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Abstract. A novel quasi-zero stiffness nonlinear magnetic isolator is designed by using magnetic 
springs in parallel with linear positive stiffness spring. Through the static analysis, the 
mathematical expressions of force-displacement-current and stiffness-displacement-current of the 
system are established, and the necessary conditions for the normal function and geometric 
parameters of the system are obtained. The nonlinear dynamic equations of the system under 
external excitation force are established. The amplitude and frequency characteristics of the 
system are deduced by harmonic balance method. The influence of system parameters and external 
excitation amplitude on the dynamic characteristics of the system is analyzed. Results showed that 
the vibration of the system can be controlled by controlling the electromagnet current or increasing 
the damping coefficient while the external excitation amplitude is kept in a certain of range. The 
researches provided a theoretical guidance for the design and application of the new quasi-zero 
stiffness nonlinear magnetic isolation system. 
Keywords: magnetic spring, quasi-zero-stiffness, harmonic balance method, nonlinear vibration. 

1. Introduction 

At present, low frequency vibration isolation is a major research hotspot and challengeable 
problem in vibration engineering field. The vibration isolation modes include passive vibration 
and active vibration isolation. Due to the complex structure and high cost of active vibration 
isolation, the passive vibration isolation is a common method. According to the theory of vibration 
isolation, when the excitation frequency is greater than √2 times of the natural frequency, the 
system starts to isolate the harmful vibration. Therefore, the vibration isolation frequency band is 
wider when the natural frequency is lower. However, when the natural frequency is excessively 
lower, the greater static displacement will be produced. Then the contradiction of the lower natural 
frequency and the poorer stability resides in the system. In order to solve the problem, an isolator 
so-called quasi-zero stiffness (QZS) vibration isolator is proposed [1, 2]. The QZS isolator can 
achieve ultra-low stiffness, zero stiffness, or negative stiffness characteristics [3, 4] by designing 
the appropriate structural parameters. The quasi-zero stiffness (QZS) vibration isolators are 
usually realized by connecting a positive-stiffness mechanism with a negative-stiffness 
mechanism. In previous researches [5, 6], a typical configuration of the QZS isolator is shown in 
Fig. 1. The vertical spring acts as a positive-stiffness and the oblique springs act as a negative-
stiffness. When an appropriate mass is loaded on the isolator, the springs begin to compress until 
the oblique springs reach the equilibrium position. At this point, the dynamic stiffness is zero if 
the system parameters are appropriate. 

Quasi-zero stiffness vibration isolator is widely studied by a large number of scholars. Carrella 
et al. [7] designed a vibration isolation system consisting of three springs, obtained the nonlinear 
force transfer characteristics of the vibration isolation system, and explained the concept of high 
static stiffness and low dynamic stiffness. Kovacic et al. [8-10] optimized the structural parameters 
of the three-spring quasi-zero stiffness isolator and studied its bifurcation characteristics. Zhou et 
al. [11, 12] used the electromagnet, instead of the permanent magnet, to design a tunable magnetic 
isolator, which can adjust the system characteristic parameters by changing the electromagnet 
current. Thanh et al. [13] studied the horizontal spring by connecting the rod parallel to the vertical 
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spring, to obtain the quasi-zero stiffness of the static equilibrium position. Niu [14] designed a 
new QZS isolator by connecting a disk spring with a linear spring, and studied the influence of 
system parameters on the transmissibility by using averaging method. 

In this paper, a new type of quasi-zero stiffness nonlinear magnetic isolator is designed. A 
magnetic isolator, which was used as a negative stiffness mechanism, is in parallel with the 
positive stiffness spring. Through the analysis of static mechanics, the necessary conditions of the 
geometrical parameters for the system are obtained. The dimensionless force and stiffness 
characteristics of the system near the static equilibrium position are analyzed. The dynamical 
equations under external excitation are established. Then the amplitude-frequency characteristic 
curves and the force transmissibility of the system are obtained by using harmonic balance method. 
Finally, the influence of system parameters and external excitation amplitude on the dynamic 
characteristics of the system is analyzed. 

