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Abstract. Engine knock limits the thermal efficiency improvement of spark-ignition (SI) engines.
Thus, the extract research of the knock characteristics has a great significance for the development
of gasoline engines. The research proposes a novel knock detection and diagnosis method in SI
engines using the CEIITD (Complementary Ensemble Improved Intrinsic time-scale
decomposition) and Bi-spectrum algorithm. The CEIITD algorithm is used to extract the knock
characteristics. The results show that the CEIITD algorithm can effectively and clearly extract the
knock shock characteristics (including light knock) through the vibration signals. A Bi-spectrum
analysis can further distinguish between the light knock signal and normal combustion signal. The
Bi-spectrum results also show that knock characteristic has a strong non-Gaussian property. At
last, the Band pass filter and Improved ITD method were employed to identify the knock
characteristics from these cylinder block vibration signals. The comparison result shows that the
CEITD method proposed in this paper is more suitable to detect the knock characteristic.

Keywords: knock detection, spark ignition engine, complementary ensemble improved intrinsic
time-scale decomposition, Bi-spectrum.

1. Introduction

Nowadays, the small strengthening technology (Downsizing) represented by gasoline direct
injection pressure and turbocharging is an important technical way to improve the thermal
efficiency of gasoline engines, but, with the enhancement of the small strengthening technology,
the occurrence probability of engine knock increased significantly [1]. Heavy knock will lead to
reduced engine power, increased fuel consumption, emissions deterioration, and severe knock
problem can cause engine component damage, so the engine knock restricts the down-sizing of
gasoline engine severely [2]. But on the other hand, the light knock is nearly constant volume
combustion, in favor of the engine thermal efficiency and improved fuel economy, and is the ideal
working condition. Therefore, the research of extracting knock characteristics (including light
knock) is a great significance for the development of gasoline engine [3].

There are several types of methods which can be used to detect engine knock. The most
commonly used methods are divided into the direct detection and indirect detection methods. The
direct methods include the cylinder pressure analysis, and ion current analysis, etc. [4]. These
methods can measure the combustion parameters inside the combustion chamber, which can be
influenced by knock. So, these methods can identify engine knock more accurately. However,
they cannot be widely used in the production engines because of high cost of sensors and limitation
of engine structure. The indirect method is used for assessing the knock intensity by measuring
vibration signals of cylinder block. Due to durability and low cost, the vibration signal analysis
has become the most widely used method to determine the engine knock.

High frequency oscillation pressure waves will be created in the combustion chamber when
knock happens. This pressure waves can excite engine block vibrations and cause the knocking
noise. But the engine block has a lot of vibration sources, as compared to methods based on the
cylinder pressure, the accuracy of the results acquired from vibration signal cannot be guaranteed
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because of its low signal to noise ratio (SNR). So, the vibration signals need to be re-processed.

In recent years, the development of signal processing technology is very fast, many new signal
processing algorithms have been proposed [5, 6] and they were widely used in many fields. Fuzzy
C-means algorithm (FCM) and Robust dense reconstruction were used in image processing [7, 8],
the collaborative optimization and artificial bee colony (ABC) algorithm were used in
optimization design [9-10], and the support vector regression (SVR) was used in the regression
analysis [11, 12]. And the least significant bit matching (LSB) was applied for information
Security [13, 14]. In the field of knock feature recognition, signal processing methods also
achieved many results. Many signal processing methods such as band-pass filter, fast Fourier
transform (FFT [15]), short-time Fourier transform (STFT [16]), continuous wavelet transform
(CWT [17]), discrete wavelet transform (DWT [18]), wavelet packet transform (WPT [19]) and
nonlinear wavelet transform (NWT [20]) have been utilized to extract knock features from
vibration signals. The filtering method based on the Fourier transform is widely used in knock
detection because the calculation is simple, but it is difficult to detect the light knock when the
Signal to Noise Ratio (SNR) is low. The premise of Fourier transform is that the signal is assumed
to be stationary and periodic. However, engine knock is the performance of resonant vibrations
on a cylinder head and cylinder block, these vibration signals has non-stationary and nonlinear
properties. The CWT and DWT were found to be more suitable for non-stationary signal analysis
than the FFT as a result of its high time-frequency resolution. But both of them cannot extract
non-linear relationships within the signal clearly.

