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Abstract. This paper concerns with the study of wave propagation in fibre reinforced anisotropic
half space under the influence of temperature and hydrostatic initial stress. Lord-Shulman theory
is applied to the heat conduction equation. The resulting equations are written in the form of vector
matrix differential equation by using Normal Mode technique, finally which is solved by Eigen
value approach.

Keywords: cigenvalue, generalized thermoelasticity, normal mode, vector-matrix differential
equation.

Nomenclature

u; Displacement tensor

t Time variable

oij Stress components

p Mass density

e Strain components

wi; Rotational tensor

T Temperature

To Reference temperature

Bij Thermal elastic coupling tensor
Ce Specific heat at constant strain
K;; Thermal conductivity

P Initial pressure

to Relaxation time

0ij Kronecker Delta

A ur Elastic parameters

a, B, (u, — ur) Reinforced elastic parameter

1. Introduction

Fibre-reinforced composite(FRC) materials are usually low weight and high strength used in
construction engineering. The physical property of FRC material is governed by the theory of
elasticity for different materials with the direction along the direction of fibre. Green [1] studied
wave propagation in anisotropic elastic plates. Abbas and Othman [2] discussed the distribution
of wave propagation under hydrostatic initial stress of fibre-reinforced materials in anisotropic
half-space. Baylies and Green [3] analyse the flexural waves in fibre-reinforced laminated plates.
Rogerson [4] discussed effect of penetration in a six-ply composite laminates.

Most of the thermoelasticity and generalized thermoelasticity (coupled or uncoupled)
problems have been solved by potential function approach. This method is not always suitable as
discussed by Dhaliwal and Sherief [5] and Sherief and Anwar [6]. These may be summarized by
the initial conditions and the boundary conditions for physical problems which are directly
concern with the material quantities under consideration and not with the potential function. Also,
the potential function representations are not convergent always while the physical problems in
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natural variables constitute convergent solution. So, the alternative method of potential function
approach is eigenvalue approach. In this method, we obtain a vector-matrix differential equation
from the basic equations which reduces finally to an algebraic eigenvalue problem and the
solutions for the field variables are obtained by determining the eigenvalues and eigenvectors from
the corresponding coefficient matrix. In this theory, body forces and/or heat sources are also
accommodated as in Das and Lahiri [7], Bachher et al. [8]. Now, two different models of
generalized thermoelastisities are extensively used. One is Lord and Shulman (L-S) [9] theory and
the other is Green and Lindsay (G-L) [10] theory. Introducing one relaxtion time parameter in L-S
theory the heat conduction equation becomes hyperbolic type without violating conventional
Fourier’s law. Whereas the G-L theory modified the heat conduction equation as well as the
equation of motion in coupled thermoelasticitywo relaxation time parameters. There are other
three models (Model I, IT and III by Green and Nagdhi [11-13]) for generalized thermoelasticity
concerned to the theory of with or without energy dissipation.

2. Development of governing equations

The stress-strain relation and the governing equations of motion without body forces and heat
sources are written as follow:

0ijj — Pwij; = pil;, (1)
O',:j = lekk&-]- + 2,u7~eij + a(akamekm5ij + al-ajekk) (2)
+2(u, — pr)(aiaxer; + ajaxer;) + Paxameima;a; — Bij(T — To)yj, i,j,k,m =123,
1
ei]’ = E(ui,j + Uj,i), (3)
1
wij = E(uj'i - ui,j), (4)
Kl]Tl] = pCe(T + toT) + To(lli,jili_j), l,] = 1,2,3. (5)

We consider the problem of a elastic half-space (x = 0) in fibre-reinforced anisotropic
material with a = (a,,a,,a;) where a? + a3+ a% =1 as in 1. A. Abbas [14], where the
displacements are given:

u=u,=ulxyt), v=u, =v(xyt), w=u,=0. 6)

