responses caused by each of the four wheel-rail forces, i.e.: 

௟,௜ݑ = ෍ ௟,௝௜ସݑ
௝ୀଵ ௥,௜ݑ   , = ෍ ௥,௝௜ସݑ

௝ୀଵ . (14)

Consequently, the displacement of the rail at the contact point is expressed as: ݑ௥௜ = ்(௜ߦ)ܰ ቄݑ௟,௜ݑ௥,௜ቅ. (15)

Further, the equation of motion of the coupled vehicle-track system can be obtained:  ܭഥ ഥܷ = ത, (16)ܨ

where ܭഥ is the dynamic stiffness matrix of the coupled system,  ഥܷ = ,௩ݑ} ܾଵ, ܽଵ, ܾଶ, ܽଶ, ܾଷ, ܽଷ, ܾସ, ܽସ}், and ܨത is the pseudo force vector.  

2.4. Pseudo-excitation method for random vibration of the vehicle-track coupled system 

Pseudo-excitation method is an accurate and efficient random vibration analysis method. The 
stationary random vibration analysis can be equivalent to the harmonic vibration analysis.  

(a) ܵ௫௫ → (߱)ܪ → ܵ௨௨ =  ,ଶܵ௫௫|ܪ|
(b) ݔ = ݁௜ఠ௧ → (߱)ܪ → ݑ =  ,ఠ௧݁ܪ
(c) ݔ෤ = ඥܵ௫௫݁௜ఠ௧ → (߱)ܪ → ෤ݑ = ඥܵ௫௫݁ܪ௜ఠ௧. 
Basic principle of pseudo-excitation method is shown in Fig. 4. According to the traditional 

random vibration theories, when the linear system is subjected to the single-point stationary 
random excitation of the PSD ܵ௫௫, the response PSD of the system ܵ௨௨ is shown in Fig. 4(a); if 
the system is subjected to the unit harmonic load ݁௜ఠ௧, its corresponding response will be shown 
in Fig. 4(b); According to the nature of linear system, if ඥܵ௫௫ is multiplied by the unit harmonic 
load ݁௜ఠ௧, its response should also be multiplied by ඥܵ௫௫, as shown in Fig. 4(c). Thus, the pseudo 
excitation ඥܵ௫௫݁௜ఠ௧ can be constructed, and the pseudo response ݑ෤  can be obtained. In this way, 
the response PSD can be acquired by multiplying pseudo response with its complex conjugate: ݑ෤∗ݑ෤ = ෤|ଶݑ| = (߱)ଶܵ௫௫|ܪ| = ܵ௨௨(߱). (17)

Based on the pseudo-excitation method, we can know that if the PSD of the track irregularity ܵ௥(߱) is known, the pseudo-excitation vectors of the single carriage at the four vehicle-track 
contact points can be constructed:  ̃ݎ = {1 ݁ି௜ఠ௧మ ݁ି௜ఠ௧య ݁ି௜ఠ௧ర}்ඥܵ௥(߱)݁௜ఠ௧, (18)

where ݐଶ = (2݈௧)/ݒ ଷݐ , = (2݈௖)/ݒ , and ݐସ = 2(݈௧ + ݈௖ )/ݒ ݒ ;  is the vehicle speed. After the 
pseudo-excitation is introduced, the pseudo force vector ܨത of the vehicle-track coupled system 
can be expressed as:  ܨത = ݇௛{0,0,0,0,0,0, ݁ି௜ఠ௧భ, ݁ି௜ఠ௧మ, ݁ି௜ఠ௧య, ݁ି௜ఠ௧ర,    −ܰ(ߦଵ)்݁ି௜ఠ௧భ， − ，௜ఠ௧మି்݁(ଶߦ)ܰ − ，௜ఠ௧యି்݁(ଷߦ)ܰ − ௜ఠ௧ర}்ඥܵ௥(߱)݁௜ఠ௧. (19)ି்݁(ସߦ)ܰ
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Thus, the pseudo response ݑ෤  of the vehicle-track coupled system can be obtained, and the PSD 
of the response ݑ can be solved by means of Eq. (17).  

