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Abstract. In order to investigate the characteristics of bifurcation and chaos for a spur gear pair 
system, a three-degree-of-freedom nonlinear dynamic model with multi-clearance is established, 
in which time-varying meshing stiffness, static transmission error, gear backlash and bearing 
clearance are comprehensively taken into account. Through introducing a relative generalized 
coordinate, the dimensionless dynamic equations of motion of system are derived and then solved 
by using Runge-Kutta numerical integration method. And the bifurcation and chaos features of 
gear pair are systematically analyzed and discussed from bifurcation diagrams with meshing 
frequency, gear backlash, bearing clearance and damping ratio as control parameters under 
different loaded conditions. Meantime, with the help of Poincaré map and phase diagram, the 
motion forms of system are accurately identified. The analysis results reveal that as meshing 
frequency increases, the system shows various types of motion states which contain periodic 
motion, quasi-periodic motion and chaotic motion. Similarly, with the increasing of gear backlash, 
the system undergoes complex motion forms under lightly loaded condition, whereas it is only in 
period-one motion state under heavily loaded condition. Furthermore, the system motion state is 
gradually switched from chaos to periodic or quasi-periodic motion under lightly loaded condition 
when bearing clearance changes. However, under heavily loaded condition, the bearing clearance 
has a weak effect on dynamic behavior of the gear system. Apparently, the system tends to be 
more stable under heavily loaded condition than that under lightly loaded condition. In addition, 
the growing damping ratio can effectively suppress the chaotic behavior and control nonlinear 
vibration of gear system. The research results provide useful guidance for dynamic design and 
vibration control for gear set. 
Keywords: gear pair system, bifurcation, chaos, multi-clearance, damping ratio. 

1. Introduction 

Gear system is a type of power and motion transmission equipment. Owing to compact 
structure, small volume, high transmission efficiency and reliable performance, it is widely 
applied to various mechanical engineering fields, such as automobile, aerospace, ship, robot and 
so forth. However, due to time-varying meshing stiffness, gear backlash, bearing clearance and 
static transmission error, the nonlinear vibration is frequently caused in gear system, which leads 
to negative effect on system performance and stability. Therefore, studying the nonlinear dynamic 
properties of gear system from the aspect of improving the accuracy of gear transmission and 
suppressing vibration and noise is quite important. 

Based on nonlinear dynamics theory, a great number of researches on nonlinear dynamics of 
gear system have been done in recent decades. For convenience of research, the gear system is 
invariably simplified to the single-degree-of-freedom (SDOF) model, two-degree-of-freedom 
(TDOF) model or multiple-degree-of-freedom (MDOF) model by using lumped mass method. As 
an example, Kahraman [1] established a SDOF model to analyze the nonlinear dynamic 
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characteristics of a spur gear pair system, which considered the internal excitation and backlash. 
For the purpose of further studying the nonlinear dynamic behaviors of the gear system, a MDOF 
gear-rotor-bearing model was developed with linear time-invariant meshing stiffness and 
time-varying meshing stiffness respectively by Kahraman [2, 3], where gear backlash and bearing 
clearance were involved in the model. Based on the MDOF model Kahraman [3] proposed, 
Raghothama [4] utilized the incremental harmonic balance method (IHBM) to investigate the 
periodic and chaotic motions of geared rotor-bearing system and then verified the analysis results 
based on numerical integration method. Likewise, with consideration of backlash and 
time-dependent meshing stiffness, Theodossiades [5] employed the analytical methodology 
method to analyze the dynamics for a gear pair system and demonstrated the accuracy of the 
analytical methodology by comparing the analysis solutions to numerical solutions. In Ref. [6], 
Litak studied the different dynamic features of a gear pair system with and without the additional 
DOF, respectively.  

The key system parameters, which consist of gear meshing damping, support stiffness, 
meshing frequency, gear backlash and so on, have great influence on the dynamics of a gear set. 
Hence, it is of importance to analyze in detail the effect of these above parameters on the dynamic 
response of gear system. Wang [7] developed a nonlinear dynamic model for a gear-rotor-bearing 
system with MDOF, which took multiple clearances and time-varying stiffness into consideration 
to briefly study the bifurcation and chaos with support stiffness and meshing frequency as control 
parameters. They found that there exist complex bifurcation phenomena and chaotic behavior in 
the gear system with the change of support stiffness and bearing clearance. Then, Al-shyyab [8, 9] 
simplified two gear pairs system to a TDOF model and obtained the periodic and sub-harmonic 
responses by using a multi-term HBM. Meantime, the effects of several system parameters such 
as gear mesh damping, meshing stiffness amplitude and static torque transmitted were described. 
In addition, in order to analyze the nonlinear dynamics of a spur gear pair, a SDOF model was 
proposed by Shen [10], in which time-varying stiffness, gear backlash and static transmission error 
were considered. Also, the influence of damping ratio and excitation amplitude was studied by 
applying IHBM. Similarly, to examine the influence of gear backlash on dynamics of two stage 
gear system, Walha [11] presented a torsional dynamic model for two spur gear pairs with 
backlash. The dynamic behaviors of the system were analyzed by using Newton-Raphson 
algorithm.  

