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Abstract. Considering the shortcomings of the modal assurance criterion in the observation 
station selection and optimization algorithm for the structural modal testing experiment, this paper 
proposed a new criterion on the basis of the rule that the vibration mode is weighted-orthogonal 
to the mass. Since the vibration distributions of modes for large-scale structures vary from one 
another, the contribution of the high-order modes to the modal strain energy cannot be neglected. 
Therefore, a weight coefficient representing the contribution ratio of the high-order modal was 
introduced to modify the modal matrix. In addition to that, a hybrid optimization algorithm based 
on effective independence method and the weighted average modal strain energy coefficient 
method based on the effective independence method were proposed. Calculations guided by 
two-degree freedom system equal mass and non-equal-mass theories were initiated and 
comparisons and contrasts were made for the above-mentioned two methods, the average mode 
strain energy coefficient method based on the effective independence method and the weighted 
average modal strain energy coefficient method based on effective independence method through 
Garteur simulation tests to examine the differences in their resultant observation station 
arrangements. Results have shown that the traditional mode assurance criterion could not be used 
to judge whether the modes are weighted orthogonally or not when various nodes differ in their 
masses, but the new criterion involved in this paper could. The introduction of the weight 
coefficient effectively averted the aggregation of observation stations, best ensured the 
contributions of all the modal strain energy and fulfilled what’s required by a preferred observation 
station arrangement. Model tests were also conducted by employing the Garteur plane to test the 
weighted average mode energy coefficient method based on the effective independence method 
with the new modal assurance criterion proposed. It was found that the new modal mode assurance 
criterion guaranteed the completeness and linear independence of the monitoring mode, and that 
the weight coefficient introduced effectively magnified the contributions of the high-order modes 
to the modal strain energy, improved the accuracy of the test results. In the final analysis, the new 
assurance criterion is of great practical value to the observation station optimization and 
large-scale structure distribution. The method proposed in this paper has been applied to the modal 
test of a large carrier rocket and an observation station layout optimization software of large 
structural modes has been developed based on MATLAB language. It has been validated that this 
algorithm has faithfully guaranteed the integrity and linear independence of the modes monitored 
and that it can ensure the optimization and arrangement of observation stations in the modal test 
of large and complex structures. 
Keywords: observation station optimization and distribution, effective independence method, 
mode assurance criterion, weight coefficient, modal strain energy. 

1. Introduction 

Due to the limited number of sensors used in the structural modal testing experiment, to 
properly locate and arrange may facilitate the process of collecting the dynamic structure response 
information. In the modal testing experiment, the first problem that needs to be tackled is the 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2017.18206&domain=pdf&date_stamp=2018-02-15


2796. IMPACTS OF THE WEIGHT COEFFICIENT AND MODAL ASSURANCE CRITERION OF LARGE STRUCTURES ON OBSERVATION STATION SELECTION 
AND OPTIMIZATION. GUANBANG DAI, GUOYI JI 

504 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2018, VOL. 20, ISSUE 1. ISSN 1392-8716  

configuration of the sensors. The optimized distribution of observation stations in the structural 
modal testing experiment may directly influence the finite element model updating, experimental 
modal parameter identification and analysis of experimental modes and calculated modes. To 
improve the accuracy and precision of testing results, one has first to identify and optimize the 
degree of freedom through effective criteria and methods and then to work out the optimum 
number of observation stations and their positions before putting in place the sensors accordingly. 
Normally speaking, as the structures themselves are not perfect and the experimental environment 
is far from being favorable in the real practice, the number of sensors that can be used may be 
greatly hindered. Coupled with the fact that the information collecting and processing facilities 
applied in company with sensors may exceedingly be expensive, it is impossible and unrealistic 
to equip all degrees of freedom of a structure with sensors [1]. Besides, too many sensors loaded 
on one structure may result in the collection of useless and hamper the extraction and analysis of 
critical information and data. That being said, it is quite necessary to opt out and optimize the 
observation stations so as to identify the most suitable quantity of the stations and the best 
positions to locate the sensors before the testing experiment. In doing so, accurate and complete 
tested structural incentives and responsive time-domain signals will be obtained and the dynamic 
characteristics of structures will be brought out [2]. Therefore, studies on the observation stations’ 
optimization and arrangements in structural modal testing experiment matter a lot both 
theoretically and practically.  