The empirical mode decomposition (EMD) is a self-adaptive time-frequency signal analysis
method. This method can decompose a complicated signal into several intrinsic mode functions
(IMFs), and each IMF represents an oscillatory mode embedded in the signal, which is determined
by the original signal adaptively [21]. In essence, this method consists in a stable processing of
non-stationary signals. But there are some inherent deficiencies of EMD, such as the end effects,
mode mixing problem [22].

Intrinsic time-scale decomposition (ITD) is a novel signal processing method developed in
recent years, which could decompose a complex signal into several proper rotation components
(PRCs) based on the local time-scale of signal characteristics [23, 24]. The ITD algorithm can
decompose complex signals into a number of proper rotations (PR) based on signals’ local
characteristics adaptively. As compared with the EMD method, the baseline signals are only
determined at the local extremum point, by the ITD method using piecewise linear transformation.
So it can use more local information of original signals that means the ITD method can reveal the
essential characteristics of the original signal more effectively [24]. However, relative to the
complex vibration signals of engines, the ITD method still has problems of interpolation method
and mode mixing. Therefore, to overcome these drawbacks, some researchers have improved the
ITD algorithm [25, 26], and developed the improved ITD method using cubic spline interpolation
instead of linear interpolation to obtain the baseline signal. And in this method, they use the
cumulative variance contribution rate as the termination criterion of PRC component; in addition,
apply the mirror extension method for the endpoint extension to solve the extremum series. The
improved ITD method has achieved good results in the diesel engine fault diagnosis and
antifriction bearing fault diagnosis.

Although the improved ITD method can extract the original signal components more
accurately, this method is still affected by mode mixing. So, in this article, a new improved ITD
algorithm of CEIITD (Complementary Ensemble Improved Intrinsic time-scale decomposition)
is proposed. Compared with the improved ITD method, this method adds white noise in the
original signal in pairs, and solves the problem of mode mixing in the case of using less iteration.

Higher order spectra (HOS) analysis is a mathematical tool to describe the high order statistical
characteristics of random variables. This theoretical approach can suppress Gaussian noise. If a
non Gaussian signal contains Gaussian noise, the noise will be eliminated through the HOS
calculation. And the phase coupling relationship between two signals can be analyzed by the HOS
[27]. So, the higher order spectral (HOS) analysis can be used as a powerful tool for a non-linear,
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non-Gauss dynamical analysis. The Bi-spectrum is the lowest order in the HOS analysis methods.
The calculation of Bi-spectrum is the simplest, and it contains all the features of the higher-order
spectrum, that makes it more convenient to be used to analyzing the vibration signals to obtain the
characteristic information.

Due to the complex structure of the gasoline engine, there are many kinds of vibration signals
in it, the knock feature is mixed inside, and when the engine is working in a light knocked state,
the energy of the knocking feature is weak and less likely to be detected. The CEIITD method can
decompose a complex signal into high-low PRC components of multiple frequency components
and can avoid mode mixing. Therefore, the knock feature hidden in the vibration signals can be
decomposed into a specific PRC component. And the Bi-spectrum analysis to this PRC component
can further obtain the frequency characteristics of knock feature. So, in this article, a novel
approach to the basis on CEIITD and Bi-spectrum is proposed for the detection of engine knock.

2. Method
2.1. CEIITD
2.1.1. Improved ITD

The detailed improved ITD method is described as follows [28]:

Step 1: Given the composite signal x(t), all extremum points (T, X)) (k =1, 2, ..., M) of the
signal are determined, where M is the number of extreme points.