Chang-Jian [12] performed the dynamic responses of a gear-bearing system with nonlinear 
suspension and revealed the motion states of the system observed from phase diagrams, power 
spectra, Poincaré maps and Lyapunov exponents. Subsequently, the above diagrams were also 
used to systematically analyze the dynamic behaviors of a spur gear system with and without 
nonlinear suspension by Chang-Jian [13]. Considering dynamic backlash, friction and time 
varying stiffness, Chen [14] developed a MDOF model for a gear pair system. Then, the model 
was solved by numerical integration method to analyze and predict the system motion states. 
According to the above SDOF model, Moradi [15] carried out the nonlinear oscillations with 
backlash nonlinearity, and investigated the forced vibration responses of the gear system including 
primary, super-harmonic and sub-harmonic resonances based on the multiple scale method. 
Farshidianfar [16] formulated a generalized nonlinear time-varying dynamic model of a spur gear 
pair, in which gear backlash, time varying stiffness, external excitation and static transmission 
error were considered. Meanwhile, the global bifurcation and transition to chaotic behaviors of 
the gear system were studied by means of Melnikov analytical analysis. Liu [17] established a 
TDOF torsional model for a spur gear pair system with meshing stiffness, backlash, transmission 
error and external periodic excitation. And the influences of rotational speed, backlash and mesh 
damping coefficient on the dynamic characteristics of the gear system were obtained by using 
Newmark method. Similarly, Gou [18] developed a MDOF model of a spur gear pair system with 
backlash. The nonlinear dynamic characteristics of the system were analyzed with varying of 
exciting frequency. Then, by using the simple cell mapping method, Gou [19] examined the 
dynamic characteristics of the multi-parameter coupling in torsion-vibration gear system and 
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analyzed the distribution map and bifurcation diagram in the parameter plane. Additionally, Liu 
[20] investigated the dynamic response of a gear pair system and interactions between bearing 
clearance and backlash. The contact force on backside and journal bearing forces and shift of the 
bearing position were taken into account. 

 Lots of researches on the nonlinear dynamic characteristics of the gear pair system have been 
carried out and the corresponding dynamic models were developed as well. However, there are 
exceedingly few researches on the bifurcation and chaos analysis, especially comprehensively 
considering gear backlash, bearing clearance, damping ratio and force ratio in gear system. 
Therefore, in this paper, a dynamic model for a spur gear pair system with MDOF is proposed, in 
which time-varying meshing stiffness, static transmission error, gear backlash and bearing 
clearance are considered in the model. The dimensionless dynamic equations of motion are then 
solved by applying Runge-Kutta numerical integration method. The nonlinear dynamic behaviors 
of the gear system are analyzed in detail using bifurcation diagram, Poincaré map and phase 
portrait. 

The remainder of this paper is listed as follows: the dynamic model and equations of motion 
of a gear pair system are established in Section 2. Then, Section 3 presents the numerical 
simulation results and discussions, where the effect of bifurcation parameters on the nonlinear 
dynamic responses are analyzed and discussed. Finally, some brief conclusions are drawn from 
the research in Section 4. 

2. Dynamic model and equations of motion 

2.1. Model of the gear pair system 

A spur gear pair consists of pinion, gear, shafts and bearings. In order to build the dynamic 
model conveniently and effectively, pinion and gear are modeled as rigid body. Meantime, the 
shafts and bearings supported the gears are assumed to equivalent elements with viscous damping 
coefficient and equivalent supported stiffness [17]. Based on the centralized mass method, the 
nonlinear dynamic model of the gear set is shown in Fig. 1. In the system, the static transmission 
error, gear backlash, bearing clearance, time-varying meshing stiffness, torque fluctuation, 
external radial preload, and so forth, are taken into consideration. In addition, teeth modification, 
profile shifting and friction are neglected in the model. 

 
Fig. 1. Nonlinear dynamic model of a spur gear pair system 

In Fig. 1, it is assumed that the meshing line direction between the two gears is defined as 𝑌 
direction of the coordinate system in the gear pair model. Each gear considers a translational 
degree of freedom (𝑌 ) and a rotational degree of freedom (𝜃 ). Here, 𝑚ଵ  and 𝑚ଶ  mean the 
equivalent masses of the two gears, respectively; 𝑟ଵ and 𝑟ଶ represent the radius of base circles of 
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the two gears, respectively; 𝐼ଵ and 𝐼ଶ show the moment of inertia of the two gears, respectively; 𝑘௜, 𝑐௜ and 2𝑏௜ (𝑖 = 1, 2) refer to the equivalent support stiffness, the equivalent support damping 
and bearing clearance of the two gears, respectively. 𝑘(𝑡) and 𝑐௠ are the time-varying meshing 
stiffness and damping between the two gears, respectively. 2𝑏  represents the gear meshing 
backlash. 𝐹ଵ and 𝐹ଶ are the external radial preload sustained by bearings. Additionally, 𝑇ଵ and 𝑇ଶ 
are the input torque and output torque impacting on driving gear and driven gear, respectively. 
Torque 𝑇௜ (𝑖 = 1, 2) are composed of mean torque 𝑇௜௠ and fluctuation value 𝑇௜௔. Therefore, torque 𝑇௜ can be expressed as follows: 𝑇ଵ(𝑡) = 𝑇ଵ௠ + 𝑇ଵ௔(𝑡),𝑇ଶ(𝑡) = 𝑇ଶ௠ + 𝑇ଶ௔(𝑡). (1)

As shown in Fig. 1, the gear system has four degrees of freedom including two translational 
degrees of freedom (𝑌௢ଵ, 𝑌௢ଶ) and two torsional degrees of freedom (𝜃ଵ, 𝜃ଶ). When the relative 
displacement caused by torsional vibration in the gear pair system is 𝑌௢௥, 𝑌௢௥ can be described as: 𝑌௢௥ = 𝑟ଵ𝜃ଵ − 𝑟ଶ𝜃ଶ − 𝑒(𝑡), (2)

where 𝑒(𝑡) = ∑ 𝑒௥sin(𝑟𝜔𝑡 + 𝜑௥)ஶ௥ୀଵ  is the static transmission error of the gear pair system, in 
which 𝑒௥ is the fluctuation value and 𝜑௥ represents the initial phase of error. 