3. Impact of the rail pads frequency-dependent stiffness on random vibration of the vehicle-
track coupled system 

3.1. The main calculation parameters 

By using the above symplectic model established for the random vibration of the vehicle-track 
coupled system，taking the type-B metro vehicle running on the embedded sleeper ballast less 
track with the American fifth-grade vertical irregularity PSD (with a wavelength longer than 1 m) 
and the track irregularity PSD of Chinese Shi-tai line (with a wavelength less than 1 m) at the 
speed of 80 km/h as a subject for study, the impact of the frequency-dependent stiffness of rail 
pads on the vertical random vibration response of the vehicle body, bogie, wheels and rail in 
frequency domain is explored. The calculation parameters of the type-B metro vehicle and the 
embedded sleeper ballast less track are shown in Table 1 and Table 2.  

Table 1. Parameters of type-B metro vehicle 
Parameters Values Parameters Values 

Vehicle body mass, ܯ௖ 21.92 t Primary suspension damping ܥ௦ଵ 5 kN·s/m 
Wheelset mass, ܯ௪ 1.42 t Secondary suspension stiffness ܭ௦ଶ 275 kN·m-1 

Bogie mass, ܯ௧ 2.55 t Secondary suspension damping ܥ௦ଶ 30 kN·s/m 
Vehicle body inertia, ܬ௖ 617.31 t·m2 Bogie spacing, 2݈௖ 12.6 m 

Bogie inertia, ܬ௧ 1.75 t·m2 Wheelset spacing, 2݈௧ 2.2 m 
Primary suspension stiffness ܭ௦ଵ 1700 kN·m-1 Contact constant, 5.2 ܩe-8 m/N2/3 

Table 2. Parameters of track model 
Track parts Parameters Values 

Rail Bending stiffness, EI 6.62×106 N·m2  
Linear density, ݉௥ 60.64 kg/m 

Fastener system 
Rail pad stiffness / ܭ௥ 50 kN/mm 
Rail pad damping / ܥ௥ 5.0×104 kN·s/m 

Sleeper spacing, ݀ 0.6m 

3.2. The measurement and prediction of the dynamic mechanical performances of rail pads  

As far as most of high polymer materials are concerned, the similar dynamic mechanical 
performances can be observed at low temperatures or high frequencies. According to 
Time-Temperature Superposition (TTS) and WLF formula, the temperature-dependent and 
frequency-dependent dynamic mechanical parameters of rail pads can be predicted based on the 
experimental results at a certain frequency and under the different temperatures. 

3.2.1. Time-temperature superposition (TTS) and WLF formula 

For the high polymer material with the density of ߩ, the stiffness of ܭ′(݂, ,݂)′ܭ and (ݐ  at the (ݐ
frequency of ݂ and the Kelvin temperature of ܶ can be converted as the stiffness of ܭᇱ[݂ߙ(ܶ), ଴ܶ] 
and ܭᇱ[݂ߙ(ܶ), ଴ܶ] at the naturalized frequency of ݂ߙ(ܶ) and the reference temperature of ଴ܶ by 
the following Eq. (20)-(21).  ܭᇱ(݂, ܶ) = ൬ ଴ߩߩ ܶܶ଴൰ ,(ܶ)ߙ݂]ᇱܭ× ଴ܶ], (20)ܭ′′(݂, ܶ) = ൬ ଴ߩߩ ܶܶ଴൰ ,(ܶ)ߙ݂]ᇱᇱܭ× ଴ܶ]. (21)
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In Eq. (20)-(21), ߙ(ܶ)  is the conversion coefficient of temperatures, ܶ  is the test Kelvin 
temperature (unit: K), ଴ܶ is the reference temperature (unit: K); ݂ is the test frequency (unit: Hz), ݂ߙ(ܶ)  is the naturalized frequency (unit: Hz); ߩ  is the density at the test temperature of ܶ  
(unit: kg/m3), ߩ଴ is the density at the reference temperature of ଴ܶ (unit: kg/m3). 

