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Abstract. In this study, the influences of the squeeze-film damping effect on the dynamic 
behavior of the microelectromechanical electrostatic actuators are investigated by the hybrid 
numerical scheme comprising the differential transformation method and the finite difference 
method. There are two types of actuators which including the circular micro-plate and the 
clamped-clamped micro-beam, relatively. The analyses take account of the axial stress effect, the 
residual stress and the fringing field effect within the micro actuators and explore the dynamic 
response of the plate/beam as a function of the magnitude of the AC driving voltage. The 
effectiveness of a combined DC/AC loading scheme in driving the micro actuators are examined. 
It is shown that the use of an AC actuating voltage in addition to the DC driving voltage provides 
an effective means of tuning the dynamic response of the micro actuators. Therefore, the results 
show that the hybrid method provides an accurate and computationally-efficient means of 
analyzing the nonlinear behavior of the micro-beam structures used in many of today’s 
MEMS-based actuator systems. 
Keywords: circular micro-plate, pull-in voltage, MEMS, hybrid method, differential 
transformation, clamped-clamped micro-beam. 

1. Introduction  

Micro-electro-mechanical systems (MEMS) devices have applications in many engineering 
fields such as communications [1], automotive industry [2] and chemical [3], and so on. Such 
devices are generally actuated using either electrostatic [4], electromagnetic [5], thermal or 
piezoelectric [6] techniques. Of these various techniques, electrostatic actuation schemes are the 
most commonly employed due to their fast response, low power consumption, reliability and their 
batch fabrications [7]. Actually, in the electrostatic actuation of a micro-structure system, the 
electrostatic force is produced from the voltages of two electrodes. If the electrostatic force is 
greater than the elastic restoring force of the micro-structure system, this represents an unstable 
phenomenon, and the two electrodes attract and come into contact with each other suddenly [8]. 
The critical value of the voltage is defined as the pull-in voltage, which has a tremendous influence 
on the electrostatic device. For example, the electrostatic device is regarded as a digital actuator 
when the operation voltage is greater than the pull-in voltage and the upper electrode can be 
attracted to the fixed bottom electrode very quickly; therefore, the pull-in voltage limits the 
operation range of the actuator. The pull-in behavior phenomenon, however, can be used in the 
design of such components as switches and relays. Hence, the pull-in voltage is a very important 
parameter in the design of microelectromechanical devices.  

Accordingly, many researchers have proposed more sophisticated techniques for modeling the 
nonlinear behavior of electrostatic actuators which including the micro-plate and the micro-beam. 
Chao et al. [9] proposed a novel computational method for predicting the static pull-in event 
between two micro-plates actuated by a distributed electrostatic force. Chen et al. [10] used a 
hybrid differential transformation / finite difference method to analyze the nonlinear dynamic 
behavior of a clamped-clamped micro-beam in the absence of a squeeze-film damping effect. 
Younis et al. [11] presented a continuous reduced-order model for predicting the static pull-in 
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voltage and position of electrically actuated MEMS micro-beams. Taking into account geometric 
nonlinearity and residual stresses, Vogl and Nayfeh [12] presented an analytical continuous 
reduced-order model (macromodel) for an electrically actuated clamped circular plate with a 
uniform residual biaxial plane stress consideration for actuated, and than using a Galerkin 
approach method to discretize the microstructure. 