When the gear backlash between the driven gear and driving gear is 2𝑏, the elastic restoring 
force 𝐹௞ can be represented by: 𝐹௞ = 𝑘(𝑡) ⋅ 𝑓(𝑌௢௥, 𝑏), (3)

where 𝑘(𝑡) is the time-varying meshing stiffness, and 𝑓(𝑌௢௥, 𝑏) is the nonlinear backlash function 
which can be written as: 

𝑓(𝑌௢௥, 𝑏) = ቐ𝑌௢௥ − 𝑏,    𝑌௢௥ > 𝑏,0,               |𝑌௢௥| ≤ 𝑏,𝑌௢௥ + 𝑏,    𝑌௢௥ < −𝑏. (4)

With the purpose of ensuring the smoothness of gear transmission, the contact ratio of gear 
pair system is usually under the range of 1 to 2. In other words, the number of tooth pairs will 
always alternate between one and two in the process of continuous meshing, leading to the 
generation of dynamic excitation force, where the meshing stiffness shows time-varying property. 
Thus, the time-varying meshing stiffness can be expressed in Fourier series expansion method as 
follows: 

𝑘(𝑡) = 𝑘௠ + ෍(𝑎௡cos𝑟𝜔𝑡 + 𝑏௡sin𝑟𝜔𝑡)ஶ
௥ୀଵ , (5)

where 𝑘௠  is the mean meshing stiffness and 𝜔  is the meshing fundamental frequency. 
Additionally, 𝑎௡ and 𝑏௡ are the expansion coefficient of Fourier series, respectively. 

The damping force is defined as: 𝐹௖ = 𝑐௠𝑌ሶ௢௥, (6)

where 𝑐௠ is the meshing damping, which can be given as: 𝑐௠ = 2𝜉ඥ𝑘௠/(1/𝑚ଵ  + 1/𝑚ଶ), (7)
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where 𝜉 is the damping ratio (𝜉 = 0.03-0.17). 
Hence, the dynamics meshing loads 𝐹 can be expressed as: 𝐹 = 𝐹௠ + 𝐹௖. (8)

2.2. Dynamic differential equations 

In terms of the analysis above, the nonlinear dynamic differential equation of a spur gear pair 
system can be established by using Newton’s second law of motion as follows: 𝐼ଵ𝜃ሷଵ + 𝑟ଵ𝑐௠൫𝑌ሶ௢௥ + 𝑌ሶ௢ଵ − 𝑌ሶ௢ଶ൯ + 𝑘(𝑡)𝑓(𝑌௢௥, 𝑏)𝑟ଵ = 𝑇ଵ,𝐼ଶ𝜃ሷଶ − 𝑟ଶ𝑐௠൫𝑌ሶ௢௥ + 𝑌ሶ௢ଶ − 𝑌ሶ௢ଵ൯ − 𝑘(𝑡)𝑓(𝑌௢௥, 𝑏)𝑟ଶ = −𝑇ଶ,𝑚ଵ𝑌ሷ௢ଵ + 𝑐ଵ𝑌ሶ௢ଵ + 𝑘ଵ𝑓ଵ(𝑌௢ଵ, 𝑏ଵ) = −𝐹ଵ − 𝐹,𝑚ଶ𝑌ሷ௢ଶ + 𝑐ଶ𝑌ሶ௢ଶ + 𝑘ଶ𝑓ଶ(𝑌௢ଶ, 𝑏ଶ) = 𝐹ଶ + 𝐹,  (9)

where 𝑓ଵ(𝑌௢ଵ, 𝑏ଵ)  and 𝑓ଶ(𝑌௢ଶ, 𝑏ଶ)  are the radical clearances displacement function along 𝑌௢௥ 
direction respectively, which could be expressed as: 

𝑓ଵ(𝑌௢ଵ, 𝑏ଵ) = ቐ𝑌௢ଵ − 𝑏ଵ,    𝑌௢ଵ > 𝑏ଵ,0,                 |𝑌௢ଵ| ≤ 𝑏ଵ,𝑌௢ଵ + 𝑏ଵ,    𝑌௢ଵ < −𝑏ଵ, 𝑓ଶ(𝑌௢ଶ, 𝑏ଶ) = ቐ𝑌௢ଶ − 𝑏ଶ,    𝑌௢ଶ > 𝑏ଶ,0,                 |𝑌௢ଶ| ≤ 𝑏ଶ,𝑌௢ଶ + 𝑏ଶ,    𝑌௢ଶ < −𝑏ଶ. 
(10)

However, the above gear pair is a semi-definite system that has rigid body displacement, owing 
to gear backlash and bearing clearance. It means that the motion equations of the gear system 
cannot be directly solved by numerical integration method. A new relative coordinate 𝑌௢ is thus 
introduced to reduce the dimension of dynamic equation, which will make the equation solvable 
[21]. As a new degree of freedom, the relative coordinate 𝑌௢ can be defined as follows: 𝑌௢ = 𝑌௢௥ + 𝑌௢ଵ − 𝑌௢ଶ. (11)

Therefore, the Eq. (9) can be transferred by substituting the relative coordinate 𝑌௢  to the 
following expression: 𝑌ሷ௢ + ൬ 1𝑚௘ + 1𝑚ଵ + 1𝑚ଶ൰ 𝑐௠𝑌ሶ௢ + 𝑐ଵ𝑚ଵ 𝑌ሶ௢ଵ − 𝑐ଶ𝑚ଶ 𝑌ሶ௢ଶ + ൬ 1𝑚௘ + 1𝑚ଵ + 1𝑚ଶ൰ 𝑘(𝑡)𝑓(𝑌௢, 𝑏)       + 𝑘ଵ𝑚ଵ 𝑓ଵ(𝑌௢ଵ, 𝑏ଵ) − 𝑘ଶ𝑚ଶ 𝑓ଶ(𝑌௢ଶ, 𝑏ଶ) = 𝐹௠𝑚௘ + 𝑟ଵ𝑇ଵ௔𝐼ଵ + 𝑒௥𝜔ଶcos(𝜔𝑡), 𝑌ሷ௢ଵ + 𝑐ଵ𝑚ଵ 𝑌ሶ௢ଵ + 𝑘ଵ𝑚ଵ 𝑓ଵ(𝑌௢ଵ, 𝑏ଵ) = − 𝐹ଵ𝑚ଵ − 𝑐௠𝑚ଵ 𝑌௢ − 𝑘(𝑡)𝑚ଵ 𝑓(𝑌௢, 𝑏), 𝑌ሷ௢ଶ + 𝑐ଶ𝑚ଶ 𝑌ሶ௢ଶ + 𝑘ଶ𝑚ଶ 𝑓ଶ(𝑌௢ଶ, 𝑏ଶ) = 𝐹ଶ𝑚ଶ + 𝑐௠𝑚ଶ 𝑌௢ + 𝑘(𝑡)𝑚ଶ 𝑓(𝑌௢, 𝑏), 

(12)

where 𝑚௘ and 𝐹௠ are equivalent mass of the gear pair and the average force related to mean torque 
respectively, with 𝑚௘ = 𝐼ଵ𝐼ଶ (𝐼ଵ𝑟ଵଶ + 𝐼ଶ𝑟ଶଶ)⁄  and 𝐹௠ = 𝑇ଵ௠ 𝑟ଵ⁄ = 𝑇ଶ௠ 𝑟ଶ⁄ . 