We consider the direction of fibre as a = (1,0,0) with x-axis as prefered direction, and
Egs. (1-5), reduces as given:

ou av
0'11:(/1+2a+4llL_ZIlT+ﬁ)a+(/1+a)@_ﬂ11(T_To); @)
v ou
0= A+ ZMT)@ + (a + A)a — 22 (T = Tp), (8
_ <6v+6u> 9
12 = ML ox ' ay) 9
2 2 +<A N P) 0%v +( +P)@Zu oT _ 0%u (10)
115,72 12 T H 2) 9xay Hy 2)ay? P11 ax p 92’
2 62v+ (A N P) 0%u +( +P)62v oT 0%v (11
zzayz 12 T HL 2) axay Hy 2 ) 9x2 .Bzzay—Patz;
0°T 0°T 0 0% ou ov
K11ﬁ + K, a_yz =\az + & 2 (PCeT + ToB11 I + ToB22 @)» (12)
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with:

Ay =42+ 2(a+p) +4, —pr) + B, Ap=a+, Ay =21+2urp,
P11 = QA+ 3a+4u, —2ur + flag; + (A + a)ag,, Pry = A+ a)ag; + (4 + 2ur)ay,,

where a4, @5, are linear thermal expansion coeeficients.
To transform the above governing equations in non-dimensional forms, we introduce the non-
dimensional variables as follows:

T —T C
Oy, v') = oy, u,v), t=ciyt, T'= M, = Q,
pCy2 Kiq 13
’ ’ ’ 1 2 All ( )
(0'11,0"12,0'32) = _,06‘12 (011,012,022), ¢f = _p .

Using non-dimensional Eq. (13), the governing equations reduces to (eleminating primes for
convenience):

ou v
011 =a+B1E_Tt (14)
ou v
022 = Bug+Bag = BT, (15)
dv Jdu
012 = B, (a + @)' (16)
0%u Ry\ 0%v p\0%u  OT  d%u
et (a2 (b ) S = 4
5,204 +(By+ B, 2) 62”+( —p)az—”— ar_o% (18)
Z9y2 LT dxdy 4 axz oy  at?’
92 92T (0 K ou v
ﬁ*’ela_yz_(&-l_t"ﬁ)(ﬂ_gza +83ay) (19)
where:
(B1, B, B3) = i(1‘112»1‘122#1). B; = @' Ry = i'
Bll All

0[”11 K11
(52'53)—A11 (Bi1,B22), & = K22

3. Solution procedure
3.1. Normal mode analysis: formulation of vector-matrix differential equation

For the solution of the Egs. (14-19), physical variables can be decomposed using normal modes
Eq. (20) in the following form:

[u' v, T! 011,012, 0'22](X, 3z t) = [u*, V*! T*' 0'1*1, 0-1*2; 0-2*2](x)ewt+iay' (20)

where i = V—1, w is the angular frequency and a is the wave number along x-axis.
Using Eq. (20), Egs. (14-19) reduces to omitting “*’ for convenience:

u
- i)y — 21
o + (Byia)v —T, @n

011 =
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du
0-22 = Bl a + (lea)v - B3T, (22)
dv

=B, — - 23
012 =B, P + (Byia)u, (23)
dzu ! ! !
W=M41.u+0.v+0.T+0.u + M45.v' + T, 29

2p
Frie 0.u+ M52.v + M53.T + M54.u' +0.v' + 0.7, (25)
dZT ! I !
E=o.u+M62.1;+M63.T+M64.u +0.v' 4+0.T, (26)
where:
R, , R, a’B, + w?
M4l = a? [34 + —] + w?, MA45 = —ia [B1 + B, — —], M52 = ———
2 2 B +ﬂ
4T
RP
5 By =B, iaB; . )
M53=—R, M54 = R M62 = iag;(w + tow*),
By + By +

M63 = w + tyw? + g,a%, M64 = £2(w + tyw?).
Eqgs. (24-26) can be written in the form of vector-matrix differential equation as [2, 8]:

aw

— =AW, 27
X

Lll L12

Ly1 Lo

L4, identity matrix of order 3x3 respectively and L, and L,, are given by:

whereW=[u v T u v T ]TandA= [ ] Where L, is null matrix and

0 0 O 1 0 0
o o0 o0 (o 1 o0
L= 0o 0 0/ Lz = 0o 0 1/
M41 0 0 0 M45 1
| 0o M52 Ms53 (M54 0 o0
L21_ ’ L22_

0 Me62 M63 Mé64 0 O

3.2. Solution of the vector-matrix differential equation

To solve the vector-matrix differential Eq. (27), we apply the method of eigenvalue approach,
The characteristic equation of the matrix Ais given by:

|A— Al = 0. 28)

The roots of the characteristic Eq. (28) are A = A;, i = 1, 2, 3 which are of the form A = 4,
A =42, and A = +1; and they are also eigenvalues of the matrix.