Step 2: For any three consecutive local extremum points (Ty, X ), (Try1, Xks1) and
(Ty42, Xr+2) the baseline control point L corresponding to time T can be calculated by the
following twice linear transformation:

1 Tier1 — Ti
Liyr = 5 Xkw1 + [Xie + — (Xk+2 - Xk) ’ 1
2 Tyeva =T

where the second term in the brackets is the linear interpolation of the local extremum points
(Ty, Xi) and (Ty 1, Xi42) at time Ty 4. From Eq. (1) it can be found that the value of the baseline
control point L, is from 2 to M — 1. Therefore, it is necessary to extend the local extrema of the
signal and estimate the baseline control point near the end point.

Step 3: Two new local extremum points (local maximum point and local minimum point) are
extended at each end of the signal local extremum sequence by using the mirror extension method.
Baseline control points Ly, Ly, Ly, and Ly, 4 are calculated according to Eq. (1).

Step 4: Assuming that the time values of the baseline control points are ¢y, ..., tx_1, tg, .-\
ty+1, the magnitude of the corresponding point is L, ..., Lx—1, L, ..., Lyr+1. The interval [tq, tar41]
is divided into M + 1 subintervals [t,_q, ;] by to, ..., tx—1, tis - ty41, and magnitude of the
corresponding subinterval endpoint point. The baseline L, (t) is obtained by using cubic spline
interpolation to fit all control points L.

Step 5: The residual signal Hy,(t) is obtained by separating the baseline signal L, (t) from
the original signal x(t):

Hy (t) = x(t) — Ly4(0). 2

In theory, H;,(t) can be considered as the first-order PRC component, but for engine vibration
signals, a single decomposition cannot ensure the physical significance of the PRC component.
Therefore, the standard deviation (SD) criterion is selected as the PRC component criterion.
Hy4(t) is regarded as the original signal, so steps 1-5 shall be repeated k times until Hy, (t)
satisfies the SD criterion, Hy (t) is the first-order PRC component.

Step 6: The PRC; (t) is separated from the original signal to obtain the residual signal u, (t).
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As compared to x(t), u, (t) is smoother, mainly because the highest frequency impact component
has been separated:

uy (8) = x(t) — PRC,(8). 3

u, (t) is treated as the original signal and steps 1-6 are repeated p times until the cumulative
variance contribution rate c is greater than 0.99. The cumulative variance contribution rate, c,
reflects the contribution of all the PRC components that have been obtained for the original signal:

P Vra(PRC,(D))
P vra(PRC,(t)) + Vra(u, (D)

Cc =

“4)

Finally, the original signal x(t) is decomposed into several PRCs and residual signal u,, (t):

x(t) = Z PRC,(£) + uy (0). )

2.1.2. CEIITD

Although the improved ITD method can extract the original signal components more
accurately than EMD method, it also has the mode mixing problem. This phenomenon can be
observed as the different time scales of the feature components appear in the same PRC function,
or the same scale of the feature components is decomposed into different PRC functions. This
phenomenon is particularly evident when the improved ITD algorithm is applied to analyze a
time-scale jumping signal. As the gasoline engine has many vibration sources, the cylinder
vibration signal contains shocks, jumping components, vulnerable to modal aliasing, and is more
susceptible to mode mixing.

To solve this problem, the original signal can be added to the white noise, and then
decomposed.

The mode mixing problem can be solved by adding white noise to the original signal. However,
in order to remove the white noise residual component from the decomposition result, the average
number times are needed as much as possible (more than 100 times). This will greatly increase
the computational burden and will be detrimental to the engine knock real-time detection. In 2010,
a new white noise assistant method is proposed by Huang [29]. In this method, white noise is
added in pairs to the original data. The results show that this method can quickly eliminate the
white noise from the decomposition results. So, in this article, a new improved ITD method
CEIITD (Complementary Ensemble Improved Intrinsic time-scale decomposition) is proposed.
The analysis result shows that, as compared to the improved ITD method, the CEIITD method can
obtain better results only using 20 times of iterations, and at the same time, it can eliminate the
residual white noise from the analysis results. The CEIITD algorithm is composed of the following
steps:

Step 1: A pair of white noise was added to the original data (one positive and one negative) as
follows:

ARt ©

In the above equation, S is the original signal; N represents added white noise; M, and M,
represent the original signal with added positive noise and negative noise.