In general, the influence of temperatures on the dynamic mechanical property of high polymer 
materials is far greater than the effect of frequencies, and these measurements to alter temperatures 
can be easily achieved in a broad temperature range. Therefore, the naturalized frequency of ݂ߙ(ܶ)  is much higher than the test frequency of ݂ . The conversion factor of ߙ(ܶ)  can be 
calculated by WLF equation [22], see Eq. (22): 

lgߙ(ܶ) = ܶ)ଵܥ− − ଴ܶ)ܥଶ + (ܶ − ଴ܶ). (22)

In Eq. (22), ܥଵ and ܥଶ are two constants, which has relation with the reference temperature of ଴ܶ and the types of high polymer materials. 
In order to obtain the temperature-dependent and frequency-dependent dynamic mechanical 

parameters of the test pads by application Time-Temperature Superposition (TTS) and WLF 
formula, the suggested procedure is as following.  

(1) The centigrade scale (unit: °C) used in this test should be equivalent to the absolute scale 
(unit: K). 

(2) The glassy transformation temperatures ( ௚ܶ) of the test pads can be determined by their 
maximum temperature-dependent loss factors. In this test, the glassy transformation temperatures 
of WJ-7 rail pads are –40 °C, –45 °C and –45 °C, respectively. According to ISO4664-1, if the 
glassy transformation temperatures are regarded as the reference temperature, ܥଵ and ܥଶ are 17.44 
and 51.6 K in WLF formula, respectively. 

(3) If another temperature is regarded as the reference temperature, ܥଵᇱ  and ܥଶᇱ  at the 
corresponding reference temperature can be calculated by using Eq. (23)-(25): ܥଵᇱ = ଶܥଶܥ×ଵܥ + ଶᇱܥ(23) ,∆ = ଶܥ + ∆, (24)଴ܶ = ௚ܶ + ∆. (25)

(4) In terms of the corresponding constants ܥଵ ଵᇱܥ)  ) and ܥଶ ଶᇱܥ)  ) at the different reference 
temperatures, the conversion factor of ߙ(ܶ) can be calculated by WLF formula (Eq. (22)). 

(5) The density of ߩ଴ at the reference temperature of ଴ܶ can be approximately obtained by 
using Eq. (26), in which the volume expansion coefficient of ݂ܽ is 4.8×10-4/K: ߩߩ଴ = 11 + (ܶ − ଴ܶ)×ܽ௙. (26)

3.2.2. Experimental parameters 

In this test, the full-size rail pads of WJ-7 fasteners which was often used in China’ high-speed 
railway, the universal testing machine equipped with a temperature control box, a section of steel 
rail (60 kg/m), several emery cloths, a loading steel plate and two supporting steel plates (Fig. 5). 

In view of China’s high-speed vehicle’s dynamic weight of 8×85 kN (increasing by 10 % than 
its actual static weight), the preload of two springs in a fastener (generally, about 20 kN) and the 
load-sharing scale of a fastener (generally, 0.4-0.6), the exciting dynamic loads on a rail pad 
should reciprocate between 20 kN and 70 kN. For safety’s sake, the periodic dynamic 
force-displacement curves of the test rail pads were measured at a certain frequency of 0.3 Hz and 
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under the different temperature points of –60-+20 °C with an interval of 2.5 °C. The periodic 
dynamic force-displacement curves of WJ-7 rail pads at 0.3 Hz and under –30 and +20 °C are 
shown in Fig. 6. 