2.3. Dimensionless equations of motion 

In order to compare and analyze the results under the same dimensional scale [21], it is 
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intensely indispensable to make motion equations of gear system dimensionless. Thus, 
dimensionless time parameter 𝜏  introduced can be defined as 𝜏 = 𝜔௡𝑡  with 𝜔௡ = ඥ𝑘௠/𝑚௘ , 
where 𝜔௡  is natural frequency of the gear pair system. Meanwhile, displacement of nominal 
dimension 𝑏௖ is introduced as well. Then, others parameters, such as displacement, velocity and 
acceleration could be described by 𝜏 and 𝑏௖ as follows: 𝑌௢ = 𝑌𝑏௖,   𝑌ሶ௢ = 𝑌ሶ 𝑏௖𝜔௡,   𝑌ሷ௢ = 𝑌ሷ 𝑏௖𝜔௡ଶ,𝑌௢ଵ = 𝑌ଵ𝑏௖,   𝑌ሶ௢ଵ = 𝑌ሶଵ𝑏௖𝜔௡,   𝑌ሷ௢ଵ = 𝑌ሷଵ𝑏௖𝜔௡ଶ𝑌௢ଶ = 𝑌ଶ𝑏௖𝑌ሶ௢ଶ = 𝑌ሶଶ𝑏௖𝜔௡,   𝑌ሷ௢ଶ = 𝑌ሷଶ𝑏௖𝜔௡ଶ. , (13)

Dimensionless nonlinear clearance function can then be rewritten as: 

𝑓(𝑌, 𝐵) = ൝𝑌 − 𝐵,     𝑌 > 𝐵,0,             |𝑌| ≤ 𝐵,𝑌 + 𝐵,    𝑌 < −𝐵, 𝑓௜(𝑌௜, 𝐵௜) = ൝𝑌௜ − 𝐵௜,    𝑌௜ > 𝐵௜,0,              |𝑌௜| ≤ 𝐵௜,𝑌௜ + 𝐵௜,    𝑌௜ < −𝐵௜, 
(14)

where 𝐵 = 𝑏 𝑏௖⁄  and 𝐵௜ = 𝑏௜ 𝑏௖⁄  (𝑖 = 1, 2).  
Substituting the dimensionless parameters above into Eq. (12) and then dimensionless equation 

of motion can be expressed as matrix form: 𝐌𝐗ሷ + 𝐂𝐗ሶ + 𝐊𝐗 = 𝐅, (15)

where 𝐌 is the mass matrix, 𝐊 represents the stiffness matrix, 𝐂 refers to the damping matrix, 𝐅 
is the force vector and 𝐗 is the displacement vector. The matrix and vector can be expressed as 
follows: 

𝐌 = ൥1 0 00 1 00 0 1൩ ,     𝐂 = ൥𝜁ଵଵ 𝜁ଵଶ 𝜁ଵଷ𝜁ଶଵ 𝜁ଶଶ 0𝜁ଷଵ 0 𝜁ଷଷ൩ ,     𝐊 = ൥𝑘ଵଵ 𝑘ଵଶ 𝑘ଵଷ𝑘ଶଵ 𝑘ଶଶ 0𝑘ଷଵ 0 𝑘ଷଷ൩, 𝐅 = ሼ𝑓௦ 𝑓ଵ 𝑓ଶሽ்,     𝐗 = ሼ𝑌ത 𝑌തଵ 𝑌തଶሽ், (16)

where: 𝜁ଵଵ = ൬ 1𝑚௘ + 1𝑚ଵ + 1𝑚ଶ൰ 𝑐௠𝜔௡ ,     𝜁ଵଶ = 𝑐ଵ𝑚ଵ𝜔௡ ,     𝜁ଵଷ = − 𝑐ଶ𝑚ଶ𝜔௡ ,     𝜁ଶଵ = 𝑐௠𝑚ଵ𝜔௡,      𝜁ଶଶ = 𝑐ଵ𝑚ଵ𝜔௡ ,     𝜁ଷଵ = − 𝑐௠𝑚ଶ𝜔௡ ,     𝜁ଷଷ = 𝑐ଶ𝑚ଶ𝜔௡ ,     𝑘ଵଵ = ൬ 1𝑚௘ + 1𝑚ଵ + 1𝑚ଶ൰ 𝑘(𝜏)𝜔௡ଶ ,  𝑘ଵଶ = 𝑘ଵ𝑚ଵ𝜔௡ଶ ,     𝑘ଵଷ = − 𝑘ଶ𝑚ଶ𝜔௡ଶ ,     𝑘ଶଵ = 𝑘(𝜏)𝑚ଵ𝜔௡ଶ ,     𝑘ଶଶ = 𝑘ଵ𝑚ଵ𝜔௡ଶ ,     𝑘ଷଵ = − 𝑘(𝜏)𝑚ଶ𝜔௡ଶ, 𝑘ଷଷ = 𝑘ଶ𝑚ଶ𝜔௡ଶ ,     𝑓ଵ = − 𝐹ଵ𝑏௖𝑚ଵ𝜔௡ଶ ,     𝑓ଶ = 𝐹ଶ𝑏௖𝑚ଶ𝜔௡ଶ ,     𝑓௔ = 𝑟ଵ𝑇ଵ௔𝑏௖𝐼ଵ𝜔௡ଶ 𝑓௠ = 𝐹௠𝑏௖𝑚௘𝜔௡ଶ 𝑓௔௛ = 𝑒௥𝑏௖, Ω = 𝜔𝜔௡ 𝑓௔௛௥ = 𝑓௔௛Ωଶcos(Ω𝜏),     𝑓௦ = 𝑓௠ + 𝑓௔ + 𝑓௔௛௥. 
(17)

