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Abstract. In this paper, comparison between G-N model of type II (without energy dissipation)
and G-N model of type III (with energy dissipation) has been shown in a three dimensional
thermoelastic half space with rotation subjected to time dependent heat source on the traction free
boundary. Eigenvalue methodology has been adopted to solve the equations resulting from the
application of the Normal mode analysis to the non-dimensional coupled equations. Variation of
the numerically computed values of thermal stresses and temperature with and without rotation
has been illustrated graphically.

Keywords: anaisotropic half space, G-N model II and III, normal mode analysis, eigenvalue
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Nomenclature

Cij Material constant

Bij Thermal elastic coupling tensor
6i; Kronecker delta

U; Displacement components

e Strain tensor

Tij Stress components

p Mass density

1. Introduction

The inconsistency of heat conduction equation of classical uncoupled theory of
thermoelasticity with the experimental results is due to the fact that i. no elastic term is included
to account for elastic changes producing heat effects; ii. parabolic nature of heat conduction
equation indicating infinite speed of propagation of heat waves means that thermal disturbances
(with infinite speed) and elastic disturbances (with finite speed) from the classical theory of
thermoelasticity, are coupled together. This suggests that every solution of the equations has a part
which extends to infinity.

Biot [1] developed a theory of irreversible thermodynamics and gave a satisfactory derivation
of the linear theory of coupled thermoelasticity. In order to obtain a wave type heat conduction
equation the concept of generalized thermoelasticity was introduced modifying CCTE and later
extended by Dhaliwal and Sherief [3] for anisotropic body, and the uniqueness of the solutions
was proved by Ignaczak [2,4]. Green-Naghdi proposed a generalized thermoelasticity by
modifying the energy equation. There are three types of constitutive relations in G-N model [6-8].
Type-I leads to classical heat conduction equation. Type-II provides solutions for thermal waves
propagating finite speed without energy dissipation (TEWOED) and type-III also confirms
propagation of thermal waves of finite speed with energy dissipation (TEWED). Several
investigations with these extensions have been studied by Abd-Alla and Abo-Dahab [11], Kar and
Kanoria [9] and Yousef [10]. Pal et al. [5, 14] studied the effect of homogeneity of the surface
waves in anisotropic media.
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In this paper, the stress distributions and temperature variation has been depicted in an
anisotropic triclinic half space for G-N model II and III both with rotation.

2. Basic equations

For a linear thermoelastic anisotropic body subjected to rotation the field equations are as
follows:
The equation of motion in the absence of inner heat source:

750 = plit; + Qx(@Qxa,) + (20x1;)]. (1)
Heat — conduction equation in absence of body force:

k*0;j + kij0; = pc.f + 0, ;. ()
The Duhamel-Neumann stress-strain relations are:

Tij = Cijrer — Pij06i;, (3)

where '8’-] = Cijklakl (i,j, k,l = 1, 2, 3)
Strain — displacement relation:

1 aui
ey =3 (wy + ), vy =50 @)

where the differentiation with respect to space variable x; is denoted by and that with respect to
time is denoted by notation.

3. Formulation of the problem

Let us consider a linear anisotropic thermoelastic half space within {(xq, x5, x3): 0 < x; < o,
0 < x, < 0,0 < x5 < oo} for a time dependent heat source on the boundary plane to the surface
x; = 0. The surface x; = 0 is assumed to be traction free and the body is assumed initially at rest.
The components of displacement vectors of three dimensional plane waves in anisotropic elastic
medium, are given as:

u; = u;j(xq,%5,%3,t), i=1,2,3, %)

where t is the time variable and x;, (i = 1,2, 3) denotes the respective orthogonal Cartesian
co-ordinate axes. The elastic medium is now considered as rotating uniformly with an angular
velocity Q = Qii, where 7 is the unit vector along the direction of rotation. The equation of motion
of the rotating frame contains two additional terms: (Qx(Qxu) representing the centripetal
acceleration due to time varying motion only and (2Q1x1t) representing the coriolis acceleration
and i =(1,0,0).