0f

 
Fig. 1. Schematic diagram of a typical quasi-zero stiffness system 

2. Static analysis  

The typical design of a quasi-zero stiffness mechanism generally consists of a vertical spring 
with positive stiffness and two oblique springs with negative stiffness [5-7]. Considering a new 
model of the QZS isolator shown in Fig. 2(a), the quasi-zero stiffness of system is achieved by 
combining a vertical linear spring with two symmetrically inclined magnetic springs. The 
magnetic spring set consists of electromagnet and armature. The hollow ball is connected with the 
armature and the connecting rod can move freely in the guide. The two connecting rods and 
mechanical spring are hinged at the position ܱ. The vertical linear spring’s stiffness is ݇. The 
length of the connecting rod is ܮ. The compressed length of the vertical spring is ℎ when the 
system reaches the static equilibrium position. The coordinate ݖ defines the displacement from the 
point ܱ. 

The magnetic force, ݂݉ is given by [15-17]: 

݂݉ = 24݅ܣ0ܰ2ߤ ൤ 0ݔ)1 − 2(ݔ∆ − 0ݔ)1 + 2൨, (1)(ݔ∆

where 0ߤ  is air permeability, ܰ  is coil number, ܣ is magnet pole area, 0ݔ  is air gap between 
armature and electromagnet, ∆ݔ is armature displacement and ݅ is coil current. 

The relational expression between the applied force ݂ and the displacement ݖ is given by: 

݂ = ݖ݇ + 2 ℎ − ଶܮඥݖ − (ℎ − ଶ(ݖ ௠݂. (2)

Noting that ∆ݔ = ඥܮଶ − (ℎ − ଶ(ݖ − ଶܮ√ − ℎଶ, Eq. (2) can be written as: 
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݂ = ݖ݇ + ଶ2݅ܣ଴ܰଶߤ ℎ − ଶܮඥݖ − (ℎ − ଶ(ݖ ێێۏ
ۍێ 1൫ݔ଴ − ඥܮଶ − (ℎ − ଶ(ݖ + ଶܮ√ − ℎଶ൯ଶ
− 1൫ݔ଴ + ඥܮଶ − (ℎ − ଶ(ݖ − ଶܮ√ − ℎଶ൯ଶۑۑے

(3) .ېۑ

 

 
a) Structural diagram of the new QZS isolator in the initial position 

 

b) Schematic of the QZS isolator when system activated 

 

c) The model of the proposed isolator 
Fig. 2. Schematic of the QZS isolator 

Introducing the non-dimensional parameters: መ݂ = ݂݇ℎ,     ̂ݖ = ℎݖ ߟ     , = 2݇ℎଷߤ଴ܰଶܣ,     ଓ̂ = ඥ݅ߟ ߙ     , = ℎܮ ߚ     , = ଴ℎݔ . 
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Eq. (3) becomes: 

෠݂ = ොݖ + መ݅2 1 − 2ߙොඥݖ − (1 − ො)2ݖ ێێۏ
ۍێێ

1ቀߚ − ඥ2ߙ − (1 − ො)2ݖ + 2ߙ√ − 1ቁ2
− 1ቀߚ + ඥ2ߙ − (1 − ො)2ݖ − 2ߙ√ − 1ቁ2ۑۑے

(4) .ېۑۑ

Differentiating Eq. (4), the non-dimensional stiffness ܭ෡ of the system can be obtained: 

෡ܭ = 1 + 2መ݅2(1 − ො)2ݖ
ەۖۖ
۔ۖ
ۓۖ 2ߙ1ൣ − (1 − ො)2൧ݖ ቈߚ + 2ߙ√ − 1 − ට2ߙ − (1 − ො)2቉3ݖ