3. Numerical results and discussions 

Due to the effect of the above nonlinear factors, the gear pair is a complex system with strongly 
nonlinear and time-variable features. Therefore, it is imperative to investigate the gear set in detail. 
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To reveal the nonlinear dynamic behaviors of the spur gear pair system, the bifurcation and chaos 
diagrams with the change of bifurcation parameters under different loaded conditions are obtained 
by using Runge-Kutta numerical integration method. The bifurcation parameters consist of 
meshing frequency, gear backlash, bearing clearance as well as damping ratio. Furthermore, the 
phase diagrams and Poincaré maps are used to accurately discuss and analyze bifurcation 
phenomena and chaotic behavior. 

Additionally, external load acted on the gear pair system will be changed under different work 
conditions which contain heavily loaded condition and lightly loaded condition. And the force 
ratio Δ = 𝑓௠ 𝑓௔௛⁄  can be used to measure the external load, evaluating carrying capacity of gear 
system. With the increase of force ratio, the carrying capacity of the system is gradually enhanced. 
Hence, to illustrate the influence of work conditions on the dynamic behaviors for the gear pair 
system, the bifurcation and chaos features are analyzed with different force ratios [1]. Parameters 
of gear system are shown in Table 1.  

Table 1. Parameters of gear system 

Parameter Driving gear/ 
Driven gear Parameter Driving gear/ 

Driven gear 
Module 𝑚 (mm) 3 Moment of inertia 𝐼ଵ 𝐼ଶ⁄  (kg·m2) 8×10-4 

Face width 𝐵 (mm) 25 Radius 𝑟ଵ 𝑟ଶ⁄  (mm)  40 
Pressure angle 𝛼 (°) 20 Mean mesh stiffness 𝑘௠ (N/m) 2×108 
Tooth number 𝑧ଵ 𝑧ଶ⁄  25 Support stiffness 𝑘ଵ 𝑘ଶ⁄  (N/m) 1.2×109 
Mass 𝑚ଵ 𝑚ଶ⁄  (kg) 1 Radial preload 𝐹ଵ 𝐹ଶ⁄  (N) 1.6×104 

3.1. Bifurcation and chaos analysis of the effect of dimensionless meshing frequency 

In gear transmission system, meshing frequency is one of important factors which have an 
important effect on the dynamic response of system. In order to obtain the bifurcation diagrams 
with the change of dimensionless meshing frequency Ω, some parameters in the gear system are 
selected as follows: Δ = 0.5 or 2, i.e. the gear system is under the lightly loaded condition or under 
the heavily loaded condition [1], 𝑓ଵ = 𝑓ଶ = 0.15, 𝐵ଵ = 𝐵ଶ =  0.25, 𝐵 =  1. The bifurcation 
properties of the gear system with Ω varying are firstly analyzed with Δ = 0.5. Then, Fig. 2 shows 
the bifurcation diagrams of Ω with respect to 𝑌 under lightly loaded condition, when the damping 
ratio 𝜉 is equal to 0.03, 0.05, 0.07 and 0.09, respectively. It can be seen from the figure that the 
gear system presents complex motion states including periodic, quasi-periodic and chaotic 
motions with the change of Ω and 𝜉. 

When damping ratio 𝜉 =  0.03, the gear system mainly indicates in the motion state of 
period-one and chaos with the range of 0 ≤ Ω ≤ 2 in Fig. 2(a). At the initial value of Ω, the system 
undergoes period-one motion, and then bifurcates into period-two motion by the way of crisis. 
Subsequently, the system motion state becomes chaotic, in which these motion states of gear 
system within the range of 0.5 ≤ Ω ≤ 0.7 will be further described in detail as shown in Figs. 3-4. 
Besides, between two chaotic regions, the system goes through an exceedingly short zone of 
period motion. Furthermore, the bifurcation diagrams in Fig. 2 reveal significant variations that 
the window width of the regions of chaotic state decreases notably as damping ratio 𝜉 increases 
from 0.03 to 0.09. It means that chaotic behavior can be hindered when 𝜉 increases, whereas high 
damping will make the system consume more energy. This is in agreement with the analysis results 
on a spur gear pair system [1] and the planetary gear train [22]. Obviously, when 𝜉 is 0.09, chaotic 
motion is almost replaced by quasi-periodic and period-doubling motions at the first part of chaos 
regions, as shown in Fig. 2(d). 

For the purpose of demonstrating the detailed transformational process concerning motion 
states of gear system with the change of Ω, Poincaré maps of 𝑌 with respect to 𝑑𝑌 are applied to 
represent the dynamic characteristics of the gear pair system in Figs. 4(a)-(l). Then, Fig. 3 exhibits 
that the bifurcation diagram within the range of 0.5 ≤ Ω ≤ 0.7 is taken as an example to illustrate 
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the bifurcation behavior of gear system at length. In Fig. 3, the period motion, namely period-one 
and period-two, can be observed at the low values of Ω  (i.e. 0.5 < Ω <  0.611), and the 
corresponding Poincaré maps are shown in Figs. 4(a)-(c). When Ω increases from 0.612 to 0.624, 
the system goes into the quasi-periodic motion which describes as seen in Figs. 4(d)-(g). However, 
the system response turns from quasi-periodic motion to period doubling motion with the 
influence of stable attractor as shown in Fig. 4(h). Subsequently, the chaos occurs by the way of 
period doubling motion. Before entering into next state of chaos, there is a short Hopf bifurcation 
and period-three motion at Ω = 0.679 and Ω = 0.682, respectively. A similar evolution of motion 
is described with the increasing of meshing frequency in Ref. [1]. However, there are other motion 
states including quasi-periodic and Hopf motion in the gear pair system of Fig. 1 where more 
degrees-of-freedom are considered in this model. 
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Fig. 2. Under lightly loaded condition, bifurcation diagrams of Ω with respect to 𝑌 when 𝜉 is  