  
Fig. 5. a) Universal testing machine equipped with a temperature control box in which the dynamic 

mechanical parameters of the soft pads in b) WJ-7 fasteners are measured under –60-+20 °C 

According to periodic dynamic force-displacement curves of linear viscoelastic materials, the 
stiffness of the soft pads in WJ-7 fasteners can be obtained at 0.3 Hz and under the temperatures 
of –60-+20 °C with an interval of 2.5 °C, as shown in Fig. 7.  

 
Fig. 6. The periodic dynamic force-displacement 

curves of WJ-7 rail pads at 0.3 Hz and under 20 °C 

 
Fig. 7. The stiffness of WJ-7 rail pad at 0.3 Hz  

and under the temperatures of –60-+20 °C 

3.2.3. Prediction of the untested dynamic mechanical performances of rail pads 

Since the dominant frequencies of the environment vibrations due to high-speed railway are 
low, only the stiffness of the soft pads in WJ-7 fasteners within 1000 Hz are predicted under the 
temperatures of –60-+20 °C.  

Fig. 8 shows the frequency-dependent stiffness of the test pads in WJ-7 fasteners within  
1000 Hz and under –30, –10 and +20 °C. It is clear that the actual dynamic mechanical parameters 
of rail pads are not supposed to be the frequency-independent and temperature-independent 
constants. Overall, the stiffness of rail pads increase with the decrease of temperatures or the 
increase of frequencies.  

It can be found that the stiffness of rail pad of different kinds of high polymer materials and 
the excitation frequency approximately form a linear relationship under the logarithmic coordinate 
system [23-25], as expressed in Eq. (27):  logଵ଴௄ = ݇×൫logଵ଴௙ − logଵ଴௙బ + logଵ଴௄బ൯, (27)
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where ܭ଴ is the low-frequency initial stiffness of the rail pad at the low excitation frequency ଴݂ 
(usually ଴݂ = 3-5 Hz); ݇ is the slope of the linear relationship between the rail pad stiffness and 
excitation frequency under the logarithmic coordinate system, representing the 
frequency-dependent extent (or frequent-dependent degree) of the rail pad stiffness. It can be 
easily seen from Eq. (27) that the relationship between the stiffness of rail pad of different 
materials and the excitation frequency mainly depends on its low-frequency initial stiffness ܭ଴ 
and its stiffness' frequency-dependent extent ݇.  

According to the experimental data, the linear slope for the changes in the stiffness of WJ-7 
rail pad with the frequency under the logarithmic coordinate system is all 0.07 under –30, –10 and 
+20 °C; in addition, the initial stiffness of WJ-7 rail pad is 31.0, 45.2 and 70.8 kN/mm under an 
excitation of 3-5 Hz. 

 
Fig. 8. The frequency-dependent stiffness of WJ-7 rail pad within 100 Hz and under –30, –10 and +20 °C 

3.3. The impact of the rail pad frequency-dependent stiffness on the random vibration 
response of the coupled vehicle-track system  

The comparison of impact the rail pad frequency-dependent stiffness and constant stiffness on 
the random vibration response of the coupled vehicle-track system at the temperature of 20 °C 
was presented. The vertical random vibration acceleration of the vehicle body, bogie, wheelset 
and rail under these two calculation conditions are shown in Fig. 9-12. 

Fig. 9 shows the PSD of the vertical random vibration acceleration of the vehicle body under 
the rail pad constant stiffness and frequency-dependent stiffness. It can be seen from Fig. 9 that 
the calculation results under the two calculation conditions basically overlap. This result suggests 
that the impact of the rail pad frequency-dependent stiffness on the vertical random vibration 
response of the vehicle body can be neglected. 