+ 2ߙ1ൣ − (1 − ො)2൧ݖ ቈߚ − 2ߙ√ − 1 + ට2ߙ − (1 − ො)2቉3ۙۖۖݖ
ۘۖ
ۖۗ 

      −ଓሶመଶ(1 − ଶ(ݖ̂
۔ۖەۖ
ۓ 1ሾߙଶ − (1 − ଶሿଷ(ݖ̂ ଶൗ ߚൣ + ଶߙ√ − 1 − ඥߙଶ − (1 − ଶ൧ଶ(ݖ̂

− 1ሾߙଶ − (1 − ଶሿଷ(ݖ̂ ଶൗ ߚൣ − ଶߙ√ − 1 + ඥߙଶ − (1 − ଶ൧ଶۙۘۖ(ݖ̂
ۖۗ 

     −ଓሶመଶ
۔ۖەۖ
ۓ 1ඥߙଶ − (1 − ߚଶൣ(ݖ̂ + ଶߙ√ − 1 − ඥߙଶ − (1 − ଶ൧ଶ(ݖ̂

− 1ඥߙଶ − (1 − ߚଶൣ(ݖ̂ − ଶߙ√ − 1 + ඥߙଶ − (1 − ଶ൧ଶۙۘۖ(ݖ̂
ۖۗ. 

(5)

If Eq. (5) is considered at the static equilibrium position ݖො = 1 and set to zero, the value of መܼ݅ܳܵ that ensures quasi-zero stiffness is: መܼ݅ܳܵ = 1ඨ1ߙ ൥ 1൫ߚ − ߙ + 2ߙ√ − 1൯2 − 1൫ߚ + ߙ − 2ߙ√ − 1൯2൩. 
(6)

According to the Fig. 1 and Eq. (3), the geometric parameters of the system must be satisfied: 

۔ۖەۖ
0ݔۓ + ඥ2ܮ − ℎ2 ≥ 0ݔ,ܮ − ට2ܮ − (ℎ − 2(ݖ + ඥ2ܮ − ℎ2 ≠ 0ݔ,0 + ට2ܮ − (ℎ − 2(ݖ − ඥ2ܮ − ℎ2 ≠ 0. (7)

Based on the analysis above, the parameters satisfying the Eq. (7) are listed in Table 1. The 
parameters designed in this paper are as follows: 0ߤ ܰ ,H/m 10-7×ߨ4 = ܣ ,470  = = 0.009 m2, ݇ =  30000 N/m, ℎ = 0.03 m, ܮ =  0.07 m, 0ݔ =  0.008 m. The current range of the coil is:  
0 ≤ ݅ ≤ 5 A, then the non-dimensional current range is: 0 ≤ ଓሶመ ≤ 0.2.  



2782. A STUDY OF A NONLINEAR MAGNETIC VIBRATION ISOLATOR WITH QUASI-ZERO-STIFFNESS.  
PAN SU, JIECHANG WU, SHUYONG LIU, YUAN FANG 

314 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2018, VOL. 20, ISSUE 1. ISSN 1392-8716  

Table 1. The parameters of the QZS isolator ߤ଴ 4ߨ × 10ି଻ H/m ݇ 30000 N/m ܰ 470 A 0.009 m ℎ 0.03 m L 0.07 m ݔ଴ 0.008 m 0.267 ߚ 2.333 ߙ መ݅ 0 ≤ መ݅ ≤ 0.2 

The relationship between the non-dimensional force, current and the non-dimensional 
displacement is plotted using Eq. (4), which is illustrated in Fig. 3. As shown in the Fig. 3, the 
nonlinearity of the system is getting stronger with the increase of the current. The relationship 
between the non-dimensional stiffness, current and the non-dimensional displacement of the 
system given by Eq. (5) is shown in Fig. 4, which indicates that the magnitude of the stiffness 
varies with the current. When the current is small, the system always exhibits positive stiffness. 
As the current increases to ܼ݅ܳܵ, the stiffness of the system at the static equilibrium position is zero, 
but in the other range, the stiffness is always positive. When the current is too large, the magnetic 
spring plays a leading role, and thus the system shows negative stiffness in some areas. 