For the Aviation Maintenance System, the maintenance of some certain fighter structures in 
particular, the number and positions of sensors in the simulation and experimental analysis of 
fatigue cracks on some beams, walls and hydraulic oil pipes bears great significance. In the 
requirement of airplane structures, let us say, the identification and analysis of structural modal 
parameters, the identification of damage of structures or the diagnosis and monitoring of structural 
failure, to select and then optimize the observation stations plays a pivotal role in acquiring 
accurate and complete modal parameters. To sum up, the selection and arrangement optimization 
of observation stations for structural modal testing experiments do have momentous bearing on 
the Aviation Maintenance System both theoretically and practically.  

At present, optimizing the layout of observation stations involves roughly two methods, 
namely, conventional and non-conventional optimization algorithms. Non-conventional 
optimization algorithms include mainly the wavelet method, the particle swarm optimization, the 
artificial neural network method and the genetic algorithm [1]. Conventional optimization 
algorithms consist mainly of minimum MAC method [3], the effective independence method  
[4, 5], the Guyan reduction method [6, 7] and the energy method [8, 9]. Each and every 
optimization algorithm has its advantages, limitations and application scopes [9]. Each individual 
algorithm in the vibration test will lead to an individual program of optimizing the layout of 
observation stations. To decide whether a observation-station-layout optimization program is 
desirable or not, one needs only to evaluate its modal information capturing of the tested structures. 
Then, it is necessary to introduce a set of evaluation criteria to ensure the integrity and accuracy 
of the data monitored. 

There are now three criteria that are most-frequently used to evaluate a  
observation-station-layout optimization program, namely, the modal assurance criterion, the 
minimum mean square error criterion and the maximum singular value ratio. If the criterion is 
inappropriately selected, observation stations may be misplaced and the subsequent optimization 
will be compromised. Yet, defects and shortcomings of the criteria themselves will directly maim 
the test results. This paper wisely removed these deficiencies and proposed a new modal assurance 
criterion based on theory that the vibration mode is weighted-orthogonal to the mass. The new 
criterion initiated in this paper effectively wipes out observation-station aggregation and best 
ensures the contributions of all modal strain energy and the great energy required by the optimized 
observation-station layout. More importantly, it can be borrowed to examine the orthogonality of 
modes of vibration even when masses of node differ. Garteur simulation and modal experiment 
confirmed that this new criterion did ensure the integrity and linear independence of the modes 
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monitored and make the test results more validly accurate. 
Conventional methods believe that the modal strain energy concentrate mainly on the 

low-order mode of the structure and that the high-order modes make fewer contributions in this 
regard. As to complex and large structures, however, contributions of high-order modes to the 
modal strain energy cannot be neglected. That being said, this paper proposed a weight coefficient 
that could reflect the very contributions of high-order modes, taking into consideration both the 
great energy required by observation stations and contributions of all modes to the modal strain 
energy. 

For large-scale structures, due to highly distinct vibration distribution of modes, the 
contribution of high-order modes to the modal strain energy cannot be ignored. In order to cover 
the contribution to the strain energy of all modes and improve the accuracy of the result, we came 
up with a weight coefficient reflecting the contribution of high-order modes to amend the matrix 
of modal vibration modes. Model tests were also made by employing the real GARTEUR plane, 
which showed that the weight coefficient introduced effectively increased the contribution of the 
high-order mode to the modal strain energy and improved the accuracy of the test results. Thus, 
the coefficient is of great practical value to the observation station optimization and large-scale 
structure distribution. 

2. Optimized layout theory  

2.1. Effective independence method 

The most widely-used algorithm currently falls on the effective independence method 
proposed by Kammer [10, 11], from which many other algorithms are derived. In doing the 
structural modal test, the mode of vibration of the structure must be identified. Suppose that the 
mode can fully be activated, then the generalized coordinate, ݍ, of the mode of vibration represents 
the parameters to be identified and the output of the sensor is expressed as: 

௦ܷ = Φ௦(1) .ݍ

The least-squares solution of Eq. (1) is: ݍො = ሾΦ௦் Φ௦ሿିଵΦ௦் ௦ܷ, (2)

where, Φ௦ represents the reduced matrix of mode of vibration and ௦ܷ the output information of 
the sensor. If we take the noise into account, Eq. (1) can be rewritten as: 

௦ܷ = Φ௦ݍ + ܰ, (3)

where ܰ represents the static Gaussian white noise with variance Ψ଴ଶ. If there are only ݉ (݉ <  (ݏ
sensors are available and ݏ candidate observation stations, this method constitutes the optimal 
estimation to obtain the true generalized coordinate ݍො, also the optimal estimation to obtain the 
mode of vibration, which can best maintain the linearly-independent information. The covariance 
matrix ܲ of deviation estimation can be expressed as: ܲ = ݍሾሺܧ − ݍොሻሺݍ − ොሻ்ሿݍ = Φ௦் Ψ଴ଶΦ௦ = ܳିଵ, (4)

where ܳ represents the Fisher information matrix [12]. If the noise sustains the Gaussian white 
noise, then: 

ܳ = Φ௦் Φ௦Ψ଴ଶ = Ψ଴ଶ. (5)ܣ
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The maximum of the Fisher information matrix ܳ  is equivalent to the minimum of the 
covariance ܲ that can be used to estimate the deviation. The trace or the maximum determinant 
value of ܣ belongs to unbiased estimation. 