The eigenvector, w corresponding to the eigenvalue A can obtained as:

X,=1[6, 6, &5 A8, 18, A8, (29)
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where 61 = a2b3 - a3b2, 52 = a3b1 - a1b3, 63 = a1b2 - azbl.
As in Lahiri et al. [7], the general solution of Eq. (27) which is regular as can be written as:

3
W= Z AXe %, x> 0. (30)
i=1
Hence the field variables can be written as the following:

u= Alxlle_llx + A2X21e_/12x + A3X31€_A3x,
v = Alxlze_alx + Azxzze_lzx + A3X329_}'3x,
T = A1X13e_/11x + A2X23€_/12x + A3X33€_A3x.

The simplified form of Eqs. (21-23) can be written as:

011 = A1R11(X) + A;R15(x) + A3Ry3(x),
022 = A1R31(x) + A3Rp,(x) + A3Ry3(x),
033 = A1R31(x) + AR5 (x) + A3R33(x),

where:

Ry1(x) = [-A1x1; + Byiaxy, — x;3]e 1%,

Riz(x) = [=2y%51 + Bylax,, — x,3]le 2%,
Ry3(x) = [~A3X3; + Byiaxs, — x33le ™%,
Ry1(x) = [=A1B1x11 + Byiax,, — Byxy3le 7,
Ry1(x) = [=2;B1 %1 + Byiax,, — Byxyzle™ 2%,
Ry1(x) = [=2A3B1x31 + Byiaxs, — Byxzzle™ %,
R31(x) = [Byiaxy; — Ay xy,le M%,

Ry, (x) = [Byiaxy; — Ayxz;]e 2%,
R33(x) = [Byiaxs; — A3x3,]e ™"

4. Boundary conditions
Considering the problem of a half-space ¢, defined as follows:
¢=(xy2):0<x<00, —w<y<ow —w<z<ono,

In order to determine the arbitrary constants Ajs, i = 1, 2, 3, we consider the boundary
conditions as follows.

4.1. Case 1

a) Mechanical Boundary condition:
For stress-free surface x =0, 0;; = 0, 07, = 0.
b) Thermal Boundary condition:

T —— = 31
VI-— =T, 3D

where v is Biot’s number.
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4.2. Case 2

a) Mechanical Boundary condition:
For stress-free surface x =0, gy, = —P; + P,e“*"'% g, = 0.
b) Thermal Boundary condition:

T = Pe®@t+iay, 32)
5. Numerical analysis

5.1. Case 1

5.1.1. Distribution of different stress components

Fig. 1 represents distribution of normal stress oy, for y = 0.3.
For fixed time t, 04, gradually increases as x increases. For fixed x numerical values of 074
gradually decreases as t increases.
Fig. 2 represents distribution of normal stress oy, for y = 0.2.
For fixed time t, g,, gradually decreases as x increases. For fixed x numerical values of gy,
gradually increases as t increases.
Fig. 3 represents distribution of normal stress o,, for y = 0.5.
For fixed time t, 0,, gradually decreases as x increases. For fixed x numerical values of 0;,
gradually increases as t increases.
O-] 1
0035 | =09
0.030
0.025
0.020
0.015 |
0.010

0.005 |

0.2 0.4 0.6 0.8 1.0
Fig. 1. Stress component 14 at y = 0.3 for different values of t verses x

Oy

0.2 04 0.6 0.8 1.0
-0.00005

-0.00010

-0.00015 |

-0.00020
t=0.2

-0.00025

-0.00030 | 0.8

Fig. 2. Stress component o7, at y = 0.2 for different values of t verses x

Fig. 4 represents distribution of normal stress oy, for different values of x and y for fixed
t=0.1and w =0.5.

x numerical value of g;; gradually decreases as y increases. For fixed y the numerical value
of g;, gradually increases as x increases. gy, is maximum whenx =1 and y = 0.

Fig. 5 represent distribution of normal stress gy, for different values of x and y for fixed
t=04and w =5.
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For fixed x numerical value of o, gradually decreases as y increases. For fixed y the
numerical value of 0y, gradually decreases as x increases. Significant changes occur in the region
02<x<06and0.6 <y <1.0.