ẑ
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f̂

 
a) 

ˆ
Q̂ZSi i

ˆ
Q̂ZSi i

ˆ
Q̂ZSi i

f̂

ẑ  
b) 

Fig. 3. Non-dimensional force of the system: a) the surface graph of the non-dimensional force-current-
displacement, b) the non-dimensional force-displacement curves for different values of ݅ ̂
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ẑ
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Fig. 4. Non-dimensional stiffness of the system: a) the surface graph of the non-dimensional stiffness-
current-displacement, b) the non-dimensional stiffness-displacement curves for several values of ݅ ̂ 

By applying Taylor-series expansion,݂(ݕ) = (଴ݕ)݂ + ∑ ௙(೤బ)೙௡!ே௡ୀଵ ݕ) −  ଴)௡, expanding Eq. (4)ݕ
at the static equilibrium position and let ොݕ = ොݖ − 1 ,an approximate expression of the 
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non-dimensional force is obtained: ෠݂(ݕ) ≈ 1 + ොݕ߮ + ො3. (8)ݕߛ

The non-dimensional stiffness is obtained by differentiating Eq. (8): ܭ෡ ≈ ߮ + ොଶ, (9)ݕߛ3

where: 

߮ = 1 + ଓሶመଶߙ൫ߚ + ߙ − ଶߙ√ − 1൯ଶ − ଓሶመଶߙ൫ߚ − ߙ + ଶߙ√ − 1൯ଶ, 
ߛ = ଓሶመଶߙଶ൫ߚ + ߙ − ଶߙ√ − 1൯ଷ + ଓሶመଶ2ߙଷ൫ߚ + ߙ − ଶߙ√ − 1൯ଶ 

     + ଓሶመଶߙଶ൫ߚ − ߙ + ଶߙ√ − 1൯ଷ − ଓሶመଶ2ߙଷ൫ߚ − ߙ + ଶߙ√ − 1൯ଶ. 
The comparison between exact expressions given by Eq. (4) and Eq. (5) and approximate 

expressions given by Eq. (8) and Eq. (9) of non-dimensional force and non-dimensional stiffness 
is shown in Fig. 5. With the increase of the displacement, the error between the exact and the 
approximate expression increases. When the displacement of the system at the static equilibrium 
position is small, the error between the exact expression and the approximate one is small, and 
thus the Taylor series expansion can be applied to simulate the exact expression. 

ŷ

f̂

 
a) 

ŷ

K̂

 
b) 

Fig. 5. Comparison between exact and approximate expressions of non-dimensional force and 
non-dimensional stiffness (݅ = ݅ொ௓ௌ): a) the non-dimensional force-displacement curves,  

b) the non-dimensional stiffness-displacement curves 

3. Dynamic behavior of the system  

3.1. Dynamic modeling 

The dynamical model of the system under external excitation is shown in Fig. 6, the non-
dimensional motion differentiate equation of the system is: ݕሷ + ሶݕߦ + ݕ߮ + 3ݕߛ = ݂ℎcos(߱ݐ), (10)
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where: 

Ω0 = ඨ݇ܯ ,    Ω = Ω0߱,    ߦ = ݇ܯ√ܿ ݐ    , = Ω0ܶ,    ݂ℎ =  .ℎ݇ℎܨ

QZSK

 
Fig. 6. System dynamical model 

The solution of the system is: 

(ݐ)ݕ = ܽଵ଴ + ෍ሾܾଵ௜(cos݅߱ݐ) + ܿଵ௜(sin݅߱ݐ)ሿே
௜ୀଵ . (11)