Matrix ܣ is written as: 

ܣ = ෍ሾΦ௦௜ ሿ்ሾΦ௦௜ ሿ௦
௜ୀଵ = ෍ ௜௦ܣ

௜ୀଵ . (6)

With regard to Eq. (6), ܣ௜ denotes the contribution of the ݅th degree of freedom to matrix ܣ. 
Those degrees of freedom are superfluous and can be removed. ܣ௜  denotes those traces or 
determinant values that exert little or limited effects to matrix ܣ. Φ௦௜  represents the reduced modal 
matrix of the target modal shape on the basis of the candidate measuring points, mirroring the ݅th 
degree of freedom or the ݅th row of the observation station. 

The characteristic equation of matrix ܣ can be expressed as: ሺܣ − ሻΨܫߣ = 0. (7)

Assume that the ݉th column corresponding to the modal matrix Φ௦ is linearly independent of 
the collection of initial candidate observation stations, that ܣ is the positive definite symmetric ݉ × ݉ matrix, that the eigenvector Ψ of ܣ is normalized and the eigenvalues are real and positive, 
then: Ψ்ܣΨ = Ψ்Ψ(8) ,ߣ = (9) ,ܫ

obviously: Ψ்ିߣଵΨ = ܧଵ, (10)ିܣ = Φ௦ΨିߣଵሺΦ௦Ψሻ் = Φ௦ିܣଵΦ௦் , (11)

or: ܧ = Φ௦ሺΦ௦் Φ௦ሻିଵΦ௦் . (12)

Apparently, in ܧଶ =  is an idempotent matrix whose trace is equivalent to the rank and ܧ ,ܧ
whose eigenvalues stand at 0 or 1. Each element here on its diagonal represents the contribution 
of the corresponding observation station or degree of freedom to the rank of matrix Φ௦, namely, 
the contribution to matrix ܣ. If ܧ௜௜ = 0, the corresponding observation station represents a critical 
station that cannot be deleted; if ܧ௜௜ = 1, it means that the target mode cannot be recognized on 
the corresponding ݅th observation station and therefore the station can be deleted. EI method has 
been the most mature optimization algorithm of observation stations to date in the vibration test 
of structural modal test. It adopts the iterative loop to eliminate the smallest observation station of 
the corresponding t diagonal element step by step and the iteration loop stops when the number of 
measured points is made equal to the target number. In this way, the linear independence of the 
mode vector will best be retained and the most mode information will be obtained in the vibration 
test of structural modal test. 

2.2. Modal strain energy method 

How the sensors are arranged involved in modal strain energy method [13, 14] is similar to 
what happens in the effective independent method. Major differences between the two lie in that 
the former selected the observation station by locating them where the structural modal strain 
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energy maximize rather than by referring to the maximum determinant of matrix Fisher. In a 
nutshell, the principle of the modal strain energy method in selecting the optimal observation 
station is that the strain energy of the structure must culminate there. The modal strain energy is 
expressed as: ܧܵܯ = Φ்ܭΦ, (13)

where Φ ∈ ܴ௡×௣ represents the modal matrix and ܲ the number of target modes. The greatest 
advantage of this method is that it proves effective even in a harshly noisy environment. 

3. Evaluation criteria 

3.1. Conventional modal assurance criteria modal assurance criterion and improved modal 
assurance criterion 

Values of the inherent mode shapes at nodes form a set of orthogonal vectors but the number 
of observation stations won’t be the same as that of nodes, especially for the large and complex 
structures where nodes far outnumber the observation stations. The mass of nodes, coupled by the 
relative inaccuracy of the test and the noise make the orthogonality of the target vibration mode 
hard to reach. Therefore, in selecting the observation stations, dynamic characteristics of structural 
modes should be best preserved while ensuring an adequate spatial angle of intersections between 
mode shapes. In this regard, the matrix MAC (modal assurance criterion matrix) [15] represents a 
favorable evaluation criterion for the orthogonality of modal vectors. Matrix MAC is calculated 
via: 