Step 2: The newly generated signal is decomposed by the improved ITD method, and two sets
of ensembles PRCs are generated. Then, the ensemble PRCs obtained from those added positive
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noises signals contain residues of positive white noises, and the ensemble PRCs obtained from
those added negative noises signals contain a set of negative added white noises.

Step 3: Step 1 and Step 2 are repeated with different white noise in the form of is fixed
amplitude.

Step 4: The mean value of all PRCs is calculated as final CEIITD results.

To illustrate the advantage of CEIITD, a simulation signal is listed. The simulation signal is
shown in Fig. 1:

t =1:1000,

x; = cos(30 X T X t),

x; = sin (100 x 7 x t+z),
3

B {0, 03<t<04 07<t<08,
%37 10.3sin(500 x T xt), 0<t<03, 04<t<07 08<t<1,

LA
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c)
Fig. 1. Original signal

Where x; is a cosine signal of amplitude 1, x, is a sinusoidal signal of amplitude 1, and x5 is
a high frequency component of amplitude 0.3.

The decomposition result of improved ITD is shown in Fig. 2(a), and the CEIITD result is
shown in Fig. 2(b). In the CEIITD method, the amplitude of added noise is 0.1 times to the
standard deviation of X and the ensemble number is 20, and Fig. 2(c) shows the residues of added
white noise derived by CEIITD. The residue of added white noise can be determined by the
difference between the original signal and reconstructed signal, and the reconstructed signal is the
sum of all PRC components and residual component obtained by the CEIITD method.

From Fig. 2(a), it can be seen that PRC1 and PRC2 are two components with emerged mode
mixing, and two sine components PRC1 and PRC2 have high-frequency components mixed.
Mode mixing causes each PRC component to lose its physical meaning and does not reflect the
true component of the original signal.

But it can be seen from Fig. 2(b) that, PRC1 corresponds to high-frequency components, PRC2
corresponds to x,(t) and PRC3 corresponds to x, (t), and the Fig. 2(c) shows that the residue of
white noise from CEIITD has average amplitude close to 0 (of the order of 10”), that means the
CEIITD method could represent the characteristics of the original signal accurately and eliminate
the residual white noise in the analysis results effectively only using few times of iterations.
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Fig. 2. a) improved ITD result, b) CEIITD result, c) residues of added white noises derived by
EEMD and CEEMD

2.2. Bi-spectrum algorithm
2.2.1. Definition of Bi-spectrum

For a steady cycle vibration signal x(n), its Bi-spectrum is defined as follows:
1 *
By(wy, w;) = Nx(ah)x(wz)x (w1 + w3). @)

From this equation, it can be known that the Bi-spectrum has two frequency variables w;, w,,
the Bi-spectrum amplitude at (w;, w,) of x(n) is equal to the product of the Bi-spectrum
amplitudes at w,, w, and (w4, w,). The physical meaning of Bi-spectrum is not clear, in some
degree; it is equivalent to the decomposition of the signal skewness in the frequency domain. It
has phase and amplitude information, and can describe the signal nonlinear, non-Gaussian
characteristic information. In case of a mechanical system breakdown or state change, the
nonlinear system will change.

2.2.2. Bi-spectrum calculation

There are many different methods that can calculate the higher-order spectral. The direct
calculation method has higher accuracy, and its algorithm steps are shown as follows [27]:

1) The original data is X = [xq, x5, ..., X ], the data is segmented into k overlay records.

2) The mean value of each record is de-trended and removed.

3) Windows are added, and the fast Fourier transform (FFT) is calculated for each record.