Using Hook’s law, the stress- strain- temperature relations can be written as follows:

Typ = Ci1€11 + C12€52 + Ci3€33 + 2(C1a€33 + Ci5€13 + Cr6€12) — P116, (62)
Typ = Ca1€11 t C2p€2p + Ca3€33 + 2(Ca4€33 + Ca5€13 + Cr6€12) — f2206, (6b)
T33 = C31€11 T C32€27 + C33€33 + 2(C34€53 + C35€13 + C36€12) — f330, (60)
Ty3 = C41€11 T Cap€2p + Cyz€33 + 2(Cha€3 + Cas€i3 + Cusli2), (6d)
Ti3 = Cs1€11 + Cs52€3; + Cs333 + 2(Cs4€23 + Cs5€13 + C56€12), (6¢)
Ti2 = Ce1€11 + Ce2€22 + Co3€33 + 2(Coa€23 + Cos€13 + Co612)- (6
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In absence of inner heat source and body force the equation of motion are given as:

Ti11 + T1z2 + T1z3 = pily, (72)
Ty11 + Tazp + Tazz = pily — QPu, — 2Q1, (7b)
T31'1 + T32'2 + T33'3 = pu3 - Qzu3 + ZQuZ (70)

With the help of Egs. (5) and (6), the equations of motions Eq. (7) become:

(C11u1,11 + CeeUi 2z T C55u1,33) + 2(C16u1,12 + Ci5Ug 13 + Cseu1,23)
+ (C16u2,11 + Ca6Up22 T+ C45lUp 3z + (c12 + C66)u2,12 + (€14 + Cse)u2,13
+ (Cas + C25)Uz23) (8a)
+ (C15u3,11 + C4eUz 22 + C35U333 + (14 + Cse)u3,12 + (c13 + Css)u3,13
+ (C36 + Cas)Uz23) — P116,1 = pily,
(C16u1,11 + CeUp 22 T Ca5Uq 33 + (c12 + C66)u1,12 + (c1a + Css)u1,13 + (C46 + Czs)u1,23)
+ (c66u2,11 + CoUp 0o t+ C44u2,33) + 2(626u2,12 + CaeUpq3 + Cz4u2,23)
+ (Cs6Us a1 + Coallz 20 + Caallz 3z + (Cag + C25)Uz 12 + (C36 + Cas)Uz 13
+ (c3 + C44)u3,23) — B2, = pii, — QPu, — 2003,
(C15u1,11 + Cagly2 + C35Us 33 + (Cra + Cs6)Up 12 + (€13 + C55)Uy 13 + (€36 + C45)u1,23)
+ (CS6u2,11 + Coallppp + C34Uy 33 + (a6 + Czs)uz,lz + (€36 + C45)u2,13
+ (Ca3 + Caa)lz23) + (CssUz 1 + Caallzzp + Ca3li333)
+ 2(C4su3,12 + C35U393 + C34u3,23) - .8339,3 = piiz — QZu3 + 2Qu,.

(8b)

(8¢)

The generalized heat-conduction Eq. (2) is written as:

d 4] 0
(k* + k11 a >911 (k* + k22 a_) 922 + <k* + k33 &) 9'33 (9)
= pce6 + 0o (Biaiis g + Brzilyz + Basilsz).