௜௝ܥܣܯ = หΦ௜் Φ௝หටሺΦ௜் Φ௜ሻ൫Φ௝் Φ௝൯. (14)

3.2. The newly-proposed modal assurance criterion  

Based on the vibration theory, it is inferred that the vibration modes are orthogonal to the mass, 
but only when the masses of each nodes equate one another can the formula reflect the weighted 
orthogonality of the modes. In other words, when masses of nodes differ, the formula in discussion 
cannot be borrowed to examine the weighted orthogonality of the mode of vibration. The 
following formula represents the MAC whose mode of vibration is weighted- orthogonal to its 
mass: 

௜௝ܥܣܯ = หΦ௜் Φ௝หටሺΦ௜்ܯ Φ௜ሻ൫Φ௝்ܯ Φ௝൯ (15)ܯ

where Φ௜ is the ݅th-order mode vector, and Φ௝ the ݆th-order modal vector. The orthogonality of 
two modal shapes is checked by examining the non-diagonal element of matrix MAC of each 
mode shape at each order formed on the measuring degree of freedom: the value of the 
non-diagonal element of matrix MAC is negatively correlated to the orthogonality of for each 
mode. It is generally believed that two orthogonal vectors are roughly weighted orthogonal when 
MAC is less than 0.25 and that two vectors are related when MAC is greater than 0.9. To ensure 
the weighted orthogonality of the target models, the non-diagonal element of matrix MAC should 
be made as small as possible. 
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4. Weighting coefficient 

Conventional methods believe that the modal strain energy concentrate mainly on the low-
order mode of the structure and that the high-order modes make fewer contributions in this regard. 
As to complex and large structures, however, contributions of high-order modes to the modal 
strain energy cannot be neglected. That being said, this paper proposed a weight coefficient that 
could reflect the very contributions of high-order modes, taking into consideration both the great 
energy required by observation stations and contributions of all modes to the modal strain energy. 

For large-scale structures, due to highly distinct vibration distribution of modes, the 
contribution of high-order modes to the modal strain energy cannot be ignored. In order, not to 
overlook the contributions to the strain energy of all modes and improve the accuracy of the result, 
we come up with a weight coefficient reflecting the contributions of high-order modes to amend 
the matrix of modal vibration modes. The weigh coefficient is calculated through: ܿ௜ = ߱௜∑ ߱௜௡௜ୀଵ , (16)

where ߱௜ represents the frequency of ݅-order and ܿ௜ weight coefficient of ݅-order. 

5. Verification of theoretical calculations  

Fig. 1 shows the undamped 2-DOF free-vibration system. 

 
Fig. 1. 2-DOF free-vibration system 

The figure shows the undamped 2-DOF free-vibration system, and the differential equation of 
free-vibration motion is written as: ݑܯ.. ሺݐሻ + ሻݐሺݑܭ = 0, (17)

where: ܭ = ൤݇ଵ + ݇ଶ −݇ଶ−݇ଶ ݇ଶ + ݇ଷ൨ ܯ     , = ൤݉ଵ 00 ݉ଶ൨ ሻݐሺݑ     , = ൤ݑଵሺݐሻݑଶሺݐሻ൨. 
Assume that there is a natural vibration and integrate it into Eq. (17): ݑሺݐሻ = ߮sinሺ߱ݐ + ሻߠ =ୣୢ୤ ቂ߮ଵ߮ଶቃ sinሺ߱ݐ +  ,ሻߠ

where ߮ = ቂ߮ଵ߮ଶቃ, we get: 
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ሺܭ − ߱ଶܯሻ߮ = 0. (18)

After obtaining the two inherent frequencies of the system ߱ଵ  and ߱ଶ  through  |ܭ − ߱ଶܯ| = 0, integrate them into Eq. (18) and we then get the corresponding natural modes of 
vibration ߮ଵ and ߮ଶ.  

As the mass presents to be uniform, namely, ݉ଵ = ݉ଶ = ݉, ݇ଵ = ݇ଶ = ݇ଷ = ݇ we have: 

߱ଵ = ඨ ݇݉ ,    ߱ଶ = ඨ3݇݉, 
two natural modes of vibration are: ߮ଵ = ቂ11ቃ,    ߮ଶ = ቂ 1−1ቃ. 