For convenience, let ܰ = 1: 12 ܽ1,0൫21,02ܽߛ + 1,12ܾߛ3 + 1,12ܿߛ3 + 2߮൯ + cos(߱ݐ) ൬ܾ1,1 ൬31,02ܽߛ + 34 1,12ܿߛ − ߱2 + ߮൰       +6ܽߛଵ,଴ܾଵ,ଵܿଵ,ଵ sin(߱ݐ) − 34 ଵ,ଵ൫ܾଵ,ଵଶܾߛ − 3ܿଵ,ଵଶ ൯sinଶ(߱ݐ) + 34 ଵ,ଵଷܾߛ + ଵ,ଵܿ߱ߦ − ௛݂൰       + 14 sin(߱ݐ) ൫ܿଵ,ଵ൫12ܽߛଵ,଴ଶ + ଵ,ଵଶܿߛ3 − 4߱ଶ + 4߮൯ + ଵ,ଵଶܾߛ3 ܿଵ,ଵ − +       ଵ,ଵ൯ܾ߱ߦ4 32 ଵ,଴൫ܿଵ,ଵଶܽߛ − ܾଵ,ଵଶ ൯sinଶ(߱ݐ) + cosଶ(߱ݐ) ൬32 ଵ,଴൫ܾଵ,ଵଶܽߛ − ܿଵ,ଵଶ ൯       − 34 ଵ,ଵ൫ܿଵ,ଵଶܿߛ − 3ܾଵ,ଵଶ ൯ sin(߱ݐ)൰ + 14 ଵ,ଵ൫ܿଵ,ଵଶܿߛ − 3ܾଵ,ଵଶ ൯sinଷ(߱ݐ)       + 14 ଵ,ଵ൫ܾଵ,ଵଶܾߛ − 3ܿଵ,ଵଶ ൯cosଷ(߱ݐ) = 0. 
(12)

Neglect the operation of the higher order term, the coefficients of sine and cosine in Eq. (12) 
should be zero: 3ܾߛଵ,ଵଶ ܿଵ,ଵ − ଵ,ଵܾ߱ߦ4 + ܿଵ,ଵ൫3ܿߛଵ,ଵଶ − 4߱ଶ + 4߮൯ = 0, (13)ܾ1,1 ൬34 1,12ܿߛ − ߱2 + ߮൰ + 34 1,13ܾߛ + 1,1ܿ߱ߦ − ݂ℎ = 0,    ܽ11 = 0. (14)

Introduce ܿଵଵ = ܣ cos(ߠ), ܾଵଵ = ܣ sin(ߠ), where ܣ is the response amplitude of the system. 
Eq. (13) and Eq. (14) become: cos(ߠ) ߛ3ܣ3) − 2߱ܣ4 + (߮ܣ4 − ߱ߦܣ4 sin(ߠ) = 0, (15)sin(ߠ) ቆ34ߛ3ܣ − 2߱ܣ + ቇ߮ܣ + ߱ߦܣ cos(ߠ) − ݂ℎ = 0. (16)
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The amplitude-frequency relation expression can be obtained by combining Eq. (15) with 
Eq. (1š) and using sinଶ(ߠ) + cosଶ(ߠ) = 1: 16݂ℎଶ2ߛ4ܣ9)2ܣ + ߮)ߛ2ܣ24 − ߱2) + 2߱2ߦ)16 + ߱4 + ߮2 − 2߱2߮)) = 1. (17)

The transmitted force, shown in Fig. 6 is given by: ݐܨ = ሶݕߦ + ݕ߮ + (18) .3ݕߛ

Using the Harmonic theory, suppose the response of the system has the form  (ݐ)ݕ = ݐ߱)cosܣ + ߰) , substitute it to Eq. (18) and omit the higher harmonic terms. The 
magnitude of the transmitted force is obtained: 

ݐ෡ܨ = ඨ(ܣ߱ߦ)2 + ൬߮ܣ + 34 3൰2. (19)ܣߛ

Thus, the force transmissibility is given: 

ܶ = ට(ܣ߱ߦ)ଶ + ቀ߮ܣ + 34 ଷቁଶܣߛ
௛݂ . (20)