Fig. 10 presents the PSD of the vertical random vibration acceleration of the bogie under the 
rail pad constant stiffness and frequency-dependent stiffness. It can be seen from Fig. 10 that the 
calculation results under the two calculation conditions have very little difference within 15 Hz. 
By reading the PSD peak value at 7.02 Hz, we can know that there is only a small gap of  
2.0×10-6 m2/s4/ Hz between these two conditions, as shown in Fig. 10(a). However, as the 
frequency varies within 20-100 Hz, there is a huge difference between them, as shown in  
Fig. 10(b). For example, when the frequency varies within 20-45 Hz, given that the calculation 
condition of the frequency-dependent stiffness of rail pads has a small calculation value, namely, 
the calculation result under the rail pad frequency-dependent stiffness is 88.5 % of that under the 
rail pad constant stiffness at Point A in Fig. 10(b); yet, with the frequency range of 45-100 Hz, the 
calculation result under the constant stiffness condition is small, namely, the calculation result 
under the rail pad constant stiffness is only 56.1 % of that under the rail pad frequency-dependent 
stiffness at Point B in Fig. 10(b). Thus, it is not hard to find that the calculation result without 
considering the frequency-dependent stiffness of the rail pads will not only underestimate the 
vibration of the bogie within the frequency range of 45-100 Hz but also overestimate the vibration 
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with the frequency range of 20-45 Hz. In other words, the rail pad characteristic of the 
frequency-dependent stiffness changes the distribution of the random vibration of the bogie in the 
frequency domain. 

 
Fig. 9. PSD of vertical random vibration acceleration of the vehicle body 

 
a) 0-100 Hz 

 
b) 20-100 Hz 

Fig. 10. PSD of the vertical random vibration acceleration of the bogie 

Fig. 11 shows the PSD of the vertical random vibration acceleration of the wheelset under two 
different calculation conditions. It can be seen that, the frequency-domain random vibration 
acceleration of the wheelsets mainly concentrate within the range of 30-100 Hz. In addition, it can 
be seen from Fig. 11 that, compared with the calculation condition of rail pad constant stiffness, 
the frequency-dependent stiffness not only significantly increases the vertical random vibration 
acceleration of the wheelset within the frequency range of 50-200 Hz, but also enhances the 1st 
dominant frequency. Fig. 11 suggests that, when the rail pad stiffness is constant, the highest PSD 
peak of the vertical random vibration acceleration of the wheelset reaches 8.82 m2/s4/Hz and 
corresponds to the 1st dominant frequency of 47.9 Hz; when the rail pad stiffness is 
frequency-dependent, the highest PSD peak of the vertical random vibration acceleration of the 
wheelset rises to 13.5 m2/s4/Hz and its corresponding 1st dominant frequency also increases to 
57.1 Hz. To sum up, the frequency-dependent stiffness of rail pad alters not only the 
frequency-domain amplitudes of the vibration but also its frequency-distribution at center 
frequencies higher than 30 Hz. The random vibration of the wheel is transferred to the high 
frequency in the frequency domain. 

Fig. 12(a) shows that in the range of 0-100 Hz, the effect of frequency-dependent rigidity on 
the random vibration of the rail is basically the same as that of the wheelset, that is, the 
frequency-dependent stiffness of rail pads clearly decreases the random vibration of rail below 
50 Hz, and significantly increases the random vibration of rail above 50 Hz. In the frequency range 
of 100-1000 Hz, the PSD peak fluctuation of the rail vibration acceleration power spectrum is 
very severe, which is caused by the periodic vibration of the rail due to the fixed wheelbase 
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according to the existing research [26]. There is a peak at 840 Hz, which is mainly due to the self-
vibration characteristics of the rails, on the overall trend of the rail acceleration PSD. Fig. 12(b) 
shows that every two adjacent peaks of the rail vibration acceleration PSD between the frequency 
interval ௜݂௡௧  is equal to ݒ/݈  (10 Hz), where ݒ  is the vehicle speed, ݈  is a fixed wheelbase. In 
addition, the influence of frequency-dependent stiffness on the response of the rail vibration 
acceleration becomes very small in this frequency domain, and the difference between the two 
cases is only 1 %. The random vibration curve of the rail is the shape of the wave mainly due to 
two reasons which are due to the periodic vibration caused by the fixed wheelbase of the vehicle 
body and the free-vibration characteristic of the track structure itself. 