Based on the conventional modal assurance criterion Eq. (14), we have: ܥܣܯଵଶ = 0. 
Based on the improved modal assurance criterion Eq. (15), we have: ܥܣܯଵଶ = 0. 
It can be inferred hereby that both the conventional and improved modal assurance criteria 

could ensure the vector orthogonality of two modes. 
As the mass presents to be non-uniform, namely, ݉ଵ = ݉, ݉ଶ = 2݉, ݇ଵ = ݇ଶ = ݇ଷ = ݇ we 

have: 

߱ଵ = ඨ൫3 − √3൯݇2݉ ,     ߱ଶ = ඨ൫3 + √3൯݇2݉ , 
two natural modes of vibration are: ߮ଵ = ൤√3 − 11 ൨,    ߮ଶ = ൤−1 − √31 ൨. 

Based on the conventional modal assurance criterion Eq. (14), we have: 

ଵଶܥܣܯ = √1313 . 
Based on the improved modal assurance criterion Eq. (15), we have: ܥܣܯଵଶ = 0. 
As the mass presents to be non-uniform, the conventional modal assurance criterion could not 

ensure that vectors of two modes of vibration are weighted-orthogonal to the mass but the new 
one proposed in this paper can. According to the vibration theory, the vectors of two modes of 
vibration should be weighted-orthogonal in a two-degree-of-freedom vibration system regardless 
of the masses. In this way, shortcomings of the conventional model assurance criterion cannot be 
more prominent. Only when the masses of each nodes equate one another can the MAC calculation 
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formula of the conventional modal assurance criterion reflect the weighted orthogonality of the 
modes of vibration. When the masses of each node differ, the formula cannot be taken to examine 
the weighted orthogonality. The new modal assurance criterion, hopefully, can be used to check 
the weighted orthogonality of two modes of vibration. 

6. Verification of Garteur aircraft simulation tests  

6.1. Hybrid optimization algorithm 

The selection of an observation station when applying mode strain energy is decided by the 
total energy of all target modes at the station, which will lead to information loss of some target 
modes due to uneven energy distribution of orders in large and complex structures. To tackle this  
dilemma, guided by the method mentioned here, we select observation station according to the 
average modal strain energy coefficients of each station. 

From the Eq. (13), we may infer the modal kinetic energy coefficient of the ݅th freedom degree 
at ݊th order, namely: 

௜௡ߞ = ∑௜௡ܧܵܯ ௝௡௠௝ୀ଴ܧܵܯ ,     0 ≤ ௜௡ߞ ≤ 1,    ෍ ௜௡௠ߦ
௜ୀଵ = 1. (19)

Then, we may get the average modal strain energy coefficient of the ݅th freedom degree: 

௜ߞ = ෍ ௜௡ܰேߦ
௡ୀଵ . (20)

By combining Eq. (11) with Eq. (31), we may arrive at the average kinetic energy coefficient 
method based on the effective independence method: ܧᇱ = ሾΦΨሿଶିߣଵሼܫሽ௜(21) .ߦ

After the iterative calculation of ܧᇱᇱ, we may choose the observation station that corresponds 
to the maximum element of ܧ′′ until the maximum values of non-diagonal elements of MAC 
matrix that corresponds to all selected stations are qualified. In order to avoid concentrated stations, 
we need first to see whether the distances between the newly added station and any of the other 
selected ones are longer than ܦ௜, which are already smallest. Herein: 

௜ܦ = lgܦ ௜ߦ୫୧୬lgߦ . (22)

There-into, ܦ is a constant, representing the smallest distance determined. That the areas with 
greater structural vibration are equipped with more sensors and vice versa will not only ensure the 
completeness and independence of the target modes but also avoid concentrated stations. 

6.2. Optimized arrangements of observation and comparisons 

Conduct the simulation respectively through the average mode strain energy coefficient 
method based on the effective independence method, the weighted average mode energy 
coefficient method based on the effective independence method and the weighted average mode 
energy coefficient method based on the effective independence method with the new assurance 
criterion proposed in this paper and compare and contrast the outcomes of the hybrid optimization 
algorithm under the two modal assurance criteria. Comparisons and contrasts are shown in Fig. 3.  
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a) Average mode strain energy 

coefficient method based on the 
effective independence method 

 
 

 
b) Weighted average mode energy 
coefficient method based on the 
effective independence method 

 
 

 
c) Weighted average mode energy 
coefficient method based on the 
effective independence method  

with new assurance criterion 
proposed in this paper 

 
d) MAC-value orthogonal  

graph of a) 

  
e) MAC-value orthogonal  

graph of b) 

  
f) MAC-value orthogonal  

graph of c) 
Fig. 3. Two optimized arrangements of observation stations in in comparisons 