To increase the actuation efficiency and detection sensitivity of MEMS-based devices, the 
separation distance between the two electrodes must be minimized and the overlapping area 
between them maximized. Under such conditions, a squeeze-film damping effect occurs between 
the two electrodes as the upper electrode deforms [13]. The Squeeze-film damping can be modeled 
using the Reynolds equation, which is derived from the Navier–Stokes equations and the 
continuity equation. The main assumption is that the gas in the gap can be treated as a continuum. 
The validity of this assumption depends on the so-called Knudsen number (ܭ௡) which defined as 
the ratio of the mean free path of the air particals to the film thickness. Based on the Knudsen 
number, the air flows can be divided into four regimes: continuum flow when ݊ܭ < 0.01, slip 
flow when 0.01 < ௡ܭ < 0.1, transitional flow when 0.1 < ݊ܭ < 10 and free molecular flow when ݊ܭ > 10. Krylov and Maimon [14] have studied the transient dynamics of an electrically actuated 
micro-beam considering the electrostatic forces, squeeze-film damping, and rotational inertia of a 
mass carried by the micro-beam. 

Dynamic analysis currently MEMS devices are being positively developed for various widely 
applications of industries. Younis [15] examined the dynamic behavior of micro-beams subject to 
combined DC / AC loading and derived analytical expressions for the micro-beam motion under 
primary resonance conditions. Chen et al. [10] demonstrated that the hybrid differential 
transformation and finite difference method provides a precise and computationally-efficient 
means of analyzing the nonlinear dynamic behavior of fixed-fixed micro-beams.  

In the present study, the hybrid numerical scheme comprising the differential transformation 
method and the finite difference method is applied to analyze the dynamic behavior of the circular 
micro-plate / the clamped-clamped micro-beam actuated by pure DC or combined DC / AC 
loading schemes. The analyses take account of the electrostatic coupling effect, the fringing field 
effect, the residual stress, the nonlinear electrostatic force, the axial stress effect and squeeze-film 
damping effect.  

2. Differential transformation theory 

Differential transformation theory was originally proposed by Zhou [16] in 1986 as a means 
of solving linear and nonlinear initial value problems in the circuit analysis field. However, later 
researchers extended its use to the analysis of the mechanical engineering domain [10, 13, 17]. 
The basic principles of the differential transformation method are introduced below. If (ݐ)ݕ is an 
analyzable function in time domain ܶ, a definition of the differential transformation of ݔ at ݐ =  ଴ݐ
in the ܭ domain is: 

ܻ(݇; (଴ݐ = (݇)ܯ ൭ ݀௞݀ݐ௞ ൫(ݐ)ݕ(ݐ)ݍ൯൱௧ୀ௧బ , ݇ ∈ ,ܭ (1)

where ݇  belongs to the set of non-negative integers denoted as the ܭ  domain, ܻ(݇;  ଴) is theݐ
transformed function in the transformation domain, otherwise called the spectrum of (ݐ)ݔ at  ݐ = ଴ݐ  in the ܭ  domain, ܯ(݇)  is the weighting factor, and (ݐ)ݍ  is regarded as a kernel 
corresponding to (ݐ)ݕ. Both ܯ(݇) and (ݐ)ݍ are non-zero and (ݐ)ݍ is an analyzable function in 
time domain ܶ. Therefore, the differential inverse transformation of ܻ(݇;  :଴) can be described asݐ
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(ݐ)ݕ = (ݐ)ݍ1 ෍ ݐ) − ଴)௞݇!ஶݐ
௞ୀ଴

ܻ(݇; (݇)ܯ(଴ݐ , ݐ ∈ ܶ. (2)

If ܯ(݇) = ௞ܪ ݇!⁄  and (ݐ)ݍ = 1 , where ܪ  is the time interval. Let ݐ଴ = 0 ; Eq. (1) then 
becomes: 

ܻ(݇) = !௞݇ܪ ቈ݀௞ݐ݀(ݐ)ݕ௞ ቉௧ୀ଴ , ݇ ∈ ,ܭ (3)

The differential inverse transformation of ܻ(݇)can then be expressed as below by Eq. (2): 

(ݐ)ݕ = ෍ ൬ ൰ஶܪݐ
௞ୀ଴

௞ ܻ(݇), ݐ ∈ ܶ. (4)

Substituting Eq. (3) into Eq. (4) gives: 