The following non- dimensional variables are introduced to transform the above equations in
non-dimensional form:

/ 1 / C11 , €11 1 , 0 C11 €1,
xizjxi,uizmui,tz 77t,9=— C12=—, Q=—=0, (10)

where [ is some standard length.
Using Eq. (10), the non dimensional forms of the Egs. (8a)-(9) reduces to (omitting primes for
convenience):

(u1 11 + u1 22 + u133> + 2<—u1 12 + u1 13 + u123>
C11 C11 C11 +11 C11 H
C16 C4s C12 T Cep C14 T Cs6
+ (_uz 11 + uz 22t —Upzz+ | ——— Uyt |———— U213
C11 + C11 C11 C11 C11
C46 T C25
+ (C— Uz,23 (11a)
11
C15 Ci6 C35 C14 T Csg €13 + Cs5
+ (_u3,11 t—Uzop t——Uzzz +|(————— Uz 12t |———— | U313
C11 + C11 C11 C11 C11
C36 T C45
+ ( U323 01 =1y,
C11
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C16 C12 + Ceg C14 + Csg
(c Ug11 + ul 22 + B u1,33 + (— Uy + |\ = U3
11

11 €11 €11

Ci6 + Ca5 Cee C22 Cas
+ (— Uppz | T | Uz11 + Uz + Uy 33
€11 C11 C11 €11

+2(—u212 +— uz 13 + uzzs)
C11 C11 N N
Cse C46 T C25 C36 T Cu5
+ (—u3 11 + u3 22 + u3 33+ (7 Uz + | ——— ) U313
C11 C11 C11 C11 C11

Cyz3 + C
+ (—236 44) u3,23> — B0, =i, — QZuz — 2Qus,
11

C15 C14 T Cs6 €13 t+ Cs5
(—u1 11 + u1 22 + u1 33+ (7 Uz +|—— U3
C11 11 €11 C11 C11

C36 T (45
ety
€11

Cs6 Ca6 T C25 C36 T C4s5
+ (_uz 11 + u2 22 + uz 33+ (— Up1p t | —— ) Uz13
C11 €11 €11 €11 €11

Co3 t Cyq Cs5
+ (7 u2,23 Tl U311 + u3 22 + u3 33
C11 C11 C11 C11

Cas C34
+2 (—u3 12 + u3 13+ — u3 23) - ﬁ39,3 =iz — QZu3 + 2Qu,,
C11 C11 C11

0 0 0
(63 + f4 &) 9’11 + <E3 + €4k2 &) 9’22 + <E3 + €4k3 &) 9’33
=60+ (Eoﬂl,l + ElﬂZ,Z + €2ﬂ3,3),

where:
311 0 1 k ky1cq
[€0, €1, €2] = 0CaCry ——[B11, P22, B33, [€3,€4] = ,DCe C1 I
k2=@, k3zg, ﬁZZ@’ 133:&.
kqq kyq B11 B11

Non — dimensional stress components can be calculated as:

T = [ci1€11 + Crz€2z + Ci3es3 + 2(Cralaz + Cise13 + Cre€12)] — 6,
11

T2z = [c21€11 + Ca2€22 + Caze33 + 2(Caaer3 + Cose13 + Co6€12)] — B0
11

T33 = _C [c31€11 + €365 + C33€33 + 2(C348p3 + C35813 + C36812)] — B30,
11

T3 = _C [cs1€11 + Cazrp + Caze3s + 2(Caslys + Casers + Cagliz)],
11

Ti3 = — [cs1e11 + Cs52€32 + Cs3€33 + 2(Cs4€23 + Css€13 + C56€12)],
11

Tiz = — [ce1€11 + Co2€22 + Co3€33 + 2(Coa€23 + Cose13 + Co6€12)]
11

4. Normal mode analysis

(11b)

(11¢)

(12)

(13a)
(13b)
(13¢)
(13d)
(13¢)

(131)

The physical variables are decomposed in terms of normal modes to obtain the solution of (11)

and (12) (Sarkar and Lahiri [13]) in the following form:

© JVE INTERNATIONAL LTD. ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627, KAUNAS, LITHUANIA

61



35. DYNAMIC PROBLEM IN 3D THERMOELASTIC HALF-SPACE WITH ROTATION IN CONTEXT OF G-N TYPE IT AND TYPE II1.
S. SANTRA, A. LAHIRI, N. C. DAS