Judging from Fig. 3, we can see:  
1) Observation station arrangement Fig. 3(a) the average mode strain energy coefficient 

method based on the effective independence method and Fig. 3(b) the weighted average mode 
energy coefficient method based on the effective independence method, the number of sensors 
required in Fig. 3(a) is densely 42, far fewer than that in Fig. 3(b) whose distribution of 
observation stations is relatively scattered and even, making the modal data-acquisition test much 
easier and cheaper. It can be concluded hereby that the introduction of the weight coefficient could 
magnify the contributions of the high-order modes and improve the effectiveness of tests. 
Observation station arrangement graphs of Fig. 3(b) the weighted average mode energy coefficient 
method based on the effective independence method and Fig. 3(c) the weighted average mode 
energy coefficient method based on the effective independence method with the new modal 
assurance criterion proposed in this paper indicate that the number of observation stations in the 
latter is 6 fewer than that in the former and that the layout of stations in Fig. 3(c) is relatively 
scattered and even. At this rate, the modal data-acquisition test is much easier and cheaper, 
implying that the betterment of modal assurance criterion will, to some extent, improve the 
accuracy of tests. By looking at observation station arrangement Fig. 3(a) average mode strain 
energy coefficient method based on the effective independence method and Fig. 3(c) the weighted 
average mode energy coefficient method based on the effective independence method with the 
new modal assurance criterion proposed in this paper , we may see that the number of observation 
stations in the latter is 15 fewer than that in the former and that stations in Fig. 3(c) is much more 
scattered and evenly distributed. To sum up, the weighted average mode energy coefficient 
method based on the effective independence method with the new modal assurance criterion 
proposed in this paper turn out to be the optimal regime in that its disperse and even distribution 
of sensors best retain the genuine and complete dynamic characteristics of the measured structures; 

2) MAC matrix non-diagonal element values of Fig. 3(d) the average mode strain energy 
coefficient method based on the effective independence method are partially larger, suggesting 
that the orthogonality between target modes of vibration is not so good and that two optimization 
programs of Fig. 3(d) are undesirable. MAC matrix non-diagonal element values of Fig. 3(e) 
weighted average mode energy coefficient method based on the effective independence method 
are rather small, suggesting that the orthogonality between target modes of vibration is pretty good 
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and that optimization programs of Fig. 3(e) are feasible. Presumably, the weight coefficient will 
work in favor of the observation station optimization of structures. MAC matrix non-diagonal 
element values of Fig. 3(f) weighted average mode energy coefficient method based on the 
effective independence method with the new modal assurance criterion proposed in this paper are 
close to zero, suggesting that the orthogonality between target modes of vibration in this case is 
very good and that Fig. 3(f) could best ensure the orthogonality. In conclusion, the new modal 
assurance criterion could facilitate observation station optimization. Briefly speaking, 
optimization programs of Fig. 3(c) in this paper is the best one. 

7. Simulation experiment 

The GARTEUR airplane model is a typical standard aircraft developed by the European 
Aviation Technology Research Organization Structures and Materials Working Group that has 12 
members and it features density, high flexibility and low modal frequency of a real aircraft. Having 
modeled it using Patran and simulated it through the weighted average mode energy coefficient 
method based on the effective independence method with the new modal assurance criterion 
proposed in this paper we got an optimization scheme, conducted a modal experiment and finally 
compare the resultant parameters with the ones obtained from modeling practices. Devices and 
analysis software applied in the modal test: 

(1) Suspension: Use elastic ropes and detailed suspension points are shown in Fig. 4. Hereby, 
the suspension frequency measured 1.5 Hz and the inherent frequency of the first-order mode of 
the observed structure measured 6.162 Hz. As the suspension frequency was smaller than 1/3 of 
the inherent frequency in this case, the suspension requirements of a modal test were fulfilled and 
the effects that suspension may have on the first-order mode could be neglected.  

(2) One hammer and one PCB acceleration sensor, sensor fixation: the super glue 502, the 
arrangement of observation stations are seen in Fig. 4, run-station test mode was applied.  

(3) Data-collecting platform and software: the platform is the USB-4431 data collected of NI; 
signal collecting and analyzing software is NJSamp. 

(4) Software for modal analysis: NJModal. 
The observation station arrangement of the sensors and the establishment of the experimental 

platform are shown in Fig. 4. 
The interface of the Software NJSamp collecting and analyzing signals is shown in Fig. 5.  