4) The Bi-spectrum B, of the kth order record is computed as:

By = Xy (1) - Xi(w7) - Xp (w1 + w5),

where X;, denotes the FFT of the kth record.
5) Finally, average value of By, is calculated as the result of Bi-spectrum estimates.
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Since the higher-order cumulant of the Gaussian process is equal to zero, the higher-order
cumulant of the non-Gaussian process is not zero, whereas the Bi-spectrum analysis is a
two-dimensional Fourier transform of the third-order cumulant of the signal and therefore the
Gaussian background noise can be automatically suppressed to improve the extraction accuracy
of the signal characteristics.

3. Proposed engine knock characteristic extraction approach based on CEIITD and
Bi-spectrum

The engine knock detection approach for SI engine based on CEIITD and Bi-spectrum is given
as follows:

Step 1: A 4-cylinder in-line SI engine was used to generate the test data. The cylinder block
vibration data is measured by an acceleration sensor.

Step 2: The engine block vibration signal is decomposed into a series of PRCs by the CEIITD
method to extract the engine knock characteristics.

Step 3: The PRC component which contains the knock characteristics analyzed by Bi-spectrum
to obtain the non-linear, non-Gaussian characteristics.

The flow chart of the engine knock characteristic extraction approach is illustrated in Fig. 3.

Obtain the non-
4-cylinder in-line SI linear, non-Gaussian
engine characteristic of
engine knock
A
A 4
Original vibration Bi-spectrum Slice
signal analysis
A
4
CEIITD Bi-spectrum analysis
A
\ 4
. Extract the knock
(i= >
REE(CLZ2h) d chacteristic

Fig. 3. Operation procedure of knock feature extraction
4. Engine test program and experimental data acquisition

The engine knock was tested in a four-cylinder turbocharged, direct injection gasoline engine,
and the engine main parameters are shown in Table 1. The test bench mainly includes: 1.5 T
gasoline engine, AVL electric power dynamometer, LMS Scada III noise and vibration test system
and computer. The power dynamometer is connected to the flywheel of the gasoline engine
through the coupling. The power dynamometer is used to control the engine during a test to
maintain a constant load and relatively stable speed. In this research, the engine knock was
initiated by adjusting the spark advance. The knock signal is measured using a Dytran 621B40
acceleration sensor. The acceleration sensor is installed at the cylinder block. In order to directly
monitor the occurrence of knock and to estimate the knock strength in each cylinder, four AVL
GH13Z-31 spark plug cylinder pressure sensors were installed into the spark plug mounting hole
to capture the cylinder pressure during normal operation and knock combustion. The signal
acquisition is controlled by the LMS Scada III noise and vibration test system, and the collected
signals will be stored on the computer for a further analysis. The Schematic diagram of engine test
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system is shown in Fig. 4, the test engine and the location of acceleration sensor are shown in
Fig. 5(a), and the cylinder pressure sensor and LMS Scada III test system are shown in Fig. 5(b).
The engine operating condition was within the range of 2800 rpm to 4000 rpm.

Table 1. Test engine specifications

Cylinders/valves per cylinder 4/4
Displacement 1.5L
Intake type Turbocharged
4-stroke Gasoline engine Direct injection
Max power 110 kW @ 5600 rpm
Max torque 210 Nm @ 2200-4500 rpm

Cylinder Pressure Sensor

Acceleration Sensor \|/
"\ [ 1
\O | LMS Scada II Computer
Dynamometer test system for signal
Gasoline Engine processing

x

Fig. 4. Schematic diagram of engine test system

\ ]
b) Cylinder pressure sensor and LMS Scada III test system
Fig. 5. Experimental set up

5. Result
5.1. Knock feature extraction

In order to research the different characteristics of vibration signals between normal
combustion, the heavy knock operating condition, light knock condition and normal combustion
condition are to be chosen from test results for an analysis.