(u;, G'Tij)[xpxz'xs: t] = (ui,6° :T;j)(xi)ewtﬂ(axﬁb%): (14)

where i = V—1, w being angular frequency and a, b are the wave numbers are a and b along x,
and x directions respectively.
Using Eq. (14) in Egs. (11)-(13), we obtained (omitting ‘** for convenience):

Uy 11 T A1qUyg T A1pUy + Qp1Up 11 + ApaUz 1 + A23Us
+az Uz 1+ aszuzy +azzuz; — 6, =0,

bi1us 11 + bioUy g + bizuy +Ug g+ bayUp g + boouy (16)
+b31us 11 + b3aUsy + basuz — b3a6, =0,

MyqUg 11 + Myply g + My3ly + MogUp 11 + Mpaln g

15)

+my3u; + Uz g + MagUs g + MUz —mzz6; =0, a7
dyqUyg + dagUy + dys + dygt = 6 14, (18)
Ty1 = Ugy + hylUp g + RyzUsy + Rygty + hysu; + hyghs — 0, (19)
Taa = hayuy 1 + hoaUp s + hossy + houty + hosuy + hygus — 50, (20
T3z = haquy 1 + haUp s + sz + haaty + hgsuy + hagus — B30, 2n
Toz = haqty 1 + hagp g + hyssy + hugtly + hysty + hygus, (22)
Ty3 = hgiUy g + hsaup s + Rssugy + hsaty + hssuy + hseus, (23)
T12 = he1ly g + heatia 1 + hestsy + heatly + hesuy + hees, 24

where a;j, b;j, my;, d;; and hyj (i,j = 1,2, 3) are given in Appendix L.
Equations (15)- (18) can be written in the vector- matrix differential equations (Sarkar and
Labhiri [13]) as follows:

—=AV, 25)

V= [u1: Uy, Uz, 0,Uy 1, Up 1, Us g, 9,1]’

— [Lll le]
L21 L22 ’

Y

where L4 and L;, are null matrix and identity matrix of order 4x4 and L,, and L,, are given in
the Appendix I.

5. Solution of the vector- matrix differential equation: eigenvalue approach

Applying eigenvalue approach method as in Santra et al. [15] to solve the vector-matrix
differential equation (25), we get the characteristic equation of the matrix 4 as:

|A—21| =o0. (26)
The roots of the Eq. (26) are of the form:
A=12, (=1234).

The eigenvector X corresponding to the eigenvalue A can be calculated as:
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—61 (f24f13 - f14f23)(f22f33 - f32f23) - (f34f23 - f24f33)(f12f23 - f22f13)_
52 (f34f23 - f24—f33)(f11f23 - f21f13) - (f24-f13 - f14f23)(f21f33 - f31f23)
63 = (f12f21 - flleZ)(f21f34 - f31f24) - (f22f31 - f21f32)(f11f24 - f14f21)
64- = (f11f23 _f21f13)(fZZf33 - f32f3%) - (f12f23 - f22f13)(f21f33 - f31f23) I (27)
A6,
Ad;3
Ad,

>
Il

where f;;, (i,j = 1, 2,3) are given in the Appendix I.
The eigenvector X; [i = 1(1)8] corresponding to the eigenvalue A = A; [i = 1(1)8] can be
calculated from equation (27). For our further reference, we use the following notations:

[X]/1=/1i+_1: i=1(2)7,

R =208 (8)

2

As in Lahiri et al. [12], the general solution of Eq. (25) which is regular as x; — +oo can be
written as:

4
‘7 = ZAi)?Zie_lixl, X1 = 0, (29)
i=1

where the arbitrary constants A; are to be determined from the boundary conditions of the problem
and because of regularity condition of the solution at +oo the terms containing exponential of
growing nature in the space variables x; have been neglected.