(ݐ)ݕ = ෍ ௞݇!ஶݐ
௞ୀ଴ ቈ݀௞ݐ݀(ݐ)ݕ௞ ቉௧ୀ଴ , ݐ ∈ ܶ. (5)

Eq. (5) can be derived by Taylor series expansion. Therefore, the main basic operation 
properties of the differential transform are listed below: 

a) Linearity operation: ܶሾ(ݐ)ݕߙ + ሿ(ݐ)ܿߚ = (݇)ܻߙ + ,(݇)ܥߚ (6)

where ܶ denotes the differential transform and ߙ and ߚ can be any real number. 
b) Differential operation: 

ܶ ൤݀௡ݐ݀(ݐ)ݕ௡ ൨ = (݇ + ݊)!݇! ௡ܪ ܻ(݇ + ݊), (7)

where ܶ denotes the differential transform and n is the order of differentiation [10, 13, 17]. 

3. Modeling of microelectromechanical electrostatic actuators 

3.1. Modeling of clamped-clamped micro-beam  

The analysis performed in this study considers the clamped-clamped micro-beam shown in 
Fig. 1. As shown, the upper plate is actuated by a driving voltage ܸ(ݐ) = ஽ܸ஼ + ஺ܸ஼cos(߱ݐ), 
where ஽ܸ஼  is the DC polarization voltage, ஺ܸ஼  is the magnitude of AC voltage, and ߱  is the 
excitation frequency. In deriving the governing equation of the clamped-clamped micro-beam 
which considers the fringing field effect, the residual stress and the squeeze-film damping effect 
within the beam. The corresponding governing equation is therefore given by [13]: 

ܫ෨ܧ ߲ସݔ߲ݓସ + ܣߩ ߲ଶݐ߲ݓଶ − ൥ ଴ܰ + ܮ2ܣ෨ܧ න ൬߲ݔ߲ݓ ൰௅
଴

ଶ ൩ݔ݀ ߲ଶݔ߲ݓଶ = ாܨ − .ௌܨ (8)

Regarding the right-hand side of Eq. (1), ܨா  represents the excitation force per unit beam 
length and is given by: 
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ாܨ = ܩ)ଶ2(ݐ)଴ܾܸߝ − ଶ(ݓ ൬1 + 0.65 ܩ − ܾݓ ൰, (9)

where ߝ଴, ܾ and ܩ denote the permittivity of free space, the width of the micro-beam and the initial 
gap size between the upper and lower electrodes, respectively. Moreover, ܧ෨  is the effective beam 
material modulus. For the case of a wide micro-beam (i.e., ܾ ≥ 5ℎ), ܧ෨  is equal to the plate 
modulus, i.e. 1)/ܧ −  ,is the Poisson ratio and ℎ is the beam thickness. Conversely ߥ ଶ), whereߥ
for a narrow beam, ܧ෨  is equal to the Young’s modulus, ܧ. In Eq. (8), ܫ denotes the moment of 
inertia of the micro-beam, ଴ܰ is a constant denoting the residual force acting on the beam and ݓ 
is the transverse displacement of the beam and varies as a function of both the longitudinal position ݔ and the time ݐ, i.e.,ݓ = ,ݔ)ݓ Note that the residual force is given by ଴ܰ .(ݐ =  ෤ isߪ ෤ܾℎ, whereߪ
the residual stress and has the form of ߪ෤ = 1)ߪ −  .is the biaxial residual stress ߪ in which ,(ߥ

Finally, ܨௌ denotes the force acting on the beam due to the squeeze-film damping effect and is 
given by: 

ௌܨ = න (ܲ − ௔ܲ)݀ݕ௕
଴ , (10)

where ܲ is the absolute pressure in the air gap and ௔ܲ is the ambient pressure. The net pressure 
can be expressed as തܲ = ܲ − ௔ܲ. The squeeze-film damping effect in Fig. 1 can be described by 
the nonlinear Reynolds equation: ߲߲ݔ ൬ߩ௔ℎ௔ଷ ൰ݔ߲߲ܲ + ݕ߲߲ ൬ߩ௔ℎ௔ଷ ൰ݕ߲߲ܲ = ߤ12 ݐ߲(௔ℎ௔ߩ)߲ . (11)

Note that ℎ௔, ௔ߩ   and ߤ  represent the variable distance between the two electrodes  
(ℎ௔ = ܩ −  the density of the air in the air gap, and the effective viscosity of the air in the air ,(ݓ
gap, respectively.  