Fig. 6(a) to 6(c) show the vibration curves under a heavy knock condition, light knock
condition and normal combustion condition, respectively. Fig. 7(a) to 7(c) show the cylinder
pressure curves under these three conditions. In a heavy knock condition, the engine speed is
2800 rpm, and the ignition advance angle is 26°CA. In light knock and normal combustion
conditions, the engine speed is 2800 rpm, and the ignition advance angle is 22°CA. And in the
normal condition, the engine speed is 2800 rpm and the ignition advance angle is 19°CA.
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Fig. 7. a) heavy knock pressure, b) light knock pressure, ¢) normal condition pressure
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As it can be seen from Fig. 7(a), the cylinder pressure fluctuates sharply around the pressure
peak, which is due to the violent turbulence of the cylinder pressure caused by the spontancous
combustion of the terminal mixture. It can also be determined that knocking occurs in this
condition. In contrast to this, in the normal combustion state, from Fig.7(c), the engine cylinder
pressure curve is smoother, and without significant fluctuations, indicating that the normal
combustion condition exists. When the cylinder pressure reaches its peak, the pressure changes
are not violently. And from Fig. 7(b), it can be seen that the cylinder pressure has a high frequency
fluctuation near the peak value, but the fluctuation is not severe. Therefore, it can be assessed that
this condition has light knock.

From Fig. 6(a), it can be seen that in the heavy knock condition, the cylinder vibration signal
peak is more than 60 g, and Fig. 6(b), 6(c) shows that to the light knock and normal combustion,
the peak value of vibration signal is about 30 g, which is much smaller than that of heavy knock.
However, the amplitude of the vibration signal is similar to that between the light knock and
normal combustion conditions. It is difficult to determine the light knock directly by the vibration
signal.

In order to extract the knock feature frequencies accurately, the engine surface vibration signal
is decomposed by the CEIITD. The white noise amplitude to the standard deviation of original
signal is set to 1.2, and ensemble number for the CEIITD is set to 20 times. Because the knock
feature is mainly concentrated in the high frequency region, and the frequency of PRC component
decomposed by CEIITD method is arranged from high to low, to save the computation time, only
take first 5 order PRC components. If the decomposition results have more than 5 orders, this
decomposition shall be stopped, the next iteration is entered. The CEIITD result of vibration
signals is shown in Fig. 8(a)-(c).

In the CEIITD decomposition results, there are five PRC components that have been
decomposed. From Fig. 8(a)-(c), it can be seen that the PRC1 amplitude of the heavy knock
condition is greater than 50. This amplitude is significantly larger than that of the light knock
condition and the normal condition. In addition, the PRC1 component amplitude of light knock
condition is larger than the PRC1 amplitude of normal combustion condition obviously.

On the other hand, PRC1 of both heavy knock and light knock conditions have an obvious
peak at the time of cylinder pressure fluctuation (10°-40° crank angle), while the PRC1 of normal
combustion did not show significant peaks. So, it can be concluded that through the PRC1 of the
CEIITD result the light knock characteristics can be identified from a vibration signal.

In order to further analyze the characteristics of engine knock, Bi-spectrum is used. The
CEIITD results show that the knock characteristics are mainly concentrated in the PRCI.
Therefore, the PRC1 is subjected to the Bi-spectrum analysis. Each data samples which range is
from —60 to 120 crank angles, the length of data segment is 256; each piece of data between the
overlap degrees is 0. The frequencies of f1 and f2(0 to 0.5 Hz) are actually normalized to the
frequencies of 0 to 25600 Hz, and the frequencies of f1 and f2 are the same as the reference
frequency. That means the frequency band [0, 0.5 Hz] is actual corresponding to the band
[0, 25600 Hz]. The results are shown in Fig. 9(a)-(c).

From Fig. 9, it can be seen that after the Bi-spectrum analysis, the amplitude of heavy knock
and light knock is significantly larger than the normal combustion, and with the increase of the
knock intensity, the Bi-spectrum distribution becomes simpler. Under normal combustion
condition, the Bi-spectrum image is complex, the peak is not very prominent, and for light knock
and heavy knock conditions, the Bi-spectrum image distribution only have a little difference, and
the peak amplitude is very prominent.