Thus, the field variables can be written from the Eq. (29) for x; = 0 as:

.
[u; ,uy,us,01(x) = ZAL-[é‘l,(SZ 183, 84]022p, €717, (30)
4 i=1
Ty = Z[(hm — 28l as, + (has = Aihsn)Sslae s, + (hyg — Aihys)Balaea, o
- C;:|1/1=—/1i |A;e~%ix,
4
Ty = Z[(h24 = Aihe)oiliens, + Chas = 2iha)Balaems, + Chag = iha)slioms, (5
- é;}:ﬁh:—/u |4; e im,
a0 ) [Ohas = Aiha)Bilaccs, + Chas = Aihaa)alacs, + (hog = Aihes)slaey -
- /§3:34|,1=—/1i |4 e,
T2 = D [(has = Aha)Sslamos, + Chas = Aihi)B e, »

i=1

+ (hae — Aih43)0315-—3, |A; e,
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4
T3 = Z[(h54 - Aih51)61|1=—1i + (hss — Aih52)52|,1=—/1i

L, (35)
i=
+ (hse — Aihs3)8300-—, |Ai €771,
4
T2 = Z[(h64 - Aih61)61|1=—1i + (hes — Aih62)52|,1=—1i (36)

i=1
+ (hes — Aihe3) 83l 2=-, JAi e i1,

6. Boundary conditions

To determine the arbitrary constants A;, boundary conditions are considered at the surface on
the half space x; = 0 as in Sarkar and Lahiri [13].
Mechanical boundary condition: On the traction, free boundary of the half-space:

x1 = 0, Tll(O,XZ,X3, t) = T22(0, xz,X3, t) = T33(0, xz, X3, t) =0. (37)
Thermal boundary condition:
qn +v6 =71(0,x;,x3,t). (38)

Since, q, = —d6/dn, we get v6* —90/0x; =r* at x; =0, where g, is the normal
components of the heat flux vector, v is the Biot’s number, v = 0 corresponding thermally
insulated boundary, v — +o0 corresponding to isothermal boundary. r(0, x5, x3, t) is the intensity
of the applied heat source.

With the help of Eq. (14), Egs. (37) and (38) become (omitting ‘*’ for convenience):

71100, %2, X3, 1) = 7,(0, x5, X3, 1) = 733(0, x5, %3,t) = 0,

00
Vg—a—xlzo, X1=0.

7. Numerical analysis

For the purpose of illustrating the problem, we now consider a numerical example for which
computational results are presented. Since w is complex, we take w = w, + i¢, for studying the
effect of wave propagation, we use the following physical parameters in SI units given in the
following.

The numerical constants are given by:

c11 = 16.248 GPa, ¢y, = —1.152 GPa, c,5 = 1.608 GPa, c,, = 11.88 GPa,
ci15 = 0 GPa, c,5 = 1.248 GPa, c33 = 12.216 GPa, c;4 = 0.561 GPa,

c3, = 1.032 GPa, ¢y, = 1.48 GPa, c¢;; = 1.48 GPa, ¢34 = 0.672 GPa,

¢13 = 2.4 GPa, c,3 =1.032 GPa, ¢35 = 0.216 GPa, c4; = —1.152 GPa,

Cy4 = 0.912 GPa, ¢35 = 0.216 GPa, ¢4, = 0.912 GPa, c¢5; = 0 GPa,

ce1 = 0.561 GPa, c43 = —0.672 GPa, c5, = 1.608 GPa, ¢4, = 1.248 GPa,
€44 = 5.64 GPa, c53 =0.216 GPa, cg3 = —0.216 GPa, c45 = 2.16 GPa

Csq4 = 2.16 GPa, cgq4 = 0 GPa, ¢4 = 0 GPa, c55 = 5.88 GPa, c45 = 0 GPa,
cs6 = 0 GPa, cg = 6.91 GPa, ¢y =0.787, [ = 7.042, B1; = 7.046,

Bi1 =6.09, ki; =0.0921, ky; =0.0963, ki; =0.0917, 6, = 293.