a) 0.03, b) 0.05, c) 0.07 and d) 0.09, respectively 

From the bifurcation diagrams in Fig. 2, it can be observed clearly that when Δ = 0.5, the gear 
system undergoes different motion states consisting of period doubling motion, quasi-periodic 
motion, Hopf bifurcation and chaos as Ω increases. Importantly, the chaos occupies the main 
motion state in Figs. 2(a)-(b), which reveals that double-sided impact exists frequently in gear 
system when tooth pair keeps in mesh. In other words, the system may get into chaos easily, which 
would lead to predict and control the motion state of the system hard. 
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Fig. 3. Under lightly loaded condition, partial enlarged drawing of bifurcation diagram  

with the range of 0.5 ≤ Ω ≤0.7 when 𝜉 is 0.03 
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Fig. 4. Under lightly loaded condition, Poincaré maps of 𝑌 with respect to 𝑑𝑌 at 𝜉 = 0.03,  

when Ω is a) 0.45, b) 0.55, c) 0.6, d) 0.612, e) 0.613, f) 0.614, g) 0.618,  
h) 0.625, i) 0.627, j) 0.679, k) 0.682 and l) 0.686, respectively 

When Δ = 2, Fig. 5 shows the bifurcation diagrams of Ω with respect to 𝑌 at different damping 
ratio 𝜉  values, keeping other parameters same with those under lightly loaded condition. 
Comparing bifurcation diagrams in Figs. 5(a)-(d), it is observed that the width of regions of chaos 
state becomes narrow gradually with the increasing of 𝜉 from 0.03 to 0.09, which is quite similar 
to that under lightly loaded condition. When the damping is equal to 0.09, the chaos is even 
completely replaced by periodic motion state. The phenomenon verifies the conclusion that 
increasing damping narrows the region of instability [8, 9, 23]. Due to large damping, higher 
energy is dissipated by the power transmission where the dynamic response and stability of system 
are improved. 

Similarly, the system goes into various types of motion state when Δ =  2. To research 
qualitatively the nonlinear dynamic behaviors of gear system under Δ = 2, it is essential to analyze 
bifurcation diagram with dimensionless meshing frequency Ω  varying, as shown in Fig. (6). 
Meanwhile, Fig. (7) shows the Poincaré maps of 𝑌 with respect to 𝑑𝑌 as Ω changes from 0.65 to 
0.95 at 𝜉 = 0.03, which indicate the transitional process of motion states. From these above  
figures, the system enters into period-one state with the range of Ω from 0.65 to 0.71, then changes 
to chaotic motion when Ω increases to 0.715, as shown in Figs. 7(a)-(b), respectively. As Ω 
reaches to 0.719, the system bifurcates from chaos to period doubling motion. After that it goes 
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through chaotic motion again when Ω = 0.74 in Figs. 7(c)-(d). Subsequently, the system switches 
to period-six and period-three motions, then turns into chaos state via period doubling. After the 
width of region of chaotic motion, system bifurcates to period-four and period-two motion forms 
when Ω increases to 0.774 and 0.79, respectively. Then, in the range of 0.81 < Ω < 0.89, the 
system frequently switches Hopf motion to period doubling motion, as shown in Figs. 7(j)-(n), 
respectively. After that, motion state of the system undergoes period-one state when Ω = 0.92. As 
a result, when meshing frequency varies, the system shows a diverse range of motion forms [2]. 
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Fig. 5. Under heavily loaded condition, bifurcation diagrams of Ω with respect to 𝑌  
when 𝜉 is a) 0.03, b) 0.05, c) 0.07 and d) 0.09, respectively 

Comparing Fig. 2 and Fig. 5, it can be seen that the gear system is in the more stable state 
under heavily loaded condition than that under lightly loaded condition, which has been proved in 
Ref. [1]. To some extent, the main reason is that when the external load increases, the static 
meshing force will increase as well, triggering that double-sided and single-sided impact will 
disappear gradually to make gear pair meshing continuously. Meanwhile, it clearly shows that the 
system switches from chaos to period motion as illustrated in corresponding bifurcation diagrams. 
Furthermore, as damping ratio 𝜉 increases, the chaotic motion of system gradually transfers into 
quasi-periodic or period doubling motions. Through the above analysis of bifurcation features 
with Ω changing under different loaded conditions, the motion states and the critical values can 
be obtained, which can apply to choose the reasonable rotational speed for keeping the stable 
motion state of gear system. 

 
Fig. 6. Under heavily loaded condition, partial enlarged drawing of bifurcation diagram  

with the range of 0.65 ≤ Ω ≤ 0.95 when 𝜉 is 0.03 
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Fig. 7. Under heavily loaded condition, Poincaré maps of 𝑌 with respect to 𝑑𝑌 at 𝜉 = 0.03,  

when Ω is a) 0.65, b) 0.715, c) 0.719, d) 0.740, e) 0.749, f) 0.752, g) 0.76,  
h) 0.774, i) 0.79, j) 0.81, k) 0.82, l) 0.832, m) 0.86, n) 0.89 and o) 0.92, respectively 

3.2. Bifurcation and chaos analysis of the effect of dimensionless gear backlash 

Owing to some objective factors, namely manufacturing accuracy, installation error, gear 
lubrication and so on, gear backlash always exists, which shows strong nonlinear feature and has 
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a great influence on the durability and stability of gear system [17]. Therefore, it is vital to analyze 
the nonlinear behaviors of gear system caused by gear backlash. Keeping other system parameters 
constant, the gear backlash B is assigned as control parameter. 