 
Fig. 11. PSD of the vertical random vibration acceleration of the 2nd wheelset  

 
a) 0-1000 Hz 

 
b) 820-860 Hz 

Fig. 12. PSD of the acceleration of the rail the under the 2nd wheelset 

3.4. The impact of the environment temperature on the random vibration response of the 
coupled vehicle-track system 

The experimental results show that the stiffness of the fastener is not only affected by the 
excitation frequency, but also has a great relationship with the environment temperature. In this 
section, we will study the influence of the frequency-dependent and temperature-dependent 
stiffness of the rail pads on the random vibration of the vehicle-track coupled system. In this 
analysis, the frequency-dependent extent ݇  of the rail pads stiffness is taken as 0.07 and the 
environment temperature is considered as –30, –10 and 20 °C. 

Fig. 13 shows the random response of the vehicle body under three temperature conditions. 
The calculated results are in good agreement with each other, indicating that the impact of the rail 
pads temperature-dependent stiffness on the response of the vehicle body is negligible.  

Fig. 14 shows the random vibration acceleration response spectrum of the bogie at three 
temperatures. Fig. 14(a) can be seen that the calculation results of the three conditions in the  
0-20 Hz range is basically the same, but the difference in the 20-100 Hz range is obvious.  



2507. STATIONARY RANDOM VIBRATION ANALYSIS OF VEHICLE-TRACK COUPLED SYSTEM WITH NONLINEAR TEST PARAMETERS OF RAILPADS.  
PING WANG, FAN YANG, KAI WEI, CHANGSHENG ZHOU 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. JUN 2017, VOL. 19, ISSUE 4. ISSN 1392-8716 2943 

Fig. 14(b) shows that at the peak A position, the bogie acceleration response PSD peak at the three 
ambient temperatures (–30, –10 and 20 °C) is 4.51×10-3 m2/s4/Hz, 1.78×10-3 m2/s4/Hz and  
4.60×10-4 m2/s4/Hz, respectively corresponding to the dominant frequency of 71.2 Hz, 70.0 Hz 
and 70.0 Hz. In summary, the temperature-dependent stiffness of the rail pads only affects the 
amplitude of the PSD in the frequency domain above 20 Hz, and the influence on the main 
frequency is relatively small. With the frequency of 63 Hz as the critical position, when the 
frequency is less than 63 Hz, the higher the temperature, the PSD peak of the bogie random 
vibration acceleration greater, but when the frequency is more than 63 Hz, the conclusion is just 
the opposite. It indicates that the law of the temperature-dependent stiffness of the rail pads on the 
random vibration of the bogie is different in different frequency bands. 

 
Fig. 13. PSD of vertical random vibration acceleration of the vehicle body 

 
a) 0-100 Hz 

 
b) 20-100 Hz 

Fig. 14. PSD of the vertical random vibration acceleration of the bogie 

Fig. 15 shows the results of the wheelset acceleration PSD under three ambient temperatures. 
It is not difficult to find that the temperature variation stiffness of the fastener has great influence 
on the wheel acceleration response, including the peak value and the corresponding dominant 
frequency. The PSD peak of the wheelset acceleration response is 63.4 m2/s4/Hz, 27.5 m2/s4/Hz 
and 13.1 m2/s4/Hz respectively, and the corresponding dominant frequencies are 73.4 Hz,  
63.1 Hz and 50.3 Hz. The lower the temperature, the greater the peak value of the wheelset 
acceleration PSD and the higher the corresponding dominant frequency, and this change was a 
nonlinear increase in the trend. This is because the rail pads stiffness decreases gradually with the 
temperature, making the resonance frequency of the wheel-rail coupled system increases, so that 
the energy of wheel random vibration transfer to the high-frequency domain. As the temperature 
increases linearly, the increasing trend of the peak value of the random vibration acceleration PSD 
of the wheel is nonlinear. 