Bi-spectrum is a two-dimensional vector, and it is complicated to be analyzed and dealt directly.
One-dimensional slice can be used to reduce the dimension of detonation data and detonation
feature. After a lot of experimental analyses, the Bi-spectrum diagonal is selected for a slice
analysis. The Bi-spectrum slice results are shown in Fig. 10(a), (b).
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Fig. 8. a) heavy knock signal with CEIITD decomposition results, b) light knock signal with
CEIITD decomposition results, ¢) normal combustion signal with CEIITD decomposition results

From Fig. 10, it can be seen that, after the Bi-spectrum analysis, the maximum amplitude in
the slice figure of heavy knock condition is 16.96, the maximum amplitude of light knock
condition is 2.81, and the normal combustion condition of the maximum amplitude is 0.45, the
distinction between these three statuses is higher than CEIITD results.

In heavy knock, the main peak appears at a frequency of (0.1445, 0.1445), which is equivalent
to 7398 Hz, and in the light knock condition, the main peak appears at (0.1484, 0.1484), and is
equivalent to 7598 Hz. For automotive engines, vibration mode frequencies of knock are typically
within the range of 6-20 kHz [2]. And the engine knocks are from the chamber resonances excited
by abnormal combustion. The resonance frequency of the combustion chamber is got by the
following formula [30]:

c
fm,n = E: (9)
where c is the sound speed inside the combustion chamber, B represents the cylinder bore and p
is the corresponding wave number. The sound speed depends on the chamber combustion
temperature. So, for this gasoline engine, the 1st order of resonance (1st wave number p = 1.84)
is at 7000 Hz-8000 Hz, the 2nd order of resonance (2nd wave number p = 3.05) is at
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12000-13000 Hz. The Bi-spectrum slice analysis result shows that the frequency of peak value in
Bi-spectrum result is coincides with the 1st order resonance, that indicating that the dominant peak
in the Bi-spectrum results is the knocking feature result.

Since the Bi-spectrum can suppress the Gaussian distribution in the signal completely, the

distribution and intensity information of the non-Gaussian component in the dual frequency
domain is revealed. So, the Bi-spectrum image shows the distribution of the non-Gaussian
components in the dual-frequency domain. And the results shown in Fig. 8 and Fig. 9 mean that
the knock feature belongs to a non-Gaussian signal, with the knock intensity increases, the
non-Gaussian nature of the cylinder block vibration signal increases significantly.
In order to illustrate the adaptability of the proposed method in this paper under different working
conditions, another three conditions include heavy knock, light knock and normal combustion
running under 4000 rpm as shown in Fig. 11. And the cylinder pressure signals of these three
conditions are shown in Fig. 12. The ignition advance angle of heavy knock, light knock and
normal combustion are 27°CA, 24°CA and 20°CA, respectively. Figures from left to right contain
heavy knock condition, light knock condition and normal combustion condition.
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Fig. 12. Cylinder pressure signal of three conditions under 4000 rpm

From the cylinder pressure signals shown in Fig. 12, it can be seen that, in the heavy knock
condition, the cylinder pressure fluctuates sharply around the peak value, which means knocking
occurred in this condition. In contrast to this, in the normal combustion condition shown in the
right picture of Fig. 12, the engine cylinder pressure curve is smoother, and without significant
fluctuations, indicating it is the normal combustion condition. And from the middle picture in
Fig. 12, it can be seen that the cylinder pressure has a high frequency fluctuation near the peak
value, but the fluctuation is not severe as the heavy knock condition. Therefore, it can be assessed