When Δ = 0.5, the bifurcation diagrams with the change of dimensionless gear backlash 𝐵 are 
shown in Fig. 8. Under lightly loaded condition, as damping ratio 𝜉 reaches to 0.03, 0.05, 0.07 
and 0.09 respectively, Fig. 8 suggests the different bifurcation characteristics of the gear system. 
When 𝐵 increases from 0 to 1, the system enters into chaotic state by the way of period-three 
motion and then transfers frequently between chaos and period doubling motion as shown in 
Figs. 8(a)-(b). However, it could be shown from Figs. 8(c)-(d) that the system response starts with 
period-three, then undergoes chaos, finally bifurcates to period-one within the range of  
0 < 𝐵 < 1. When 𝐵 continues to increase, the system goes into chaos again by the channel of 
period doubling or period-one motion as seen in Figs. 8(a)-(c), while it will always be under 
period-one motion in Fig. 8(d). As 𝜉 = 0.11, the system motion only includes period-three and 
period-one motions. A similar process of bifurcation with different damping ratio 𝜉 can be found 
in Ref. [22]. As 𝜉 increases, the width of window of chaotic motion becomes narrower gradually 
and the system enters into the second part of regions of chaotic motion much earlier. However, 
the overall area of chaotic region is gradually reduced, especially in the longitudinal direction. 
When 𝜉  is equal to 0.11, the second part of chaotic region disappears, which is replaced by 
period-one motion. Additionally, the amplitude of vibration displacement decreases gradually as 𝜉 increases, which is revealed from Ref. [1] as well. 
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Fig. 8. Under lightly loaded condition, bifurcation diagrams of 𝐵 with respect to 𝑌  

when 𝜉 is a) 0.03, b) 0.05, c) 0.07 and d) 0.09, respectively 

In order to further explain the change process of motion states of gear system, partial enlarged 
drawing of bifurcation diagram and the corresponding Poincaré maps are shown in Figs. 9-10 
respectively, when 𝐵 is in the range from 0.05 to 0.65 and 𝜉 is 0.03. From Fig. 9, it clearly shows 
that the system goes into complex motion states, involving period doubling motion, quasi-periodic 
motion, Hopf bifurcation motion as well as chaos. When 𝐵 = 0.05, the system is in the period-one 
motion as exhibited in Fig. 10(a), which reveals that the system is under the stable state. Due to 
small value of gear backlash, gears keep meshing so that the system always undergoes the stable 
period-one motion state. Then, the system bifurcates to period-two motion as 𝐵 increases to 0.075.  
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Fig. 9. Under lightly loaded condition, partial enlarged drawing of bifurcation diagram  

with the range of 0.05 ≤ 𝐵 ≤ 0.65 when 𝜉 is 0.03 
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Fig. 10. Under lightly loaded condition, Poincaré maps of 𝑌 with respect to 𝑑𝑌 at 𝜉 = 0.03,  

when 𝐵 is a) 0.05, b) 0.075, c) 0.09, d) 0.097, e) 0.103, f) 0.118, g) 0.122,  
h) 0.14, i) 0.35, j) 0.48, k) 0.5145, l) 0.54, respectively 

Later, the system goes into the complex states which converts frequently between chaos and 
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period doubling motion, when 𝐵 changes from 0.087 to 0.118, as can be seen from Figs. 10(c)-(f). 
Then, the system bifurcates inversely from period-eight to period-four and even period-two, as 𝐵 
reaches to 0.122 and 0.14, which demonstrate from Figs. 10(g)-(h), respectively. However, the 
system gets into period-three motion by the way of crisis from period-two motion in Fig. 10(i) 
when 𝐵 =  0.35. As 𝐵  continues to increase, the system switches to chaos, then changes to 
quasi-periodic motion, finally transfer into chaos again, as shown in Figs. 10(j)-(l). 

Based on the above analysis, the dimensionless gear backlash varying leads to complex 
bifurcation properties, which can be employed to illustrate the nonlinear dynamic characteristics 
of gear system. When Δ is 0.5 and 𝜉 is less than or equal to 0.05, the gear system presents the 
states of periodic motion and chaotic motion alternately with the increase of 𝐵. However, when 𝐵 
is larger than a certain value, the system enters into the continuous chaotic motion, as seen in 
Figs. 8(a)-(b). Likewise, it is of significance to analyze the bifurcation features under heavily 
loaded condition to compare those under lightly loaded condition. Hence, the system parameters 
are selected as same as those under lightly loaded condition. Then, the bifurcation diagram with 
the change of 𝐵 is obtained as seen in Fig. 11. 

In Fig. 11, as 𝐵 increases from 0 to 2, the system keeps under period-one motion, and the 
corresponding phase portrait and Poincaré map are shown in Fig. 12, when 𝐵 = 0.5. In other 
words, gear backlash 𝐵 varying only changes the vibration amplitude of gear system while it 
doesn’t affect the system motion property. This is in line with the numerical analysis results of a 
spur gear pair system with three DOF described in Ref. [24]. 

By comparing Fig. 8 and Fig. 12, it can be seen that the influences of loaded condition, 
damping ratio and dimensionless gear backlash on the bifurcation characteristics of gear system 
are analyzed systematically. Under lightly loaded condition, the system has more complex 
bifurcation features than those under heavily loaded condition. Furthermore, under different 
damping ratios, there are significant differences among the bifurcation diagrams of 𝐵 with respect 
to 𝑌. As 𝜉 increases, the system tends to enter into the stable period motion state. Hence, these 
analysis results can provide theoretical basis for selecting appropriate gear backlash to avoid the 
chaos and ensure the system under the stable motion state. 
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Fig. 11. Under heavily loaded condition, bifurcation diagrams of 𝐵 with respect to 𝑌 
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Fig. 12. Under heavily loaded condition, phase portrait and Poincaré maps  

of 𝑌 with respect to 𝑑𝑌 when 𝐵 = 0.5 
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3.3. Bifurcation and chaos analysis of the effect of dimensionless bearing clearance 

Bearing clearance is also one of key parameters that affect the dynamic behavior of gear 
transmission system. Therefore, it is crucial to analyze the influence of bearing clearance on 
nonlinear dynamic characteristic of system. Then, keeping other parameters constant, the 
bifurcation diagrams with dimensionless bearing clearance 𝐵௜ (𝑖 = 1, 2) changing are obtained 
when Δ = 0.5 or 2, as shown in Fig. 13 and Fig. 15, respectively. 