Fig. 6 represent distribution of stress component o,, at for different values of x and y for fixed
t=0.1and0.1.

1.0

Fig. 6. Stress component g,, att = 0.1 and w = 0.1 verses x and y

For fixed x numerical value of g,, gradually increases as y increases. For fixed y numerical
value of 0,, gradually increases as x increases.

Fig. 7 represent distribution of normal stress o,, for different values of x and t for fixed
y=0.2and 1.

For fixed x, nominal decreasing of numerical values of ¢;, has been seen as t increases, while
For fixed t, numerical values of o;, decreases gradually as x increases. numerical values of oy,
minimum at x =1 and 0.02 <t <0.1

Fig. 8 represent distribution of normal stress o,, for different values of x and t for fixed
y =0.5and 2.

For fixed x, nominal decreasing of o,, has been seen as t increases. For fixed ¢, numerical
values of 07, decreases as x increases. Also, significant changes occur in the region 0.6 < x < 1.0
and0 <t <1.0.
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1.0

Fig. 8. The distribution of stress component g,, at y = 0.5 and w = 2 verses x and t
5.1.2. Distribution of temperature

Fig. 9 represent distribution of temperature, T for different values of x and y for fixed t = 0.3
and 2.

For fixed x numerical value of T gradually decreases as y increases. For fixed y numerical
value of T gradually increases as x increases. T in minimum at x = 0 and significant changes
occurs in the region 0.6 < x < 1.0and0<y < 1.0

Fig. 10 represent distribution of temperature, T for different values of x and t for fixed
y =0.1and 1.5.

Fig. 9. The variation of T at t = 0.3 and w = 2 verses x and y

For fixed t numerical value of T nominally increases as x increases. For fixed x numerical
value of T gradually increases as t increases.

Fig. 11 represent distribution of temperature, T for different values of y and t for fixed
x =0.5and 3.

For fixed t numerical value of T nominally increases as y increases. For fixed x numerical
values of T decreases as t increases.
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—100
T200

300

< - /
00 T ; 703

10

Fig. 11. Variation of T at x = 0.5 and w = 3 verses y and t
5.2. Case 2
5.2.1. Distribution of different stress components

Fig. 12 represents distribution of normal stress o7, fory = 0.3, ¢ =0.01 and 5 for different
numerical values of R,,.

For fixed R, 0;; gradually decreases as x increases. For fixed x numerical values of ;4
gradually decreases as R,, increases.

Fig. 13 represents distribution of normal stress g;; fory = 0.3, ¢t =0.01 and 5 for different
fractional values of R,,.

For fixed time Ry, 01, gradually increases as x increases. For fixed x numerical values of gy,
gradually decreases as R, increases. Significant changes occurred for 0 < x < 0.4.

Fig. 14 represents the distribution of stress component gy, at y = 0.2, t = 0.03 and 0.3 for
different fractional values R, of verses x for P1 = 1.

For fixed time R, 01, gradually decreases as x increases. For fixed x numerical values of gy,
increases as R, increases. Significant changes occurred for 0 < x < 0.4.

Fig. 15 represents the distribution of stress component g,, at y = 0.3, t = 0.1 and 4 for
different integral values Ry, for P1 = 0.

For fixed Rp, 0;, gradually decreases as x increases. For fixed x numerical values of oy,
increases as R,, increases.

Fig. 16 represents the distribution of stress component g,, at y = 0.2, t = 0.6 and 0.4 for
different values R, for P1 = 0.

For fixed R, = 0.9, g5, gradually increases as x increases but for other fixed values of R,), 05,
gradually decreases as x increases. For fixed x, 0,, gradually increases as x increases for
R, = 0.9 but for other fixed values of R,, 0;, gradually decreases as x increases.