 
Fig. 4. The observation station arrangement of the sensors  

and the establishment of the experimental platform 
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Fig. 5. The interface of the Software NJSamp collecting and analyzing signals 

7.1. Simulation experiment of the weighted average mode energy coefficient method based 
on the effective independence method with the new modal assurance criterion proposed 

The simulation was designed to test the program derived from the weighted average mode 
energy coefficient method based on the effective independence method with the new modal 
assurance criterion proposed in this paper. The optimized layout of observation stations involved 
in this program is shown in Fig. 3(c). 

a) Observation station coordinates of the weighted average mode energy coefficient method 
based on the effective independence method with the new modal assurance criterion proposed. 

b) Frequency response function curve of the weighted average mode energy coefficient 
method based on the effective independence method with the new modal assurance criterion 
proposed. 

c) Frequency of the experiment with the method proposed in this paper vs. that of modeling 
simulation. 

d) The comparison and contrast of MAC matrix orthogonal graphs is shown in Fig. 7. 
e) Vibration mode of the test with the method proposed in this paper vs. that of Patran 

simulation. 

Table 1. Coordinate – based locations of sensor placement 
Number of observation  

stations 
Coordinate  Coordinate ݖ ݕ ݔ Number of observation stations ݖ ݕ ݔ 

1 –85 –20 45 15 –5 –25.4 17.6 
2 –85 20 45 16 –5 25.4 17.6 
3 –20 95.2 17.6 17 55 2.1 10 
4 –20 –95.2 17.6 18 –85 –0.5 0 
5 20 –95.2 17.6 19 60 –2.1 0 
6 20 95.2 17.6 20 45 –2.1 15 
7 0 40.4 16.6 21 45 2.1 0 
8 0 –40.4 16.6 22 5 15.5 16.6 
9 0 70.3 16.6 23 5 –15.5 16.6 
10 0 –70.3 16.6 24 –15 2.1 0 
11 0 95.2 17.6 25 –30 –2.1 0 
12 0 –95.2 17.6 26 0 2.1 0 
13 –80 –0.5 43 27 –70 2.1 0 
14 –85 0.5 15     
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Fig. 6. Frequency response function logarithmic curve 

Table 2. Experiment frequency and simulation frequency 
Order Experiment frequency / Hz Simulation frequency / Hz Error % 

1 6.091 6.162 1.166 
2 16.601 16.109 2.964 
3 36.973 35.826 3.102 
4 37.577 37.519 0.154 
5 37.670 39.199 4.058 
6 48.757 46.934 3.739 
7 49.183 47.202 4.028 
8 56.919 55.451 2.579 
9 65.363 63.212 3.291 
10 73.818 73.108 0.962 
11 97.034 98.111 1.110 
12 137.410 138.794 1.007 
13 143.650 145.280 1.135 
14 159.050 160.102 0.661 
15 229.030 229.479 0.196 

 

 
a) Experimented MAC matrix orthogonal graph 

 
b) Simulated MAC matrix orthogonal graph 

Fig. 7. Comparison and contrast of MAC matrix orthogonal graphs 

After studying the experiment and simulation, we may find that the error of the frequency 
obtained from the weighted average mode energy coefficient method based on the effective 
independence method with the new modal assurance criterion proposed and the simulated 
frequency is less than 5 % and that the MAC matrix orthogonal graphs of the two are quite similar. 
Furthermore, vibration modes obtained from the experiment are mass-weight orthogonal; modal 
shape graphs of the experiment test and the simulation are almost the same. Therefore, it’s fair to 
say that the weighted average mode energy coefficient method based on the effective 
independence method with the new modal assurance criterion proposed well ensured the integrity 
and linear independence of the monitoring mode sand linear independence of the monitoring mode. 
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Better still, the introduction of the weight coefficient effectively magnified the contribution of 
high-order modes to the modal strain energy and made the results of experiments more validly 
accurate. In the final analysis, these are all of great application-oriented in arranging and 
optimizing observation stations of large structures. 

 
a) Experimented vibration mode of the 1st order 

 
b) Simulated vibration mode of the 1st order 

 
c) Experimented vibration mode of the 2nd order 

 
d) Simulated vibration mode of the 2nd order 

 
e) Experimented vibration mode of the 3rd order 

 
f) Simulated vibration mode of the 3rd order 

 
g) Experimented vibration mode of the 4th order 

 
h) Simulated vibration mode of the 4th order 

 
i) Experimented vibration mode of the 5th order 

 
j) Simulated vibration mode of the 5th order 

 
k) Experimented vibration mode of the 6th order 

 
l) Simulated vibration mode of the 6th order 

 
m) Experimented vibration mode of the 7th order 

 
n) Simulated vibration mode of the 7th order 

 
o) Experimented vibration mode of the 8th order 

 
p) Simulated vibration mode of the 8th order 

Fig. 8. Modes of vibration obtained respectively from two algorithms and modeling 

