

 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. JUN 2017, VOL. 12. ISSN 2345-0533 147

Methods for improving the performance data processing
on an example of the task of constructing routes in DTN
networks

Shichkina Yulia1, Mikhail Kupriyanov2, Alexander Koblov3
Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia
1Corresponding author
E-mail: 1strange.y@mail.ru, 2mikhail.kupriyanov@gmail.com, 3koblow.a.a@gmail.com
Received 15 May 2017; accepted 23 May 2017
DOI https://doi.org/10.21595/vp.2017.18629

Abstract. The article considers how to speed up data processing in the construction route in DTN
network, in particular by applying multi-thread processing using the PHP library “pthreads”,
selecting the noSQL MongoDB database and applying additional mathematical methods (fuzzy
logic) to reduce the amount of data. The results of testing the PHP library “pthreads” on the
obtained data set are presented. And also, it is shown the results of comparing the execution time
of queries in the DBMS MySQL and MongoDB.
Keywords: SQL, noSQL, MySQL, MongoDB, Data Mining, PHP “pthreads”, database,
performance, query.

1. Introduction

The software market of computer systems has a large number of commercial database
management systems, which are various in functional capabilities, for all mass computer models
and for different operating systems.

Even before an experienced database administrator, there is often a difficult choice between
databases of the same class, especially between databases that are different in nature. This article
presents the results of a comparative analysis of classical relational databases with unstructured,
appeared not so long ago, using the example of freely distributed database management systems
MySQL and MongoDB [1].

Another problem that arises before the user of data of a larger size is the problem of applying
modern methods of parallelizing data processing. Therefore, the special attention in the article is
paid to the results of testing the PHP library “pthreads” in order to confirm the possibility of its
application to specific data.

Very often the demand for high-loaded solutions does not arise from the very beginning. The
transition to radically different technologies in large projects requires huge amount of time and
material resources, which companies do not always have. Small project teams may not have the
financial opportunity to hire software architects and developers to implement complex
functionality. In these cases, companies have to work with accessible tools and technologies.

This article shows how it is possible to use PHP to create a highly loaded solution that
implements the process of data cleaning and transformation to prepare for further analysis using
Data Mining methods. The solution was tested on test sets of 25.000 and 1.000.000 records.

Testing of MySQL and MongoDB and PHP “pthreads” was done using database queries with
information about the location of moving objects. Devices installed on these objects are connected
a dynamic network through WI-FI.

2. Formulation of the problem

Let’s consider the task of extracting useful information from the database which contains data
obtained from devices that transmit its GPS coordinates. Solving this task, it was done preliminary
cleaning and transformation of data for accelerated usage of the finite methods of Data Mining. It
was implemented in PHP. Also, it was done deeper purification and transformation of data by

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2017.18629&domain=pdf&date_stamp=2017-06-30

METHODS FOR IMPROVING THE PERFORMANCE DATA PROCESSING ON AN EXAMPLE OF THE TASK OF CONSTRUCTING ROUTES IN DTN
NETWORKS. SHICHKINA YULIA, MIKHAIL KUPRIYANOV, ALEXANDER KOBLOV

148 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. JUN 2017, VOL. 12. ISSN 2345-0533

applying fuzzy cross-sections in databases was implemented in Java. As a repository of
information, the NoSQL database MongoDB of version 3.2 was used.

More detailed data processing and data transformation processes, as well as results of applying
fuzzy cross-sections in databases as a method of deep cleaning are described in [2, 3].

3. Preliminary cleaning and transformation of data without using the pthreads library

The accumulated knowledge of GPS transmitting devices is the logging information which
together with the coordinates contains the acceleration, rotation, speed, data on the transmitting
and receiving devices, as well as other service information. Such a set of data is redundant for the
task. In order to apply knowledge extraction methods in the future, it is necessary to prepare the
available information.

Preliminary cleaning and transformation in our task consists of the following operations:
• During the cleaning phase, it is necessary to exclude the processing of garbage information

and data that were obtained by incorrect reception of a signal from GPS satellites.
• At the transformation stage, it is necessary to make a passage through the two-dimensional

array of geographical coordinates and to make a connection to the data related to a certain sector
of the geographical coordinate plane to the point in the new coordinate space.

This set of operations was implemented using PHP 7.0 with the mongodb-1.2 driver on a test
stand with the characteristics given in Table 1 without using the PHPLIB library for MongoDB.

Despite the fact that most databases easily scale to work with multiple threads, PHP scripts
will be executed in a single stream if no additional preparation won’t be taken.