Fig. 16 shows the random vibration PSD of the rail under three temperatures. The influence of 
the rail pads temperature-dependent stiffness on the rail acceleration is the same in the range of 
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0-200 Hz, and the effect of temperature on the rail acceleration response is gradually reduced in  
200-600 Hz. The difference between the three temperature conditions is stable above 600 Hz, and 
the difference is less than 5 %. It is shown that the rail pads temperature-dependent stiffness only 
affects the rail acceleration within 200 Hz, but less on the high frequency vibration above 200 Hz. 
Because the fastener is in direct contact with the rail, the stiffness of the fastener pad has a certain 
influence on the whole frequency domain of the rail, and the influence law is complicated and 
nonlinear. 

Fig. 15. PSD of the 2nd wheelset acceleration 
 

 
Fig. 16. PSD of the acceleration  

of the rail under the 2nd wheelset 

With the comparison of Fig. 11 and Fig. 15, considering the range of environment temperature 
and the frequency-dependent extent of the rail pads of WJ-7 fastener, the PSD peak of the vertical 
random vibration acceleration of the wheelsets gets the maximal increase of 3.3 times at least, and 
its 1st dominant frequency has the biggest increment of 20.6 Hz or more. Therefore, in order to 
accurately analyze the random vibration responses of the vehicle-track coupled system, 
experiments must be conducted to obtain the accurate kinetic parameters of the polymer materials 
like rail pads. 

4. Conclusions 

The symplectic method and random vibration pseudo-excitation method of infinitely periodic 
substructure are adopted to establish an efficient symplectic model of vertical random vibration 
of the vehicle-track coupled system for exploration of the impact of the rail pad frequency-
dependent and temperature-dependent stiffness on the vertical random variation response of the 
vehicle body, bogie, wheelsets and rail. The conclusions and suggestions are as follows: 

1) According to Time-Temperature Superposition (TTS) and WLF formula, the 
temperature-dependent and frequency-dependent dynamic mechanical parameters of rail pads can 
be predicted based on the experimental results at a certain frequency and under the different 
temperatures. The frequency-dependent stiffness of the test rail pads in WJ-7 fasteners within 
1000 Hz is predicted under the temperatures of –30, –10 and +20 °C, and the predicted results 
show that the rail pads stiffness increase with the decrease of temperatures or the increase of 
frequencies. 

2) The impact of rail pad frequency-dependent stiffness on the vertical random vibration of the 
vehicle body is negligible; yet, it will change the vertical random vibration amplitude of the bogie 
with the frequency range of 20-100 Hz and significantly improve the PSD peak of the vertical 
random vibration acceleration of the wheelsets and rail and its corresponding 1st dominant 
frequency, thereby causing the frequency domain redistribution of the vertical random vibration 
of the bogie, wheelsets and fundamental structure under wheels. 

3) The random vibration of the vehicle-track coupled system under different temperature is 
studied considering the rail pads stiffness variation with the excitation frequency. The influence 
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of the rail pads temperature-dependent stiffness on the response of the vehicle body is negligible, 
but the influence on the acceleration of the bogie, wheelset and rail is significant in the frequency 
range of 20-100 Hz. For the response of the wheelsets and rail, the lower the temperature, the 
greater the peak value of the wheelset acceleration PSD and the higher the corresponding dominant 
frequency, and this change presented a nonlinear increase on the trend. 

4) Within the range of environment temperature and the frequency-dependent extent of rail 
pads in the railway, the PSD peak of the vertical random vibration acceleration of the wheelsets 
and rail gets the largest increase of 3.3 times at least, and the maximum increment for their 1st 
dominant frequency also reaches up to 20.6 Hz or more. Therefore, in order to accurately predict 
the random vibration responses of the vehicle-track coupled system, experiments must be 
conducted to obtain the accurate kinetic parameters of the polymer materials like rail pads. 
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