8. Applications in engineering 

With the method proposed in this paper, we have developed an observation station layout 
optimization software of large structural modes based on MATLAB language and applied it to the 
observation station optimization of the modal test of a carrier rocket. The finite-element model of 
the rocket is shown in Fig. 9. 
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Fig. 9. The finite-element model of the rocket 

 
Fig. 10. Layout of observation stations 

Start the software, input the PCH file of the finite-element model of the rocket, identify the 
parameters (the row vector of freedom, the minimum node number, the maximum order of modes, 
the distance between observation stations, the order of the target mode, the expectant number of 
sensors, the expectant MAC value), and then the calculation will begin. The resultant observation 
station layout is shown in the Table 3. 

The layout scheme is shown in Fig. 10. Numbers in the Fig. 10 mean: the height of the rocket 
measures 33.1 meters; the width measures12 meters; the number of sensors after optimization is 
208. o denotes the location of sensors. 

The column of MAC matrix is shown in Fig. 11. 
The modal test of a large carrier rocket that was conducted on the basis of the method proposed 

in this paper demonstrates that this algorithm has guaranteed the integrity and linear independence 
of the modes monitored and that it can ensure the optimization and arrangement of observation 
stations in the modal test of large and complex structures. It has also been proved that the algorithm 
in discussion has successfully averted the ineffective observation station layout and optimization 
confronted by conventional algorithms and provided the optimal number of the observation 
stations and their coordinate locations. 

Table 3. Layout of observation stations  
Number of observation  

stations 
Coordinate Number of 

observation stations 
Coordinate ݖ ݕ ݔ ݖ ݕ ݔ 

1 –1.57 4.96 5.00 15 –3.12 –0.97 5.00 
2 –3.94 1.57 17.5 16 1.33 –5.42 20.5 
3 4.96 1.57 1.00 17 –1.57 –3.94 12.50 
4 –4.96 –1.57 9.00 18 –1.57 3.94 9.00 
5 –2.80 0.00 13.00 19 4.96 –1.57 3.00 
6 1.57 3.94 21.50 20 3.94 1.57 8.00 
7 1.33 3.48 14.00 21 1.57 4.96 7.00 
8 0.25 1.65 0.00 22 –0.51 6.02 1.00 
9 3.48 –1.33 16.50 23 –1.57 4.96 17.00 

10 –0.97 –3.12 16.50 24 1.72 –1.81 30.50 
11 –3.12 9.70 21.50 25 –5.42 1.33 0.50 
12 –1.33 –5.42 3.50 26 0.97 –3.12 9.00 
13 3.48 –1.33 21.00 … … … … 
14 3.94 –1.57 11.50 208 –3.12 0.97 15.00 
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Fig. 11. The column of MAC matrix 

9. Conclusions 

Calculations guided by two-degree freedom system equal mass and non-equal-mass theories 
were initiated and comparisons and contrasts were made for the above-mentioned two methods, 
the average mode strain energy coefficient method based on the effective independence method 
and the weighted average modal strain energy coefficient method based on effective independence 
method through Garteur simulation tests to examine the differences in their resultant observation 
station arrangements. Results have shown that the traditional mode assurance criterion could not 
be used to judge whether the modes are weighted orthogonally or not when various nodes differ 
in their masses, but the new criterion involved in this paper could. The introduction of the weight 
coefficient effectively averted the aggregation of observation stations, best ensured the 
contributions of all the modal strain energy and fulfilled what’s required by a preferred observation 
station arrangement. Model tests were also conducted by employing Garteur planes to test the 
weighted average mode energy coefficient method based on the effective independence method 
with the new modal assurance criterion proposed. It was found that the new modal mode assurance 
criterion guaranteed the completeness and linear independence of the monitoring mode, and that 
the weight coefficient introduced effectively magnified the contributions of the high-order modes 
to the modal strain energy, improved the accuracy of the test results. In the final analysis, the new 
assurance criterion is of great practical value to the observation station optimization and 
large-scale structure distribution. The method proposed in this paper has been applied to the modal 
test of a large carrier rocket and an observation station layout optimization software of large 
structural modes has been developed based on Matlab language. It has been validated that this 
algorithm has faithfully guaranteed the integrity and linear independence of the modes monitored 
and that it can ensure the optimization and arrangement of observation stations in the modal test 
of large and complex structures. 
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