Table 1. Characteristics of the test stand
CPU

Model name: Intel(R) Core(TM) i3-4030U CPU @ 1.90GHz
Socket: 1

Core(s) per socket: 2
Thread(s) per core: 2

Memory
RAM: 12 Gb

Storage: 120 Gb (SSD)
Operating system

Description: Linux Mint 18 Sarah
Linux Kernel: 4.4.0-21-generic

Database
MySQL 5.7.17 (InnoDB)

MongoDB 3.4.2 (WiredTiger)
Programming language

PHP PHP 7.0.5-4+donate.sury.org~xenial+1 (cli) (ZTS)

With this approach, it is impossible to get the maximum efficiency. The loading graph of
logical cores will look like this (Fig. 1).

Fig. 1. Logical cores loading graph during processing set of 35.000 entries

METHODS FOR IMPROVING THE PERFORMANCE DATA PROCESSING ON AN EXAMPLE OF THE TASK OF CONSTRUCTING ROUTES IN DTN
NETWORKS. SHICHKINA YULIA, MIKHAIL KUPRIYANOV, ALEXANDER KOBLOV

 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. JUN 2017, VOL. 12. ISSN 2345-0533 149

As can be seen from the graph, all the threads are involved in the processing of data. This is
due to the fact that in MongoDB since version 3.0 it is used the new WiredTiger storage engine
which works with all available threads, but none of the threads is loaded for maximum
performance. This indicates the irrational use of available resources.

The only correct way out of this situation is to start the processing in parallel with several
threads.

4. Parallel implementation of the preliminary cleaning and data transformation using the
“pthreads” library

Since the “pthreads” library implements the synchronized() method in the Threaded class, it
remains to decide at which point it is possible to run a separate thread.

Within the problem of preliminary cleaning and transformation of data such places were:
• process of cleaning from anomalous values for each coordinate (longitude and latitude). In

this case, it is possible to run two threads (one for each of the coordinates).
• bypassing the coordinate space by longitude and latitude when it is implemented the nested

loop “for”. The inner loop can be run in a separate thread.
It can be seen that the diagram obtained during performing the sequential solution (Fig. 1) is

comparatively similar to the diagram obtained using “pthreads” with 1 open thread (Fig. 2).

Fig. 2. Logical cores loading graph during processing set of 35.000 entries

with “pthreads” library and 1 thread

After adding second thread the logical cores loading becomes more consistent. After adding
the third thread the average loading rate comes to 80 % and leaves the space for users with less
demanding computations, but there’s a lot of unused potential left.

After making additional threads, it becomes noticeable that the loading of logical cores grows,
and reaches its peak after using all available threads (Fig. 3). It shows that with help of the
“pthreads” extension it is possible to make PHP work quite efficiently not only for web
applications, but also for solving problems related to extracting knowledge from large data.

Fig. 3. Logical cores loading graph during processing set of 35.000 entries

with “pthreads” library and 4 threads

For comparison, it is necessary to measure the execution time of a sequential and parallel
solutions of the preliminary cleaning task and transformation of data on test sets. To carry out
more accurate calculations on each set it is necessary to perform 100 measurements and to list

METHODS FOR IMPROVING THE PERFORMANCE DATA PROCESSING ON AN EXAMPLE OF THE TASK OF CONSTRUCTING ROUTES IN DTN
NETWORKS. SHICHKINA YULIA, MIKHAIL KUPRIYANOV, ALEXANDER KOBLOV

150 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. JUN 2017, VOL. 12. ISSN 2345-0533

average values in the Table 2.
The results show that the execution time of a sequential solution on a standard PHP 7.0 without

using Zend Thread Safety (NTS) is practically the same as for a sequential solution of a task
running in PHP using Zend Thread Safety (ZTS) as well as the time of the solution executed with
“pthreads” and creating only one thread. However, if it is open more than one thread than it is get
a tremendous performance boost, due to which the execution time of the task decreases with the
rate of cubic regression. Fig. 4 shows how the execution time of the solution depends on the
number of open threads.

Table 2. Test results
 Execution time, sec.

Algorithm 25.000 entries 1.000.000 entries
Sequential (NTS) 17.09 233.85
Sequential (ZTS) 16.99 228.97
Parallel (1 thread) 17.00 224.94
Parallel (2 threads) 10.01 127.32
Parallel (3 threads) 9.12 98.67
Parallel (4 threads) 8.27 79.67

Fig. 4. Dependency of execution time and number of created threads on set of 1.000.000 entries

5. Testing of database management systems

Initially, for the solution of the problem of constructing routing database used MongoDB [4]
as the most suitable tool from the point of view of the structure of stored data and the expected
speed of response to queries. But, similar problem can be solved with the use of well-known
database management system – MySQL [5].

Testing MySQL and MongoDB was done on the same computers, with identical DBMS
performance settings, indexes and the same queries. The description of the test stand is given in
Table 1 above.

For the purity of the experiment, similar data sets were prepared for both MongoDB and
MySQL. The first data set with 25.000 records illustrates work on small projects, such as online
stores, where quick access to records is important, but there is no need to process large data sets.
The second set of data – 500000 records, illustrates the operation of the DBMS under medium
load and the third set gives an understanding of the advisability of using a specific solution in the
context of the choice of two DBMSs.