Variations of the stress components and temperature distribution has been graphically shown
from Fig. 1 to Fig. 7 for G-N model of type III comparing with G-N model of type II with rotation
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and without rotation with respect to x; for the constant values of t = 0.5 and w = 0.2.

(1) The nature of the stress component 7,4 is contraction in nature for G-N model of type 11
and III with rotation 0 = 25 whereas without rotation stress is parallel to the x; axis. Stresses for
G-N model type II and III are same and parallel in 0 < x; < 3 and then gradually decreasing.

(2) Fig. 2 shows that the stress component T,, is extensive in nature. The maximum value
occurs for G-N model of type III with rotation. Stresses are gradually increasing in 0 < x; < 0.2
and then decreasing.

(3) Nature of the stress 753 is same as T,,.

Ty x

—— G-N model type 112 =0
—G-N model type I, =0
— =GN model ty
G-N model type .2 =25

W
2

5 I L I i L ! I L L

1 r T T
——G:N model type 1.2 =0
—— G modeltype 1,2 =0
12F — = -GN model type .02 =25
G-N modeltype 1.2 =25

Fig. 2. Variation of 7,, with respect to x; with rotation and without rotation

¥
14 : :

—— G-Nmodel type .02 =0
——G-N model type 1,0 =0
2k = =GN model type 2 =25
6N model type 11,02 =25

Fig. 3. Variation of 733 with respect to x; with rotation and without rotation
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(4) In Fig. 4 nature of the stress component 74, is same for G-N model II and III without
ritation. Small variation can be seen for the case of with rotation in the range 0 < x; < 0.2. and
then stresses are gradually decreasing for all the four cases.

(5) In Fig. 5 nature of 7,3 is same as 7., for the case of without rotation. And for the case of
with rotation the stresses are parallel to the x; axis except for a small variation in the range
0.3 < x; < 0.5 in case of G-N model type III.

Ty X

T
—— G modeltype 1,2=0
—— G modeltype 110 =0
12p =GN motel type |, Q=25
G modsltyps 110 =25

Fig. 4. Variation of 7,, with respect to x; with rotation and without rotation

g% %

—— G-\ modsl type 102 =0
081 —— G- model ype 1,02 =
— =GN madsl type 0 =25
07k G-\ model type 112 =25

6o -

Fig. 5. Variation of 7,3 with respect to x; with rotation and without rotation

e x
25 T T T
—— G-N model ype 11Q =0
—— G-N model ype Q2 =0
— = -GN model ype 110 =25
G-N model -ype . =25

gl =

0 1 1 1 1

Fig. 6. Variation of 7,3 with respect to x, with rotation and without rotation
(6) Fig. 6 shows that initial value of 7,3 for G-N model type II and III with rotation is O for
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x; = 0 whereas without rotation the initial values are 2 and 2.2 for G-N model II and III
respectively. In the range 0 < x; < 1, the stress component 7,3 monotonically decreases without
rotation whereas it increases initially starting from 0, attains a maximum value and then gradually
decreases x; > 0.3 with rotation.

(7) From Fig. 7 we can see that the temperature is gradually increasing in 0 < x; < 0.2 and
then maximum value occurs at x; = 0.2 for the case of G-N model type III with rotation and after
that temperature for all the four cases are gradually decreasing.

N model ype 1.0=0

N model ype 11,220
— =GN model sype 1,0 =28
SN model ype 11,2 =25

2

4 1 1 1 1 1 1 1 1

Fig. 7. Variation of 8 with respect to x; with rotation and without rotation

8. Conclusions

Thermal stresses and temperature on a traction free boundary in a half space for G-N model
type II as well as type III due to time dependent heat source shows significant dependence on
rotation as evident from the above curves.

Various stress components deviate under rotation from their rotation less counter parts. Certain
stress component possesses non zero initial value when subject to rotation whereas for temperature
a converse effect has been found.
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