Fig. 17 represents the distribution of stress component o, for different values of t for fixed
y =0.2and L.5.
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-0.190

-0.195

-0.200

x
1.0 1.2 1.4 1.6 1.8 2.0

Fig. 12. Stress component g1, at y = 0.3, ¢ = 0.01 and w = 5 for different values R), of verses x

O
-02
o l
Rp=0.5
06 |
Rp=0.3
Rp=0.2
0-8
0.2 0.4 0.6 0.8 1.0

Fig. 13. Stress component g1; at y = 0.2 and w = 0.2 for different values R, of verses x

Oz
X

0.2 0.4 0.6 0.8 1.0
-0.00002
-0.00004

Rp=0.5

-0.00006 | /
-0.00008 | Rp=0.2

Rp=03

Fig. 14. Stress component o7, aty =0.2,t =0.03 and w = 0.3
for different values Ry, of verses x for P1 =1

O,
X
02 0.4 0.6 0.8 1.0

-0.0002 |

-0.0004 -

Rp=8 /
-0.0006 - Rp=4
-0.0008 | —
P

Fig. 15. Stress component gy, at y = 0.3, ¢ = 0.1 and w = 4 for different values Ry, of verses x for P1 =0

For fixed t, the numerical value of g;; gradually increases as x increases. For fixed x, the
numerical value of g, gradually increases as t increases.

Fig. 18 The distribution of stress component a;, for fixed y = 0.3 and 0.5 for different values
of t.

For fixed t, the numerical value of g;, gradually decreases as x increases. For fixed x, the
numerical value of g;, gradually increases as t increases.
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Oy

022

0.20

0.18 2,09

0.‘2 O,‘4 O.‘6 O..8 1.0
Fig. 16. Stress component 05, aty = 0.2, t = 0.6 and w = 0.4
for different values R, of verses x for P1 =0

x
0.2 0.4 0.6 0.8 1.0

Fig. 17. Stress component g;, at y = 0.2 and w = 1.5 for different values of t verses x

O—IZ

0.2 04 0.6 0.8 1.0

-0.0002

-0.0004

-0.0006 t=0.5

-0.0008

-0.0010

Fig. 18. Stress component 1, at y = 0.3 and w = 0.5 for different values of t verses x
O

0.35
0.30
0.25

0.20

02 04 0.6 0.8 1.0
Fig. 19. Stress component 05, at y = 0.5 and w = 0.2 for different values of t verses x

Fig. 19 represents the distribution of stress component g,, at fixed y = 0.5 and 0.2 for
different values of t.

For fixed t, the numerical value of o, gradually increases as x increases, but for fixed x, the
numerical value of 0y, gradually decreases as t increases.

Fig. 20 represents distribution of normal stress 0,4, for different values of x and for fixed
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t=03andy =0.3.

For fixed x numerical value of g;; remain constant as increases, but for fixed w the numerical
value of gy, gradually decreases as x increases.

Fig. 21 represents distribution of normal stress oy, for different values of x and for fixed
y=03andt=0.5.

For fixed x, nominal increasing of numerical values of 0;, has been seen as increases, while
for fixed w, numerical values of 0y, increases gradually as x increases after x = 0.6 (approx.).
Numerical values of g;, minimum at x = 0.5 (approx.) and 1 < t < 3.

Fig. 22 represents distribution of stress component a,, at for different values of x and for fixed
t=0.landy =04.

For fixed w numerical value of g,, gradually decreases as x increases. Numerical values of
0y, minimumatx =land 0 < w < 1.

—0.000083

—0.0000832 Zz 3.0
—0.0000834
—0.0000836

1.0

1.0

Fig. 21. Stress component g;, at y = 0.3 and t = 0.5 verses x and w

Fig. 22. Stress component ¢, at y = 0.4 and t = 0.1 verses x and w
5.2.2. Distribution of temperature

Fig. 23 represents distribution of temperature, T for different values of x and w for fixed
t=0.landy =04.
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For fixed x numerical value of T gradually increases in the region 0 < w < 0.3 (approx.) For
fixed w numerical value of T nominally increases as x increases.

Fig. 23. The variation of T at y =0.4 and t = 0.1 verses x and w
6. Conclusion

We consider the physical parameters in SI units given in Dhaliwal and Singh following below
to obtain the numerical result to observe the effect of wave propagation:

p = 2660kg/m3, A=565x10"N/m?,

p, = 246x10'°N/m*, u, = 5.66x10"°N/m?,

a = —1.28x10°N/m?, B =220.90x10°N/m?,
a;; = 0.017x107*deg™, a,, = 0.015x10 *deg™?,
1 =05, Ty=293K, c, =0.787x103JKg~'deg™!
Ky = 0.0921x10*°ym s 'deg™!

K,, = 0.0963x10°/m 15 deg™

P,=0o0r1, P,=01, P;=0.2.
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