 
Fig. 1. Schematic illustration of the clamped-clamped micro-beam 

3.2. Modeling of circular micro-plate 

In deriving the governing equation of motion for the circular micro-plate shown in Fig. 2, the 
study considers both the residual stress within the plate and the squeeze-film damping effect 
between the two plates. The governing equation is therefore given as [8]: 

ℎߩ ߲ଶݐ߲ݓଶ + ܦ ቆ ߲ଶ߲ݎଶ + ݎ1 ቇݎ߲߲ ቆ߲ଶݎ߲ݓଶ + ݎ1 ݎݓ߲߲ ቇ − ௥ܶ ቆ߲ଶݎ߲ݓଶ + ݎ1 ݎݓ߲߲ ቇ = ܩ)ଶ2(ݐ)଴ܸߝ − ଶ(ݓ − ௡ܲ, (12)

where ߝ଴, ℎ and ܩ  are represented the permittivity of free space, the thickness of the circular 
micro-plate, and the initial gap height between the upper and lower plates, respectively. In  
addition, ܸ(ݐ) is the voltage between the two plates, (i.e., ܸ(ݐ) = ஽ܸ஼ + ஺ܸ஼sin(߱ݐ)), ߩ is the 
density of the micro circular plate, and ݓ is the transverse deflection of the circular micro-plate at 
a distance ݎ from the center of the plate. In other words, the symmetry transverse deflection of 
micro circular plate is irrelevant to polar coordinate ߠ. Finally, ௥ܶ is the residual stress within the 
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plate, ௡ܲ is the net pressure within the air gap and ܦ is the flexural rigidity of the plate, i.e.: ܦ = ℎଷܧ 12(1 − ⁄(ଶߥ , (13)

where ߥ and ܧ are the Poisson ratio and Young’s modulus of the upper circular plate, respectively. 
The squeeze-film damping effect within the air gap is modeled using the linearized compressible 
gas-film Reynolds equation [13], which has the form: ߲ଶ ௡߲ܲݎଶ + ݎ1 ߲ ௡߲ܲݎ = ଷܩ௔ܲߤ12 ൬ܩ ߲ ௡߲ܲݐ + ௔ܲ ߲ℎ௔߲ݐ ൰, (14)

where ℎ௔ and ߤ represent the variable distance between the two electrodes (i.e., ℎ௔ = ܩ −  and (ݓ
the effective viscosity of the air in the air gap, respectively. The net pressure in the air gap can be 
expressed as ௡ܲ = ܲ − ௔ܲ , where ܲ  is the absolute pressure in the gap and ௔ܲ  is the ambient 
pressure. 

 
Fig. 2. Schematic illustration of the circular micro-plate 

4. Numerical results and discussion 

4.1. Clamped-clamped micro-beam 

In this section, the validity of the proposed hybrid numerical scheme was demonstrated by 
comparing the predicted value of the pull-in voltage with that obtained using different scheme in 
the literature and the computations were performed using MATLAB. Note that in performing the 
analysis, the material and geometry properties of the micro-beam were assigned the values given 
in Table 1. In performing the comparison, as shown in Table 2, it is seen that the pull-in voltage 
calculated using the proposed method is just 1.4 % lower than that presented in the literature. 