Table. 3 shows the results of the runtime measurements for each DBMS on three data sets with
the output of four parallel data processing threads.

However, with the increase in the number of records, the speed of MySQL’s operation
increases significantly and MongoDB emerges as the undisputed leader. For clarity of comparison
Fig. 5 shows the relationship of the application time on all data sets using 1 and 4 threads.

Fig. 6 demonstrates that running MySQL on large data sets significantly lower than MongoDB.
It also becomes apparent that the performance of a relational database running in four threads on

METHODS FOR IMPROVING THE PERFORMANCE DATA PROCESSING ON AN EXAMPLE OF THE TASK OF CONSTRUCTING ROUTES IN DTN
NETWORKS. SHICHKINA YULIA, MIKHAIL KUPRIYANOV, ALEXANDER KOBLOV

 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. JUN 2017, VOL. 12. ISSN 2345-0533 151

large data sets is comparable to the performance of MongoDB, which processes the data
sequentially.

Table 3. Results of measurements

DBMS Datasets
25000 500000 1000000

MySQL (1 thread), sec. 7.7116 387.3475 469.0456
MySQL (2 thread), sec. 4.6347 219.7399 278.2428
MySQL (3 thread), sec. 4.2134 214.9975 230.4368
MySQL (4 thread), sec. 4.1275 188.2683 217.9863

MongoDB (1 thread), sec. 17.3954 99.6958 225.6027
MongoDB (2 thread), sec. 9.8326 56.1974 130.8886
MongoDB (3 thread), sec. 9.7207 49.5986 112.5380
MongoDB (4 thread), sec. 9.3348 47.4589 99.3104

Fig. 5. The graph of the dependence of the execution time on the number of records in the data set

Fig. 6. The graph of the history of loading logical cores from

the System monitor application when you start MySQL in 4 threads

Fig. 7. A graph of the history of loading logical cores from

the System monitor application when MongoDB is started in 4 threads

The graphics loading logic processor cores (Fig. 6, 7) show that loading MySQL (Fig. 6) is
not constant and has dips 60 % while MongoDB (Fig. 7) has a constant loading of 80-90 % without

METHODS FOR IMPROVING THE PERFORMANCE DATA PROCESSING ON AN EXAMPLE OF THE TASK OF CONSTRUCTING ROUTES IN DTN
NETWORKS. SHICHKINA YULIA, MIKHAIL KUPRIYANOV, ALEXANDER KOBLOV

152 © JVE INTERNATIONAL LTD. VIBROENGINEERING PROCEDIA. JUN 2017, VOL. 12. ISSN 2345-0533

dips.
This aspect illustrates the frugality of the presented database management systems to system

resources in general and in particular to processor time.

6. Conclusions

In the modern world, the volume of produced and processed data inevitably grows, and the
question of rational use of available resources for the creation of new information systems
becomes actual.

The results show that with the “pthreads” library it is possible to force PHP applications to use
CPU time more effectively and get a boost in the execution time of the preliminary cleaning task
and data transformation more than 2 times on a comparatively weak processor.

The results of DBMS testing showed that the use of classical relational databases such as
MySQL is rational only for small projects that do not have large amounts of data, or there is no
need to quickly obtain a result. However, setting the goal of qualitative data processing, we
inevitably come to increase the sample to increase the representativeness. But, increasing volumes,
do not forget about the relevance, which data can lose due to too long processing. Therefore, in
order to satisfy the need in these criteria it would be better to use appropriate NoSQL databases
as the most suited to processing of large data, it was shown in example MongoDB.

Acknowledgements

The paper has been prepared within the scope of the state project “Initiative Scientific Project”
of the main part of the state plan of the Ministry of Education and Science of Russian Federation
(Task No. 2.6553.2017/8.9 BCH Basic Part).

References

[1] DB-Engines Ranking. https://db-engines.com/en/ranking
[2] Shichkina Y. A., Degtyarev А. B., Koblov A. A. Technology of cleaning and transforming data using

the knowledge discovery in databases (KDD) technology for fast application of data mining methods.
Selected Papers of the 7th International Conference Distributed Computing and Grid-technologies in
Science and Education, Dubna, Russia, 2016, p. 428-431.

[3] Shichkina Y. A., Kupriyanov M. S., Plotnikova A., Ya Domaratsky Application of fuzzy sections
for constructing dynamic routing in the network DTN. Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9870,
2016, p. 63-75, https:/doi.org/10.1007/978-3-319-46301-8_6.

[4] McCreary Dan, Kelly Ann Making Sense of NoSQL: A Guide for Managers and the Rest of Us.
Manning Publications, 2013.

[5] Vaish Gaurav Getting Started with NoSQL. Packt Publishing, 2013.