that this condition has light knock.
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From Fig. 11, it can be seen that in the heavy knock condition, the cylinder vibration signal
peak is more than 60 g, obviously larger than in light knock and normal combustion conditions.
But the peak value of vibration signal of light knocks, and normal combustion conditions are all
about 30g. It is difficult to determine the light knock directly only by a vibration signal.
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Fig. 13. CEIITD decomposition results of vibration signal of three conditions under 4000 rpm
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Then the vibration signals of these three conditions are decomposed by the CEIITD method,
the white noise amplitude to the standard deviation of original signal is set to 1.2, and ensemble
number for the CEIITD is set to 20 times. The results are shown in Fig. 13. From Fig. 13, it can
be seen that the PRC1 amplitude of the heavy knock condition is greater than 50. This amplitude
is largest in these three conditions. And the PRC1 component amplitude of light knock condition
is also obviously larger than the normal combustion condition. In addition, in the PRCI1
component, when the cylinder pressure fluctuates sharply (10°-40° crank angle), both heavy knock
and light knock conditions have an obvious impact, while the PRC1 of normal combustion does
not show significant peaks at that crank angle. So, it can be concluded that in the 4000 rpm
conditions, the CEIITD method can also identify light knock characteristics from vibration signals.

5.2. Comparison and discussion

To verify the effectiveness of the proposed method, the Band Pass Filter and improved ITD
were applied to detect the knock characteristics from cylinder block vibration signals shown in
Fig. 6.

First of all, the band-pass filter method was used to analyze the cylinder block vibration shown
in Fig. 6(a)-(c). This is a common method for processing knock sensor signals on a gasoline engine.
For automotive engines, the knock vibration mode frequencies are typically within the range of
6-20 kHz, so the band pass frequency is set to 6-20 kHz. The results are shown in Fig. 14.

From Fig. 14, it can be seen that in the heavy knock condition, the peak amplitude is still larger
than light knock and normal combustion obviously, but the amplitude difference between light
knock and normal combustion is not very obvious, that means the band pass filter cannot identify
the light knock characteristics very clearly.

Then, these vibration signals were analyzed by using the improved ITD method. In this work,
the improved ITD results of vibration signals are illustrated in Fig. 15.
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Fig. 14. Band pass filter result for these three conditions
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Fig. 15. Improved ITD result for these three conditions

From the figure, it can be found that the entire PRC1 components of these three conditions
showed obvious peaks, and no obvious peaks can be found in other IMFs. So, it can be concluded
that the knock features are concentrated in PRC1. From PRC1 components of these conditions, it
can be found that the amplitude of heavy knock was significantly larger than that of the other two
conditions. However, there is no significant difference of the amplitude of PRC1 component
between the light knock and normal combustion conditions. That means the improved ITD method
is not as effective as the CEIITD and Bi-spectrum methods in extracting light knock features.

6. Conclusion

In this paper, a new knock feature detection method is proposed for spark ignition engines
based on the Complement Ensemble Improved Intrinsic Time-scale Decomposition (CEIITD) and
Bi-spectrum. The CEIITD technique is a noise-assisted signal analysis method with the addition
of white noise in pairs to the original signal. Relative to improved ITD method, this method could
keep the advantages of the ITD method, solve the mode mixing problem and eliminate the residual
white noise in the analysis results effectively only using few times of iterations.

Bi-spectrum can suppress the Gaussian distribution in the signal completely, and it is also used
to detect non-linearity signals accurately. These features can be used to separate different
conditions of engine, like knock conditions.

In order to prove the reliability of the method proposed in this paper, this method is examined
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in extracting the knock features on a test gasoline engine. The observations and conclusions of the
study are summarized as follows:

1) The CEIITD algorithm can effectively extract the knock shock characteristics (including
light knock) from a cylinder block vibration signal, and the knock characteristics are concentrated
in PRC1.

2) The PRC1 component of CEIITD result is analyzed by Bi-spectrum. The result shows that
the non-Gaussian properties of knock conditions are significantly larger than normal combustion
conditions. The knock characteristic signal shows a strong non-Gaussian character.

3) At last, the Band pass filter and Improved ITD method were employed to identify the knock
characteristics from these cylinder block vibration signals. The comparison result shows that the
CEIITD method proposed in this paper can receive better results
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