Table 1. Material and geometry parameters of the clamped-clamped micro-beam 
Parameters / Symbol / Unit Value 

Young's modulus (ܧ) (GPa) 151 
Poisson’s Ratio (ߥ) 0.3 
Density (ߩ) (kg/m3) 2332 
Thickness of circular plate (ℎ) (μm) 1.5 
Initial gap (ܩ) (μm) 1.18 
Length of beam (ܮ) (μm) 210 
Biaxial residual stress (ߪ) (MPa) 6 

Table 2. Comparison of present analytical results and literature results for pull-in voltages 

 Analytical results Deviation 
Hybrid numerical scheme DQM [18] ݁ (%) 

Pull-in Voltage (V) 27.7 28.1 1.4 
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Fig. 3 shows the variation over time of the center-point deflection of the micro-beam for a 
constant DC voltage of 27 V and AC voltages in the range of 0-1.9 V. It is seen that the 
center-point deflection increases nonlinearly with an increasing AC voltage due to the nonlinear 
of the electrostatic coupling effect. Furthermore, it is observed that for a dimensionless time of 
less than 60, the DC voltage is unstable with a smaller deflection of the center point. In addition, 
the results show that for an AC voltage of 1.8 V, the micro-beam oscillates in a stable manner 
about the equilibrium deflection point. However, when the AC voltage is increased to 1.9 V, the 
micro-beam collapses and makes transient contact with the lower electrode. 

 
Fig. 3. Variation of dimensionless center-point displacement over time for different AC voltages 

4.2. Circular micro-plate 

Fig. 4 illustrates the variation of the center-point deflection of the micro-plate over time as a 
function of the AC voltage. Note that in performing the analysis, the basic material and geometry 
properties of the micro-plate is assigned in accordance with the data presented in Table 3. The 
results show that as the AC voltage increases, the center-point deflection of the micro-plate also 
increases as a result of the enhanced electrostatic coupling effect. In addition, it can be observed 
that the center deflection of the micro-plate increased nonlinearly as the AC voltage increased due 
to the micro-plate coupling effect. 

 
Fig. 4. Variation of dimensionless center-point displacement over time  

for constant DC voltage and AC voltages ranging from 0.0-11.5 V 

Fig. 5 shows the phase portraits of the circular micro-plate for a constant DC voltage of 94 V 
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and AC voltages of 5.0 V, 8.0 V,11.5 V and 12.0 V, respectively. The results show that for an AC 
voltage less than 12.0 V, the system exhibits a stable behavior, i.e., the size of the orbit remains 
approximately constant over time. However, for an actuating voltage of 12.0 V, the size of the 
orbit gradually increases until the system becomes unstable and the pull-in event occurs. 

Table 3. Material and geometry parameters of the circular micro-plate 
Parameters / Symbol / Unit Value 

Young’s modulus (ܧ) (GPa) 130 
Poisson’s Ratio (ߥ) 0.23 
Density (ߩ) (kg/m3) 2330 
Thickness of circular plate (ℎ) (μm) 1.0 
Initial gap (ܩ) (μm) 1.0 
Radius (ܴ) (μm) 45 

 
Fig. 5. Phase portraits for the circular micro-plate given constant DC voltage of 94 V 

5. Conclusions 

The present study has analyzed the nonlinear dynamic behavior of the microelectromechanical 
electrostatic actuators subject to a squeeze-film damping effect by using a hybrid numerical 
scheme comprising the differential transformation method and the finite difference method. The 
validity of the proposed scheme has been confirmed by comparing the predicted value of the 
pull-in voltage for the micro-beam with the results presented in the literature. Finally, it has been 
shown that the stability of the circular micro-plate reduces as the magnitude of the AC voltage 
increases. Overall, the numerical results presented in this study show that the hybrid numerical 
scheme provides an accurate and computationally-efficient means of analyzing the nonlinear 
dynamic behavior of the microelectromechanical electrostatic actuators used in many of today’s 
MEMS-based systems. 
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