3.2. Effects of system parameters and excitation amplitude on dynamical characteristics 

Based on the analysis above, the influences of system parameters and excitation amplitude on 
dynamic characteristics are shown in Fig. 7-9. Three cases are analyzed in detail as follows: 

(1) The damping ratio ߦ  is varied. When the system parameters ଓ̂ =  0.04, ݂ =  0.1, the 
amplitude-frequency characteristic given by Eq. (19) and the force transmissibility given by 
Eq. (20) for several values of the damping ratio ߦ are plotted in Fig. 7. The nonlinear characteristic 
of the system is gradually weakened, as shown in Fig. 7(a). With the increase of damping 
coefficient, the resonance peak and the jumping frequency decreases, but the jump-up frequency 
is not substantially varied. As seen from the Fig. 7(b), the vibration isolation effect of the system 
is enhanced in the low frequency band, and the effect is weakened in the high frequency range. 

0.1 

0.4 

0.8 


 

a) The amplitude-frequency curve 

0.1 

0.4 

0.8 


 

b) The force transmissibility curve 
Fig. 7. The dynamical characteristic of the system when damping ratio ߦ is varied 
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(2) The excitation amplitude parameter ௛݂ is varied. When the system parameters ଓሶመ ߦ ,0.04 = = 0.4, the amplitude-frequency characteristic given by Eq. (17) and the force transmissibility 
given by Eq. (22) for several values of the excitation amplitude parameter ௛݂ are plotted in Fig. 8. 
The system exhibits obvious nonlinear characteristics, as shown in Fig. 8(a). With the increase of 
excitation amplitude, the resonance peak, the jump-up and the jump-down frequency increase. As 
can be seen from the Fig. 8(b), the range of low frequency vibration isolation becomes narrower. 
When the external excitation frequency is higher than the jump-down frequency, the force 
transmissibility curve coincides. So, the vibration isolation effect is the same in this bandwidth. 

0.5kf 



2kf 

0.05kf 

 
a) The amplitude-frequency curve 

0.5kf 



2kf 

0.05kf 

 
b) The force transmissibility curve 

Fig. 8. The dynamical characteristic of the system when parameter ௛݂ is varied 

(3) The current ଓሶመ is varied. When the system parameters ݂ ߦ ,0.1 = = 0.4, When the system 
parameters ଓሶመ = 0.04, ݂ = 0.1, the amplitude-frequency characteristic given by Eq. (17) and the 
force transmissibility given by Eq. (20) for several values of the current ଓሶመ are plotted in Fig. 9. The 
nonlinear characteristic of the system is gradually enhanced, as shown in Fig. 9(a). With the 
increase of the current, the resonance peak decreases and the vibration isolation starting frequency 
decreases. As seen from the Fig. 9(b), the vibration isolation performance decreases gradually. 



ˆ 0.01i 

ˆ 0.05i 

ˆ 0.08i 

 
a) The amplitude-frequency curve 



ˆ 0.01i 

ˆ 0.05i 

ˆ 0.08i 

 
b) The force transmissibility curve 

Fig. 9. The dynamical characteristic of the system when current ݅ is varied 

According to the analysis above, based on the proper control of the external excitation 
amplitude, it is possible to obtain a good vibration isolation performance by controlling the current 
of the system or increasing the damping coefficient of the system. 
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4. Conclusions 

In this paper, a new nonlinear electromagnetic vibration isolator with quasi-zero-stiffness is 
designed. Through the static analysis, the mathematical model of force-displacement-current and 
stiffness-displacement-current are derived. The conditions that the geometrical parameters of the 
system should be satisfied to ensure proper operation of the isolator have been analyzed. The 
geometric dimension of the isolator is designed under these constraints. It is found that changing 
the current can make the system at the equilibrium position to achieve quasi-zero stiffness 
characteristics. Through the dynamic analysis, the study shows that under the condition of certain 
damping coefficient and external excitation, the appropriate current control range can be selected 
to restrain the amplitude of vibration effectively. 
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