In Fig. 13, when Δ = 0.5, the system shows complex forms of motion states with the change 
of 𝐵௜ and different 𝜉. From Fig. 13(a), it clearly indicates that the chaos is the main motion within 
the range of 0 < 𝐵௜ < 1, but in the meantime, there are other motion types, namely period doubling 
and quasi-periodic motions. When 𝐵௜ < 0.29, the system enters into the chaos, as shown in Fig. 
14(a). Then, it turns into quasi-periodic motion as seen in Figs. 14(b)-(c), when 𝐵௜ reaches to 0.29 
and 0.302, respectively. Later, the system goes into chaos again by the channel of quasi-periodic 
motion, as seen in Fig. 14(d). When 𝐵௜ keeps increasing to 0.363, the system bifurcates to period 
doubling motion which exists in a very narrow motion window. Subsequently, when 𝐵௜ = 0.377, 
the system changes to quasi-periodic motion again, as shown in Fig. 14(f). Finally, the system 
undergoes the chaos through the route of period-two state as seen in Figs. 14(h)-(i).  

From Figs. 13(a)-(d), it clearly shows that as 𝜉  increases, the width of regions of chaos 
becomes narrow and the amplitude of displacement 𝑌 decreases gradually. In other words, when 𝜉  increases from 0.03 to 0.09, the system becomes stable increasingly. Over the range of  𝐵௜ > 0.27, the system is always under the period motion including period-one and period-two 
motion at 𝜉 = 0.07. Furthermore, within the range of 0.636 < 𝐵௜ < 1, the vibration amplitude of 
the gear system keeps certain constant. Likewise, under 𝜉 = 0.09, the system is in the period 
motion state, which switches between period-one and period-two motions with the range of  𝐵௜ < 0.094 and always stays under the period-one state when 0.094 < 𝐵௜ < 1. In addition, the 
system occurs crisis phenomenon in Fig. 13(b, c), which are consistent with the conclusion 
obtained in Ref. [7]. 
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Fig. 13. Under lightly loaded condition, bifurcation diagrams of 𝐵௜ with respect to 𝑌  

when 𝜉 is a) 0.03, b) 0.05, c) 0.07 and d) 0.09, respectively 

When Δ = 2, the system is only in quasi-periodic motion state and the amplitude along the line 
of action keeps certain constant in the range of 0 < 𝐵௜ < 1, as shown in Fig. 15. For instance, 
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when 𝐵௜  is chosen to 0.5, the phase portrait and Poincaré map are obtained in Fig. 16, which 
illustrate the system enters into quasi-periodic motion. It means that bearing clearance affects 
weakly on motion characteristics of gear system under heavily loaded condition. 
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Fig. 14. Under lightly loaded condition, Poincaré maps of 𝑌 with respect to 𝑑𝑌 at 𝜉 = 0.03, when 𝐵௜ is  

a) 0.1, b) 0.29, c) 0.302, d) 0.34, e) 0.363, f) 0.377, g) 0.45, h) 0.55, and i) 0.634, respectively 

According to the analysis about the effect of dimensionless bearing clearance on bifurcation 
and chaos, it could be obtained that 𝐵௜  has considerable impact on bifurcation property under 
lightly loaded condition, which leads to different and complex types of motion states. Hence, it is 
essential to choose suitable bearing clearance for ensuring the stability of gear transmission and 
reducing the vibration intensity of the gear system. 
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Fig. 15. Under heavily loaded condition, bifurcation diagrams of 𝐵௜ versus 𝑌 
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Fig. 16. Under heavily loaded condition, phase portrait  

and Poincaré maps of 𝑌 with respect to 𝑑𝑌 when 𝐵௜ = 0.5 

4. Conclusions 

This study establishes a three-DOF nonlinear dynamic model of a spur gear pair system, 
considering transmission error, gear backlash, bearing clearance, time-varying meshing stiffness, 
torque fluctuation and external radial preload. Through introducing the relative torsional 
displacement as a new DOF, the dynamics of system can be investigated by using Runge-Kutta 
integration method. The features of bifurcation and chaos of the gear system with respect to control 
parameters involving meshing frequency, gear backlash, bearing clearance, damping ratio and 
force ratio are discussed in detail. The analysis results can not only provide a better understanding 
of bifurcation characteristics, but also ensure appropriate values of system key parameters to avoid 
the chaos, reduce impact and extend service life of gear system. The detailed conclusions are listed 
as follows: 

1) As dimensionless meshing frequency increases, the gear system shows multiple motion 
states, such as period doubling motion, quasi-periodic motion, Hopf bifurcation as well as chaotic 
motion. According to the bifurcation diagrams, the meshing frequency should be chosen 
appropriately to keep system stable. 

2) Gear backlash has significant influences on bifurcation properties and chaos of gear system. 
Under lightly loaded condition, the system undergoes various types of motion states with the 
change of dimensionless gear backlash, while it only is in period-one motion state under heavily 
loaded condition. 

3) Similarly, the bifurcation features with bearing clearance as control factor present enormous 
difference when gear system is under different loaded conditions. Under the lightly loaded 
condition, the system response switches from chaotic motion to period doubling or quasi-periodic 
state. However, under heavily loaded condition, the bearing clearance has a weak effect on 
dynamic behavior of gear system. 

4) It can be observed that under heavily loaded condition, the system tends to be more stable 
by comparing that under lightly loaded condition. Due to the absence of single-sided and 
double-sided impact when external load increases, the gears keep meshing which makes gear 
system run stably.  

5) When damping ratio increases, the window width of chaotic motion becomes gradually 
narrow and the vibration amplitude along the line of action decreases. In other words, the damping 
ratio can hinder effectively the chaotic motion in the gear transmission system. 

There are several aspects that should be investigated further, although we have obtained the 
bifurcation characteristics with respect to different control parameters under different loaded 
conditions. In the next stage, we will carry out stability analysis for the gear pair system, study the 
effects of tooth surface friction on the dynamic response and analyze the non-smooth dynamic 
behavior with gear backlash. 
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